Προτάσεις, Σύνολα, Απεικονίσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προτάσεις, Σύνολα, Απεικονίσεις"

Transcript

1 Κεϕάλαιο 1 Προτάσεις, Σύνολα, Απεικονίσεις Το κεϕάλαιο αυτό είναι εισαγωγικό και έχει σκοπό να υπενθυµίσει και να γενικεύσει κάποιες εν µέρει γνωστές έννοιες καθώς και τη σχετική ορολογία και το συµβολισµό. Αυτές οι έννοιες είναι εντελώς ϑεµελιώδεις αϕού χρησιµοποιούνται όχι µόνο σε όλα τα επώµενα αλλά και σε όλα τα Μαθηµατικά, την Επιστήµη και την Τεχνολογία. 1.1 Εκϕράσεις, Σύνολα, Μεταβλητές Η έννοια αντικείµενο είναι µια έννοια εντελώς γενική ώστε εισάγεται στη συζήτηση χωρίς ορισµό. Το σύµβολο είναι αντικείµενο ειδικής µορϕής που εκϕράζει ένα άλλο αντικείµενο. Η έκϕραση είναι οποιοσδήποτε συνδυασµός συµβόλων. Τα σύµβολα είναι επίσης εκϕράσεις. Μια έκϕραση µε νόηµα είναι η έκϕραση που εισάγεται είτε ως αρχική έννοια είτε ως έννοια που δίδεται µε ορισµό. Παράδειγµα Τα επόµενα 1 έως 9 είναι εκϕράσεις µετά x x + 2 = 5 7. σηµείο, = = 5 Οι εκϕράσεις 1, 2 είναι χωρίς νόηµα ενώ οι 3, 4, 5, 6, 7 είναι εκϕράσεις µε νόηµα. Εννοείται ότι ϑα ασχοληθούµε µε εκϕράσεις που έχουν νόηµα. Τη Θεωρία των συνόλων εισήγαγε ο Γερµανός µαθηµατικός Georg Ferdinand Ludwig Philipp Cantor ( ). Τα σύνολα απο-τελούνται απο (ή περιέχουν) στοιχεία ή σηµεία ή µέλη. Τα σύνολα συµβολίζουµε 5

2 6 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ συνήθως µε κεϕαλαία γράµµατα και τα στοιχεία τους µε µικρά (πεζά). Μια ϑεµελιακή σχέση στα σύνολα είναι το «ανήκει» που µαζί µε την άρνησή της «δεν ανήκει», συµβολίζεται µε τις εκϕράσεις a, a /, που σηµαίνουν ότι το αντικείµενο a είναι ή δεν είναι µέλος (στοιχείο) του συνόλου, αντιστοίχως. Στη ϐάση της Θεωρίας Συνόλων του Cantor υπάρχουν δύο διακρίσεις : 1. διάκριση των στοιχείων που ανήκουν στο σύνολο και των εκτός αυτού, 2. διάκριση µεταξύ τους, των στοιχείων που ανήκουν στο σύνολο. ύο σύνολα, ϑεωρούνται ίσα και το γράϕουµε =, όταν αποτελούνται απο τα ίδια ακριβώς στοιχεία, δηλαδή όταν, κάθε στοι-χείο του είναι και στοιχείο του και επίσης κάθε στοιχείο του είναι και στοιχείο του. ύο ακραίες περιπτώσεις συνόλων είναι απαραίτητες για κάθε ϑέµα. Το έ- να είναι αυτό που περιέχει όλα τα στοιχεία, το καθολικό σύνολο ή σύνολο αναϕοράς (universal set) U ή Ω ή X, που αποτελεί το «σύµπαν» του ϑέ- µατος, µε την έννοια ότι, οποιοδήποτε σύνολο αναϕέρεται στο υπό µελέτη ϑέµα ϑα έχει τα στοιχεία του µέσα στο U. Το άλλο είναι αυτό που δεν περιέχει κανένα στοιχείο, το κενό σύνολο, που το συµβολίζουµε µε { } = και είναι απαραίτητο τουλάχιστον όσο και ο αριθµός 0. Οι σταθερές είναι τα σύµβολα που παριστάνουν µια συγκεκριµένη έννοια, όπως π.χ. τα σύµβολα των αριθµών 2, 3, των πράξεων +, - κ.λ.π. Οι µεταβλητές είναι σύµβολα που παριστάνουν ένα οποιοδήποτε («τυχόν», όχι συγκεκριµένο) στοιχείο απο κάποιο σύνολο. Για παράδειγµα, στις εκϕράσεις : n είναι ένας φυσικός αριθµός x είναι ένας πραγµατικός αριθµός τα σύµβολα n, x είναι µεταβλητές. Φαίνεται έτσι λοιπόν ότι, η µεταβλητή είναι συνδεδεµένη µε ένα σύνολο το οποίο είναι το νόηµα και η ουσία της µεταβλητής. Ετσι οι προηγούµενες εκϕράσεις γράϕονται τυπικά : n N, (n είναι ένας φυσικός αριθµός) x R, (x είναι ένας πραγµατικός αριθµός) Αν ένα σύνολο είναι πεπερασµένο µπορεί να εκϕρασθεί µε αναγραϕή (µέθοδος του καταλόγου), δηλαδή µε την ονοµασία όλων των µελών του. Το σύνολο του οποίου τα µέλη είναι a 1, a 2,..., a n γράϕεται ως = {a 1, a 2,..., a n }.

3 1.2. ΚΛΑΣΙΚΗ ΛΟΓΙΚΗ 7 Γενικότερα ένα σύνολο µπορεί να εκϕρασθεί µε περιγραϕή (µέθοδος του κανόνα), δηλαδή µε την ιδιότητα που ικανοποιείτα από όλα τα µέλη του συνόλου και µόνο αυτά. Το σύνολο του οποίου τα µέλη ικανοποιούν την ιδιότητα p γράϕεται ως = {x : x έχει την ιδιότητα p } = {x : p(x) }, όπου το σύµβολο : δηλώνει τη φράση «τέτοιο ώστε». Ο δεύτερος τρόπος γραϕής είναι γενικός, άρα απαραίτητος για τη ϑεωρία, ενώ ο πρώτος είναι ϐολικός για ειδικές περιπτώσεις. Για παράδειγµα, δεν ϑα µπορούσαµε να γράψουµε µε αναγραϕή όλους τους φυσικούς αριθµούς. Στην πρίπτωση αυτή πολλές φορές γράϕουµε {1, 2, 3,... }, αλλά αυτή η γραϕή δεν είναι ακριβής, είναι µόνο συµβατική και είναι έγκυρη µόνο επειδή ξέρουµε τι εννοούµε, δηλαδή ϑεωρούµε αυτονόητο τι «σηµαίνει» το σύµβολο... (τρείς τελείες). Οµως αυτό το σύµβολο σηµαίνει κάθε φορά κάτι διαϕορετικό ανάλογα µε τα συµϕραζόµενα. Εξ άλλου, πως ϑα µπορούσε κανείς να γράψει µε αναγραϕή τους πραγµατικούς αριθµούς ; Για το γενικό αυτό τρόπο έκϕρασης µάλιστα, δεχόµαστε ότι υπάρχει µια απλή αντιστοιχία κατά την οποία σε κάθε σύνολο αντιστοιχεί µια ιδιότητα a πού περιγράϕει (καθορίζει) τα στοιχεία του και µόνο αυτά. Αντιστρόϕως, σε κάθε ιδιότητα a αντιστοιχεί ένα σύνολο που τα στοιχεία του και µόνο αυτά, έχουν την ιδιότητα a. Αυτή την ϐασική αντιστοιχία στο πλαίσιο ενός καθολικού συνόλου X (αλλά και γενικότερα) την παριστάνουµε ως [ x X, a(x) x ], a = {x X : a(x) }. Τα σύνολα τα παριστάνουµε γραϕικά µε τα διαγράµµατα Venn, όπως στο Σχήµα Κλασική Λογική Προτασιακός Λογισµός Οι (λογικές) προτάσεις είναι οι εκϕράσεις µε νόηµα οι οποίες χαρακτηρίζονται µε ένα ακριβώς απο τους χαρακτηρισµούς : αληθής, ψευδής. Ετσι, στο Παραδειγµα 5.3.2, οι εκϕράσεις 8, 9 είναι προτάσεις, η µεν 8 αληθής, η δε 9 ψευδής. Τις λογικές προτάσεις τις συνδέουµε µεταξύ τους και σχηµατίζουµε άλλες λογικές προτάσεις. Για παράδειγµα, από τις λογικές προτάσεις :

4 8 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ U U a Το σύνολο αναϕοράς U Το σύνολο, a Σχήµα 1.1: Το σύνολο αναϕοράς U και το σύνολο µε a. p : το 4 είναι φυσικός αριθµός q : το 4 είναι µικρότερο του 7 σχηµατίζουµε την λογική πρόταση r : το 4 είναι φυσικός αριθµός και το 4 είναι µικρότερο του 7 την οποία στο συνήθη λόγο την εκϕράζουµε πιο απλά λέγοντας r : το 4 είναι φυσικός αριθµός και µικρότερος του 7 Στο παράδειγµα αυτό, από δύο λογικές προτάσεις p, q σχηµατίσαµε µια άλλη λογική πρόταση r συνδέοντάς τες µε το σύνδεσµο «και». Υπάρχουν διάϕοροι τρόποι µε τους οποίους, από λογικές προτάσεις σχηµατίζουµε άλλες, σύνθετες, λογικές προτάσεις, αλλά όλοι αυτοί οι τρόποι παράγονται από κάποιες ϐασικές περιπτώσεις. Στις περιπτώσεις αυτές, όπως έγινε στο προηγούµενο παράδειγµα µε το σύνδεσµο «και», χρησιµοποιούµε κάποιους λογικούς συνδέσµους. Οι ϐασικοί λογικοί σύνδεσµοι που ϑα χρησιµοποιήσουµε είναι οι,,, που διαβάζονται και, είτε, τότε, αντιστοίχως. Αυτοί, συνδέουν τις λογικές προτάσεις p, q σχηµατίζοντας τις νέες λογικές προτάσεις p q, p q, p q, που διαβάζονται p και q, p είτε q, p τότε q, αντιστοίχως. Στην τελευταία περίπτωση, συνήθως λέµε, «αν p τότε q» ή «p συνεπάγεται q». Η νέα πρόταση είναι αληθής (ισχύει) σύµϕωνα µε τον επόµενο πίνακα. p q και ισχύουν και οι δύο p q είτε ισχύει µία τουλάχιστον p q τότε όταν ισχύει η πρώτη τότε να ισχύει η δεύτερη δηλαδή η σύνθετη πρόταση είναι αληθής ή ψευδής για κάθε περίπτωση

5 1.2. ΚΛΑΣΙΚΗ ΛΟΓΙΚΗ 9 τιµών αληθείας των απλών προτάσεων όπως δείχνει ο επόµενος πίνακας, όπου 0, 1 σηµαίνει ψευδής, αληθής αντιστοίχως. Πίνακας Οι τιµές αλήθειας των ϐασικών λογικών συνδέσµων. p q p q p q p q Σε διδιάστατη µορϕή, όπως είναι και συνηθέστερο, έχουµε τους επόµενους 3 πίνακες. Πίνακας Οι τιµές αλήθειας των ϐασικών λογικών συνδέσµων σε διδιάστατη µορϕή Οι λογικές πράξεις p q, p q, p q λέγονται σύζευξη, εγκλειστική διάζευξη και συνεπαγωγή, αντίστοιχα. Η άρνηση µιας πρότασης p εκϕράζεται µε τον τελεστή και είναι η πρόταση p = p που διαβάζεται όχι p. Η πρόταση p έχει τιµή αληθείας αντίθετη της p, όπως δείχνει ο επόµενος πίνακας. Πίνακας Η τιµή αλήθειας της άρνησης. p p Εκτός από τις προηγούµενες σύνθετες προτάσεις µε τους ϐασικούς συνδέσ- µους και την άρνηση, υπάρχουν και όλες οι άλλες που παρά-γονται από αυτές µε τον ίδιο τρόπο. ηλαδή, εϕαρµόζοντας τους λογικούς συνδέσµους και την άρνηση σε οποιεσδήποτε προτάσεις απλές ή σύνθετες έχουµε νέες λογικές προτάσεις. Για παράδειγµα, αν p, q είναι δύο προτάσεις οι (p q) (q p), (p q), ( p q) p, είναι επίσης λογικές προτάσεις. Η πρώτη από αυτές χρησιµοποιείται συχνά, λέγεται ισοδυναµία των p και q και συµβολίζεται σύντοµα µε p q.

6 10 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ Εκτός από τους ϐασικούς, ένας τελεστής που χρησιµοποιείται συχνά είναι η αποκλειστική διάζευξη +, η οπία διαβάζεται ή (προς διάκριση από την εγκλεισική διάζευξη που διαβάζεται είτε). Η πρόταση p + q είναι αληθής όταν µία ακριβώς από τις p, q είναι αληθής. Οι τιµές αληθείας της p + q δίδονται από τους επόµενους πίνακες. Πίνακας Οι τιµές αλήθειας της αποκλειστικής διάζευξης. p q p + q Πίνακας Οι τιµές αλήθειας της αποκλειστικής διάζευξης σε διδιάστατη µορϕή Για την απλοποίηση της γραϕής µε ελάττωση των παρενθέσεων (όπως και στις αλγεβρικές πράξεις), στις προτασιακές εκϕράσεις, εκτελούµε κατά σύµβαση τις πράξεις µε τη σειρά που δείχνει ο επόµενος πίνακας, + όπου κάθε τελεστής είναι ισχυρότερος (προηγείται) από τους επόµενους (και τους από κάτω). Για παράδειγµα, το προηγείται του, δηλαδή η έκϕραση p q r σηµαίνει (p q) r. Μια προτασιακή έκϕραση P (p 1, p 2,... p n ) που εξαρτάται από τις προτάσεις p 1, p 2,... p n λέγεται ταυτολογία όταν είναι πάντα αληθής οποιεσδήποτε και να είναι οι προτάσεις p 1, p 2,... p n. εχόµαστε ως ϐασικές ταυτολογίες στο Προτασιακό Λογισµό τις επόµενες. 1. Νόµοι προσεταριστικοί (associative). P 1. (p q) r Q 1. (p q) r p (q r), p (q r). 2. Νόµοι αντιµεταθετικοί (commutative). P 2. p q q p,

7 1.2. ΚΛΑΣΙΚΗ ΛΟΓΙΚΗ 11 Q 2. p q q p. 3. Νόµοι επιµεριστικοί (distributive). P 3. p (q r) (p q) (p r). Q 3. p (q r) (p q) (p r), 4. Νόµοι αυτοδύναµοι (idempotent). P 4. p p p, Q 4. p p p. 5. Νόµοι De Morgan (De Morgan s Laws) P 8. p q p q, Q 8. p q p q. Το σόνολο των Λογικών Προτάσεων ϑα το συµβολίζουµε µε L 0. Κατηγορικός Λογισµός Στα Μαθηµατικά χρησιµοποιούµε εκϕράσεις που µπορεί να µην είναι µεν προτάσεις αλλά έχουν µια σχέση µε τις προτάσεις, µε την έννοια ότι, µε κάποιους τρόπους γίνονται προτάσεις. Για παράδειγµα, οι εκϕράσεις x > 2, x + y = 4 (1.1) δεν είναι προτάσεις αϕού δεν µπορούµε να πούµε αν είναι αληθείς ή ψευδείς, δηλαδή δεν έχουν τη χαρακτηριστική ιδιότητα που ορίζει τις προτάσεις. Αν όµως ϑέσουµε x = 1 και y = 3, γίνονται οι εκϕράσεις 1 > 2, = 4 (1.2) που είναι προτάσεις, η µεν πρώτη ψευδής η δε δεύτερη αληθής. ηλαδή οι εκϕράσεις (6.1) γίνονται λογικές προτάσεις όταν τα x και y γίνουν σ- ταθερές. Στις εκϕράσεις (6.1), τα x, y δεν µπορεί να είναι άλλο παρά µεταβλητές και αϕού οι µεταβλητές συνδέονται µε ένα σύνολο, η ακριβής γρϕή των (6.1), ϑα ήταν π.χ. ως x R, x > 2, x R, y R, x + y = 4. (1.3) Τα σύνολα των µεταβλητών µπορούν να παραλείπονται όταν είναι αυτονόητα και δεν υπάρχει κίνδυνος συγχίσεως, οπότε έχουµε την αρχική απλή γραϕή (6.1). Τέτοιες εκϕράσεις όπως οι (1.3) λέγονται προτασιακοί τύποι, ο πρώτος µε µία µεταβλητή και ο δεύτερος µε δύο µεταβλητές. Μια γενική αρχή και νοοτροπία στα Μαθηµατικά είναι να ιεραρχούνται οι παρόµοιες έννοιες σε διάϕορα επίπεδα γενίκευσης και όχι να ϑεωρούνται

8 12 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ απλώς διαϕορετικές. Για παράδειγµα, οι πραγµατικοί αριθµοί ϑεωρούνται (σταθερές) συναρτήσεις µέσα στο σύνολο των συναρτήσεων ή οι ακέραιοι ϑεωρούνται ϱητοί. Αυτή η αρχή και νοοτροπία δίνει µια συνοχή και συγκρότηση που είναι σηµαντικότατο πλεονέκτηµα στη δόµηση µιας ϑεωρίας. Ετσι και εδώ, δεν φαίνεται παράξενο ότι, οι Λογικές Προτάσεις ϑεωρούνται προτασιακοί τύποι µε καµία µεταβλητή. Ετσι έχουµε τον επόµενο ορισµό. Ορισµός Οι προτασιακοί τύποι (ή προτασιακές συναρτήσεις) είναι το σύνολο των εκϕράσεων που αποτελείται από : 1. Τις Λογικές Προτάσεις L 0, 2. Για n = 1, 2, 3..., τις εκϕράσεις p(x 1, x 2,..., x n ) µε πεπερασµένο πλήθος µεταβλητών, που γίνονται λογικές προτάσεις όταν οι µεταβλητές τους γίνουν σταθερές. Το σύνολο των εκϕράσεων p(x 1, x 2,..., x n ) µε αυτή την ιδιότητα ϑα το συµβολίζουµε µε L n. Ο Κατηγορικός Λογισµός µελετάει τους προτασιακούς τύπους και ϐασίζεται στον Προτασιακό Λογισµό. Προτασιακοί τύποι µε µία, δύο τρείς κ.λπ. µεταβλητάς γράϕονται συνήθως p(x), p(x, y), p(x, y, z), κ.λπ. Οι προτασιακοί τύποι συνδέονται επίσης µε τους ίδιους λογικούς συνδέσ- µους, όπως οι λογικές προτάσεις και δίνουν άλλους, σύνθετους, προτασιακούς τύπους. ηλαδή, από τους προτασιακούς τύπους p(x), q(x) µε τους συνδέσµους έχουµε τους σύνθετους προτασιακούς τύπους p(x) q(x), p(x) q(x), p(x) q(x). Οµοια γίνεται και µε προτασιακούς τύπους που έχουν οσεσδήποτε µεταβλητές. Παρατήρηση Για τη συνεπαγωγή. Επειδή ίσως οι τιµές αληθείας της συνεπαγωγής φαίνονται παράξε-νες, µάλλον ϑα πρέπει λίγο να τις συζητήσουµε. Στον Πίνακα η συνεπαγωγή είναι ψευδής µόνο στην τρίτη γραµµή, όταν η p είναι αληθής και η q ψευδής. Στις άλλες περιπτώσεις η συνεπαγωγή είναι αληθής. Αυτό κατανοείται αν δούµε τί σηµαίναι p q. Είπαµε, ότι αυτό διαβάζεται και : «όταν p τότε q». Αυτό περιέχει και το νόηµα της συνεπαγωγής. ηλαδή, όταν ισχύει η p τότε πρέπει να ισχύει η q. Αυτό πρέπει να το δούµε κυριολεκτικά και όχι µε τυχόν πρόσθετες υποθέσεις ή αυθαίρετα συµφραζόµενα, κάτι που συµβαίνει στον καθηµερινό λόγο. Άλλωστε κυριολεκτικά είναι τα Μαθηµατικά όπως και η Μηχανή. Η έκϕραση, «όταν

9 1.2. ΚΛΑΣΙΚΗ ΛΟΓΙΚΗ 13 ισχύει η p τότε πρέπει να ισχύει η q», δεν λέει τίποτε άλλο εκτός από αυτό που λέει. εν λέει δηλαδή τί πρέπει να συµβαίνει όταν δεν ισχύει η p. Η µόνη περίπτωση που δεν συµβαίνει αυτό, δηλαδή δεν ισχύει : «όταν ισχύει η p τότε να ισχύει η q», είναι στην τρίτη γραµµή. Και τότε η συνεπαγωγή είναι ψευδής. Στις άλλες περιπτώσεις δεν τίθεται προυπόθεση ή συνθήκη και η συνεπαγωγή ϑεωρείται αληθής. Οι τιµές αληθείας της συνεπαγωγής κατανοούνται καλύτερα σε ένα ανώτερο, δηλαδή γενικότερο επίπεδο. Το επίπεδο αυτό είναι οι ανοχτές προτάσεις. Ας εξετάσουµε ένα συγκεκριµένο παράδειγµα. Παράδειγµα Για x > 0 ισχύει η συνεπαγωγή Τότε έχουµε : (x < 3) = (x 2 < 3 x + 10) (1.4) p(x) q(x) p(x) q(x) x x < 3 x 2 < 3 x + 10 (x < 3) (x 2 < 3 x + 10) 6 6 < < 28 0 (6 < 3) (36 < 28) < < 22 1 (4 < 3) (16 < 22) < < 2 0 ( 4 < 3) (16 < 2) < < 16 1 (2 < 3) (4 < 16) 1 Η συνεπαγωγή (1.4) είναι αληθής µε την προϋπόθεση x > 0. Στις περιπτώσεις που είναι x > 0, δηλαλαδή εκτός της x = 4 του πίνακα, η συνεπαγωγή είναι αληθής. Επιστρέϕουµε στο αρχικό παράδειγµα, στις εκϕράσεις (6.1). Αυτές γίνονται επίσης προτάσεις και µε ένα άλλο τρόπο. Αν έχουµε για παράδειγµα την έκϕραση υπάρχει κάποιο x ώστε να ισχύει x > 2, (1.5) είναι φανερό ότι αυτή η έκϕρση είναι αληθής ή ψευδής, αϕού ή ϑα υπάρχει ή δεν ϑα υπάρχει κάποιο τέτοιο x. Οµοίως, αν έχουµε την έκϕραση για όλα τα x ισχύει x > 2, (1.6) είναι φανερό ότι και αυτή η έκϕρση είναι αληθής ψευδής, αϕού ή ϑα ισχύει για όλα τα x ή δεν ϑα ισχύει για όλα τα x. Οι εκϕράσεις : «υπάρχει κάποιο» και «για όλα τα» συµβολίζονται µε και αντίστοιχα και είναι οι ποσοδείκτες του Κατηγορηκού Λογισµού. Οι ποσοδείκτες λοιπόν διαβάζονται

10 14 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ για όλα (ή για κάθε), υπάρχει (ή υπάρχει τουλάχιστον ένα). Ετσι οι εκϕράσεις (1.5), (1.6) γράϕονται, τυπικά (και σύντοµα) ως x R, x > 2, (1.7) x R, x > 2, (1.8) και είναι όπως είπαµε λογικές προτάσεις. Αν για τη δεύτερη έκϕραση στην (6.1) κάνουµε το ίδιο, δηλαδή ϑεωρήσουµε τις εκϕράσεις x R, x + y = 4, (1.9) x R, x + y = 4, (1.10) καταλαβαίνουµε ότι για αυτές τις εκϕράσεις δεν µπορούµε να πούµε ότι είναι αληθείς ή είναι ψευδείς, αϕού αυτό εξαρτάται και από το y. Για την απλότητα του παραδείγµατος, ας υποθέσουµε ότι τα x και y παίρνουν τιµές από δύο µικρά σύνολα, τα X = {1, 2, 3} και Y = {3, 4} αντιστοίχως. Τότε οι εκϕράσεις (1.9), (1.10) σηµαίνουν αντιστοίχως ότι : (x = 1) 1 + y = 4, ισχύει κάποια από τις : (x = 2) 2 + y = 4, (1.11) ισχύουν όλες οι : (x = 3) 3 + y = 4 (x = 1) 1 + y = 4 (x = 2) 2 + y = 4 (x = 3) 3 + y = 4. (1.12) Με άλλα λόγια, αν χρησιµοποιήσουµε τον Κατηγορικό Λογισµό, οι εκϕράσεις (1.11), (1.12) σηµαίνουν αντιστοίχως : (1 + y = 4) (2 + y = 4) (3 + y = 4) (1.13) (1 + y = 4) (2 + y = 4) (3 + y = 4) (1.14) οι οποίες προϕανώς είναι προτασιακοί τύποι µε µία µεταβλητή, την y, αντί δύο που είχε πρίν στην (6.1). Για συντοµία, ας ονοµάσουµε αυτές τις εκϕράσεις p(y) και q(y) αντίστοιχα, δηλαδή p(y) : (1 + y = 4) (2 + y = 4) (3 + y = 4) (1.15) q(y) : (1 + y = 4) (2 + y = 4) (3 + y = 4) (1.16)

11 1.2. ΚΛΑΣΙΚΗ ΛΟΓΙΚΗ 15 Μπορούµε τώρα να προτάξουµε κάποιο ποσοδείκτη στις (1.12), (1.13) και να γίνουν λογικές προτάσεις. Ετσι ϑα έχουµε τις προτάσεις y, (1 + y = 4) (2 + y = 4) (3 + y = 4) (1.17) y, (1 + y = 4) (2 + y = 4) (3 + y = 4) (1.18) Ολα αυτά σηµαίνουν ότι στην αρχική έκϕραση x + y = 4 στην (6.1), προτάξαµε δύο ποσοδείκτες και πήραµε διαδοχικά, τις εκϕράσεις : x, x + y = 4 (1.19) x, x + y = 4 (1.20) y, x, x + y = 4 (1.21) y, x, x + y = 4 (1.22) Παρατηρούµε λοιπόν ότι όταν προτάσσουµε ένα ποσοδείκτη ο προτασιακός τύπος γίνεται µε µία λιγότερη µεταβλητή. Η σειρά µε την οποία προτάσσονται οι ποσοδείκτες είναι οποιαδήποτε. Ετσι γενικά, για ένα προτασιακό τύπο p(x) µε µία µεταβλητή, έχουµε τις προτάσεις : x X, p(x), (1.23) x X, p(x). (1.24) Για ένα προτασιακό τύπο p(x, y) µε δύο µεταβλητές, έχουµε τις προτάσεις : y Y, x X, p(x, y), (1.25) y Y, x X, p(x, y), (1.26) y Y, x X, p(x, y), (1.27) y Y, x X, p(x, y). (1.28) κ.ο.κ. Πρέπει να παρατηρήσουµε ότι το νόηµα και η τιµή αληθείας στις (1.25)-(1.28), είναι διαϕορετικά. Για παράδειγµα, οι εκϕράσεις σηµαίνουν αντνιστοίχως : x X, y Y, x < y (1.29) x X, y Y, x < y (1.30) κάποιο x είναι µικρότερο από όλα τα y, όλα τα x είναι µικρότερα από κάποιο y. Γενικά τώρα, στον προτασιακό τύπο p(x 1, x 2,..., x n ) µπορούµε να προτάξουµε m ποσοδείκτες, µε 0 m n, και να έχουµε ένα προτασιακό τύπο µε n m µεταβλητές.

12 16 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ Τελειώνουµε την παράγραϕο αυτή µε ένα παράδειγµα που περιγράϕει µια έννοια από τις πιο ϑεµελιώδεις στην Μαθηµατική Ανάλυση και είναι µια έκϕραση µε τρείς ποσοδείκτες. Είναι η έννοια του ορίου και ϑα πάρουµε την περίπτωση του ορίου ακολουθίας x : N R, x(n) = x n. Εξ ορισµού, η x n έχει όριο τον x και γράϕουµε όταν lim x n n = x ε > 0, m N, n > m, x n x < ε. (1.31) Αν συµβολίσουµε µε ε = (x ε, x + ε) N x = { ε : ε > 0 } T m = {m + 1, m + 2, m + 3,... } N = { T m : m N } έχουµε, µια περιοχή ε του x στο R και το σύνολο των περιοχών N x του x. Οµοια έχουµε, µια περιοχή T m (που λέγεται ουρά του m) του στο N και το σύνολο των περιοχών N του. Επίσης, µπορούµε να χρησιµοποιήσουµε την εικόνα x(t m ) = {x n : n T m } = {x m+1, x m+2, x m+3,... } του T m µέσω της ακολουθία x. Τα σύµβολα αυτά συµπυκνώνουν τις εκϕράσεις και ο ορισµός (1.31) παίρνει την απλή µορϕή V N x, W N, x(w ) V. (1.32) Για να αναλυθεί και να κατανοηθεί η λειτουργία των ποσοδεικτών πρέπει να παρατηρήσουµε τα εξής : 1. Οι ποσοδείκτες στην (1.31), αναϕέρονται στα n, m, ε αλλά όχι στο x. Το x είναι ένας συγκεκριµένος αριθµός, δεν είναι µεταβλητή για τους ποσοδείκτες αυτούς. Ας πάρουµε ένα παράδειγµα για να γίνει απλό. Την ακολουθία x n = Τότε η (1.31) είναι n n+1 και τον αριθµό x = 1, αϕού πράγµατι έχουµε lim n n n + 1 = 1. ε > 0, m N, n T m, n n < ε

13 1.3. ΚΛΑΣΙΚΑ ΣΥΝΟΛΑ 17 ή ε > 0, m N, n T m, Η (1.33) έχει σταδιακά τη µορϕή ε (0, + ), ε (0, + ), { m N, { } m N, q(m, ε) 1 n + 1 < ε (1.33) [ ] } n T m, p(n, ε) ε (0, + ), r( ε ). όπου κάθε ποσοδείκτης ελαττώνει κατά µία τις µεταβλητές και τελικά είναι ένας προτασιακός τύπος µε καµία µεταβλητή, δηλαδή µια λογική πρόταση. 1.3 Κλασικά Σύνολα Σχέσεις Συνόλων Αν κάθε µέλος του συνόλου είναι επίσης µέλος του συνόλου, τότε το λέγεται υποσύνολο του, και γράϕεται ως. Η προηγούµενη σχέση των συνόλων είναι η σχέση του περιέχεσθαι και εκϕράζεται µε την (x = x ). και ισοδύναµα µε την ( x, x ). Η ισότητα των συνόλων εκϕράζεται µε τη σχέση του περιέχεσθαι από την = [ ( x, x ) ( x, x ) ]. Αν ισχύουν και, τότε το περιέχει τουλάχιστον ένα στοιχείο το οποίο δεν είναι µέλος του. Τ ο λέγεται τότε γνήσιο υποσύνολο (proper subset) του και αυτό συµβολίζεται µε. Για τη σχέση του περιέχεσθαι, δεχόµαστε ότι το κενό είναι υποσύνολο κάθε συνόλου, δηλαδή ότι.

14 18 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ Θεώρηµα Για τη σχέση του περιέχεσθαι ισχύουν οι επόµενες προτάσεις. 1. U, 2., 3. ( ) = =, 4. ( C ) = C. Κάποια πολύ ϐασικά σύνολα που χρησιµποποιούνται σε όλα τα Μα- ϑηµατικά και τις εϕαρµογές τους είναι τα σύνολα των αριθµών. Αυτά είναι τα N, Z, Q, R, C που ονοµάζονται αντιστοίχως σύνολο των Φυσικών, Ακεραίων, Ρητών, Πραγµατικών, και Μιγαδικών αριθµών. Τα σύνολα των αριθµών που απλώς αναϕέρονται εδώ, αποτελούν ένα πολύ ϑεµελιακό ϑέµα για όλα τα µαθηµατικά και τις εϕαρµογές τους. Τα σύνολα αυτά έχουν πράξεις, σχέσεις και ιδιότητες των πράξεων και σχέσεων, που είναι απαραίτητες για την µελέτη σχεδόν οποιουδήποτε ϑέµατος στα Μαθηµατικά, την Επιστήµη και την Τεχνολογία. Ολα αυτά, προς το παρόν ϑεωρούνται γνωστά, αλλά επειδή το ϑέµα είναι πολύ ϑεµελιακό, ϑα γίνει µια σύντοµη περιήγηση στους αριθµούς µε το επόµενο κεϕάλαιο. Τελεστές στα Σύνολα Για ένα σύνολο ορίζεται το συµπληρωµατικό του (σε σχέση µε το καθολικό σύνολο U) ως το Ā = c = {x U : x }. Τη σχέση του περιέχεσθαι και το συµπλήρωµα στα σύνολα περιστάνουµε γραϕικά όπως στο Σχήµα 1.2. Από δύο σύνολα, σχηµατίζουµε (κατασκευάζουµε) ένα άλλο σύνολο µε διάϕορους τρόπους. Ετσι έχουµε τις επόµενες πράξεις των συνόλων : 1. = {x U : x x }, 2. = {x U : x x }, 3. \ = {x U : x x }, 4. + = ( ) \ ( ),

15 1.3. ΚΛΑΣΙΚΑ ΣΥΝΟΛΑ 19 U U c b c, b c Σχήµα 1.2: Συµπληρωµατικό του και υποσύνολο του. U U Σχήµα 1.3: Η ένωση και η τοµή των συνόλων. που λέγονται αντίστοιχα, ένωση (union), τοµή (intersection), διαϕορά και συµµετρική διαϕορά (ή διαζευκτικό άθροισµα). Τις πράξεις των συνόλων τις παριστάνουµε µε τα διαγράµµατα Venn όπως στα Σχήµατα 1.3 και 1.4. ύο σύνολα, λέγονται ξένα µεταξύ τους αν =, δηλαδή αν δεν έχουν κοινά στοιχεία. Θεώρηµα Για τις πράξεις των συνόλων ισχύουν οι ιδιότητες 1. Νόµοι προσεταριστικοί (associative). P 1. ( ) C = ( C), Q 1. ( ) C = ( C). 2. Νόµοι αντιµεταθετικοί (commutative). P 2. =, Q 2. =.

16 20 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ U U \ + Σχήµα 1.4: Η διαϕορά και η συµµετρική διαϕορά των συνόλων. 3. Νόµοι επιµεριστικοί (distributive). P 3. ( C) = ( ) ( C). Q 3. ( C) = ( ) ( C), 4. Νόµοι αυτοδύναµοι (idempotent). P 4. =, Q 4. =. 5. Νόµοι Ταυτότητας. P 5. =, Q 5. X =. 6. Νόµοι Απορροϕητικοί. P 6. X = X, Q 6. =, 7. Νόµοι Συµπληρώµατος. P 7. = X, Q 7. =. 8. Νόµοι De Morgan (De Morgan s Laws) για την ένωση, τοµή, και συµπλήρωµα. P 8. =, Q 8. =. Απόδειξη. Ως άσκηση. Οι ιδιότητες P 7 Q 7 λέγονται αντίστοιχα :

17 1.3. ΚΛΑΣΙΚΑ ΣΥΝΟΛΑ 21 P 7 : νόµος του αποκλεισµού του ενδιάµεσου (law of excluded middle), Q 7 : νόµος της αντίϕασης (law of contradiction). Παρατήρηση Αρχή του δυϊσµού (ή δυϊκότητας). Αξίζει να παρατηρήσουµε ότι όλες οι ιδιότητες στο Θεώρηµα διευθετούνται σε Ϲεύγη (P n, Q n ), n = 1, 2, 3, 4, 5, 6, 7, 8. Σε κάθε Ϲεύγος οι ιδιότητες P n, Q n, µπορούν να ληϕθούν η µία απο την άλλη (την αντίστοιχή της) µε τον µετασχηµατισµό : D :,, U. Ετσι οι σχέσεις του Θεωρήµατος είναι Ϲευγάρια δυϊκών σχέσεων. Αυτό επεξηγεί µια γενική αρχή δυϊσµού (general principle of duality) η οποία είναι η επόµενη. Γενική αρχή δυϊσµού: Για κάθε ισχύουσα πρόταση T (,, C,,,,,, X ) στη Θεωρία Συνόλων, αντιστοιχεί µια δυϊκή πρόταση, DT = T (,, C,,,,, X, ), η οποία λαµβάνεται µε τον µετασχηµατισµό D και ισχύει επίσης. Παράδειγµα υϊκές προτάσεις. Στην πρόταση αντιστοιχεί η δυϊκή πρόταση = =, = =. Επειδή τα Μαθηµατικά ϑεµελιώνονται στη ϐάση της Θεωρίας των Συνόλων, η αρχή δυϊσµού διατρέχει σε κάποιο ϐαθµό όλα τα Μαθηµατικά, τόσο περισσότερο όσο πιο ϑεµελιακό είναι το ϑέµα. Για παράδειγµα, στην Προβολική Γεωµετρία του Επιπέδου, οι δύο προτάσεις : P : δύο σηµεία ορίζουν ευθεία,

18 22 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ Q : δύο ευθείες ορίζουν σηµείο, είναι δυϊκές και οι έννοιες σηµείο, ευθεία, είναι αντίστοιχες, όπως οι έννοιες, X στη Θεωρία Συνόλων. Αν οι ευθείες είναι παράλληλες, το σηµείο που ορίζουν είναι το επ άπειρο (ή κατ εκδοχή) σηµείο. Θεώρηµα Για τις πράξεις των συνόλων επίσης ισχύουν : 1. \ = \ ( ), 2. + = ( \ ) ( \ ) = c + c. Απόδειξη. Ως άσκηση. Οικογένειες Συνόλων Ενα σύνολο του οποίου τα ίδια τα στοιχεία του i είναι επίσης σύνολα, λέγεται οικογένεια συνόλων (family of sets) και γράϕεται µε = { i : i I}, όπου I είναι (και λέγεται αντιστοίχως) ένα σύνολο, το σύνολο δεικτών (identification set) και i I ο δείκτης συνόλου (set identifier). Μια συχνά χρησιµοποιούµενη οικογένεια συνόλων, είναι το σύνολο (όλων) των υποσυνόλων του, που συµβολόζεται µε P(), δηλαδή P() = {K : K } και λέγεται δυναµοσύνολο του. Για παράδειγµα αν = {1, 2} τότε { } { } P() = { }, {1}, {2}, {1, 2} =, {1}, {2},. Επαγωγικά ορίζεται το δυναµοσύνλο κάθε τάξης ως P 0 (X) = X, P n+1 (X) = P(P n (X)). Παράδειγµα Τα δυναµοσύνολα δύο µικρών συνόλων. 1. Για X = { } = είναι, P 0 (X) = X = {} P 1 (X) = P(X) = { } ( ) { } P 2 (X) = P(P(X)) = P { } =, { } ({ }) P 3 (X) = P(P 2 (X)) = P, { } { } =, { }, {{ }}, {, { }}.

19 1.3. ΚΛΑΣΙΚΑ ΣΥΝΟΛΑ Για X = {1} είναι, P 0 (X) = X = {1} P 1 (X) = P(X) = {, X} ( ) P 2 (X) = P(P(X)) = P {, X} = { }, { }, {X}, {, X}. Ορισµός Για µια οικογένεια συνόλων = { i : i I} η ένωση και η τοµή γενικεύονται ως 1. = { i : i I} = i = { x : i I, x i }, i I 2. = { i : i I} = i I i = { x : i I, x i }. Θεώρηµα Για τις οικογένειες = { i : i I} = { j : j J} µε ισχύουν 1. i j, 2. i j. Απόδειξη. Αϕήνεται ως άσκηση. Θεώρηµα Για την κενή οικογένεια = ισχύουν 1. =, 2. = X. Απόδειξη. Αϕήνεται ως άσκηση. Μια επίσης σηµαντική στις εϕαρµογές, οικογένοια συνόλων, είναι αυτή που δίνεται µε τον επόµενο ορισµό.

20 24 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ a f 1 d b g h 3 c 2 e i = {a, b, c, d, e, f, g, h, i, j, k} 1 = {a, d, f} 2 = {b, c, e, i} 3 = {h, g} D = { 1, 2, 3 } Σχήµα 1.5: Ενας διαµερισµός D = { 1, 2, 3 } του συνόλου. Ορισµός Θεωρούµε ένα σύνολο και µια οικογένεια συνόλων D = { i : i I}. Η D λέγεται διαµέριση ή διαµερισός (partition) του αν ισχύουν : P 1. i I, i, P 2. i I, i, P 3. i j = i j =, P 4. D = { i : i I } = i I i =. ηλαδή, διαµέριση του είναι µια οικογένεια µη κενών υποσυνόλων του που είναι ξένα µεταξύ τους και η ένωσή της είναι το. Την οικογένεια των διαµερίσεων του συµβολίζουµε µε το σύµβολο π(), δηλαδή π() = {D : D διαµέριση του }. Στο Σχήµα 1.5 ϐλέπουµε µια διαµέριση D = { 1, 2, 3 } του συνόλου = {a, b, c, d, e, f, g, h, i, j, k}. Παράδειγµα Για το σύνολο = {1, 2} η οικογένεια των διαµερίσεων του είναι { {{1}, } { } } π() = {2}, {1, 2},. Για το σύνολο = {1, 2, 3} η οικογένεια των διαµερίσεων του είναι π() = { { } { } { } { } { }} {1}, {2}, {3}, {1}, {2, 3}, {2}, {1, 3}, {3}, {1, 2}, {1, 2, 3}.

21 1.3. ΚΛΑΣΙΚΑ ΣΥΝΟΛΑ 25 Παρατήρηση (Παράδοξο του Russell). Οταν ο Cantor εισήγαγε τη Θεωρία Συνόλων στα Μαθηµατικά, έδωσε τον ορισµό : Σύνολο λέγεται µια συλλογή οµοειδών αντικειµένων υλικών ή της νοήσεως καλώς ορισµένων και διακεκριµένων τα οποία ϑεωρούµε ως µία ολότητα. Αργότερα ο ertrand Russell ( ) παρατήρησε ότι αν ϑεωρήσουµε ως καθολικό σύνολο, το σύνολο U = S όλων των συνόλων και το υποσύνολο αυτού S 0, των συνόλων που δεν περιέχουν τον εαυτό τους, δηλαδή S 0 = { S : }, τότε S 0 S 0 = S 0 S 0, S 0 S 0 = S 0 S 0. ηλαδή, κάτι ισχύει όταν δεν ισχύει και δεν ισχύει όταν ισχύει. Η αντινοµία αυτή είναι γνωστή ως Παράδοξο του Russell. Ετσι διαπιστώθηκε ότι ο αρχικός απλοϊκός ορισµός του Cantor είναι ανεπαρκής διότι περιέχει αντιϕάσεις. Τέτοιες αντιϕάσεις είναι στη ϐάση διαϕόρων παροµοίων παραδόξων όπως είναι το παράδοξο του κουρέα (Παραδειγµα 1.3.4, Άσκηση 15). Αυτά τα προβλήµατα οδήγησαν στην περεταίρω ανάπτυξη της Θεωρίας Συνόλων, ώστε να αρθούν οι αντιϕάσεις. Σηµαντικά ϐήµατα στην εξέλιξη της Θεωρίας Συνόλων είναι : Γενικεύτηκε η αρχική ϑεωρία σε µια ευρύτρη ϑεωρία µεταβαίνοντας απο τα σύνολα σε ευρύτερες έννοιες, όπως οι κλάσεις κ.λπ., ώστε να απαλοιϕθούν οι αντιϕάσεις. Γενικεύτηκε η χρήση των συνόλων σε όλα τα Μαθηµατικά και έγινε πράγµατι η γλώσσα και το ϑεµέλιο των Μαθηµατικών. Γενικεύτηκε η αρχική ϑεωρία σε µια άλλη κατεύθυνση µεταβαίνοντας απο τα σύνολα στα ασαϕή σύνολα (Fuzzy Sets) µε παράλληλη εξέλιξη της λογικής στην ασαϕή λογική (Fuzzy Logic), δύο νέες ϑεωρίες µε πολλές εϕαρµογές στη σύγχρονη Τεχνολογία. Ας κλείσουµε τη παράγραϕο αυτή µε κάτι διασκεδαστικό. Παράδειγµα Το παράδοξο του κουρέα. εν είναι τυχαίο λοιπόν, ότι ο ίδιος ο Russell διατύπωσε το περίϕηµο αυτό παράδοξο : Ενας κουρέας έχει στην πόρτα του την εξής πινακίδα : ξυρίζω αυτούς και µόνο αυτούς που δεν ξυρίζονται µόνοι τους

22 26 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ c b a c b a Βελοειδές Καρτεσιανό Σχήµα 1.6: ιαγράµµα του Καρτεσιανού γινοµένου. Αϕού λοπόν ο κουρέας έχει αυτή την πινακίδα, τότε ποιός ξυρίζει τον κ- ουρέα ; (Άσκηση 15). 1.4 Γινόµενα, Σχέσεις, Πηλίκα Βασική επίσης έννοια στα σύνολα είναι το διατεταγµένο Ϲεύγος το οποίο ορίζεται είτε άµεσα, ως (a, b) = {a, {a, b}} είτε έµεσα, µε την χαρακτηριστική του ιδιότητα (a, b) = (c, d) ( a = c b = d ). Με το διατεταγµένο Ϲεύγος ορίζεται ακόµη µία πράξη στα σύνολα το Καρτεσιανό γινόµενο (Cartesian Product) δύο συνόλων, ως = {(a, b) : a b }. Ειδικά συµβολίζουµε 2 = (Καρτεσιανό τετράγωνο). Το καρτεσιανό γινόµενο παριστάνουµε γραϕικά µε δύο κυρίως τρόπους, το ϐελοειδές διάγραµµα και το Καρτεσιανό διάγραµµα όπως φαίνεται στο Σχήµα 1.6. Το Καρτεσιανό Γινόµενο γενικεύεται για µια οικογένεια συνόλων { i : i N n } ως : } i = 1 2 n = {(x 1, x 2,..., x n ) : i N n, x i i. i N n Αν i = τότε συµβολίζουµε i N n i = n. Ορισµός Θεωρούµε δύο σύνολα, και το Καρτεσιανό γινόµενο αυτών.

23 1.4. ΓΙΝΟΜΕΝΑ, ΣΧΕΣΕΙΣ, ΠΗΛΙΚΑ Κάθε υποσύνολο R λέγεται σχέση απο το στο. Αν (x, y) R γράϕουµε x R y. 2. Μια σχέση απο το στο λέγεται : 1. µονότιµη αν x R y x R z = y = z, 2. καθολική αν x, y, x R y. 3. Μια µονότιµη σχέση λέγεται και µερική απεικόνιση. 4. Μια µονότιµη και καθολική σχέση λέγεται απεικόνιση. 5. Αν = τότε η σχέση R 2 λέγεται σχέση στο. 6. Μια σχέση στο λέγεται : 1. ανακλαστική αν x, x R x, 2. µεταβατική αν x R y y R z = x R z, 3. συµµετρική αν x R y = y R x, 4. αντισυµµετρική αν x R y y R x = x = y, 5. σχέση ισοδυναµίας αν έχει τις ιδιότητες 1, 2, 3, 6. σχέση διάταξης αν έχει τις ιδιότητες 1, 2, Συµβολισµός. - Μια σχέση ισοδυναµίας συµβολίζεται συνήθως µε. - Μια σχέση διάταξης συµβολίζεται συνήθως µε. Ορισµός Θεωρούµε µια σχέση ισοδυναµίας στο. 1. Για το στοιχείο a, το σύνολο [a] = {x : x a} λέγεται κλάση ισοδυναµίας του α. 2. Το σύνολο των κλάσεων ισοδυναµίας του µε τη σχέση ισοδυναµίας λέγεται σύνολο πηλίκο του δια της και συµβολίζεται µε /, δηλαδή / = { [a] : a }. Οι σχέσεις ως υποσύνολα του Καρτεσιανού γινοµένου Β παριστάνονται γραϕικά όπως και το Καρτεσιανό γινόµενο, µε ϐελοειδή και Καρτεσιανά διαγράµµατα. Γραϕικές παραστάσεις από ϐασικά είδη σχέσεων ϐλέπουµε στα Σχήµατα

24 28 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ c b a c b a Σχήµα 1.7: Σχέση, ϐελοειδές και Καρτεσιανό διάγραµµα c b a c b a Σχήµα 1.8: Σχέση µονότιµη, ϐελοειδές και Καρτεσιανό διάγραµµα c b a c b a Σχήµα 1.9: Σχέση καθολική, ϐελοειδές και Καρτεσιανό διάγραµµα.

25 1.4. ΓΙΝΟΜΕΝΑ, ΣΧΕΣΕΙΣ, ΠΗΛΙΚΑ c b a c b a Σχήµα 1.10: Απεικόνιση, ϐελοειδές και Καρτεσιανό διάγραµµα. Παράδειγµα Για την κατανόηση των πολύ ϐασικών αυτών εννοιών δίνουµε ένα πρώτο απλό παράδειγµα σε µορϕή πίνακα, που επεξηγείται στο υπόµνηµα που έπεται. Το σύνολο είναι X = N. X σχέση ΑΝ ΜΕ ΣΥ ΑΤ ΣΙ Σ 1. N a < b N a b N 3 (a b) N a = b ΑΝ = ανακλαστική ΣΙ = σχέση ισοδυναµίας ΜΕ = µεταβατική Σ = σχέση διάταξης ΣΥ = συµµετρική 0 = δεν είναι ΑΤ = αντισυµµετρική 1 = είναι Απόδειξη. Αϕήνεται ως άσκηση. Θεώρηµα Ισχύουν οι προτάσεισ: 1. Αν είναι µια σχέση ισοδυναµίας στο X, το σύνολο πηλίκο X/ είναι διαµερισµός του X. Ο διαµερισµός αυτός συµβολίζεται µε D( ). 2. Αν D είναι διαµερισµός του X, η σχέση x R y d [ D, x, y ] είναι µια σχέση ισοδυναµίας στο X. Η σχέση ισοδυναµίας αυτή συµ- ϐολίζεται µε D. 3. Η απεικόνιση F : π(x) E(X), F (D) = D είναι απλή.

26 E 30 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ C D Σχήµα 1.11: Τα διανύσµατα [(, )] = = a, [(C, D)] = CD= b. Απόδειξη. Αϕήνεται ως άσκηση. Παράδειγµα Εστω = E E το σύνολο των διατεταγµένων (Σχή- µα 1.11) Ϲευγών απο σηµεία του επιπέδου E και η σχέση που ορίζεται στο µε : (, ) (C, D) τα (, ), (C, D) έχουν ίδια διεύθυνση, φορά και µήκος. Η σχέση αυτή είναι µια σχέση ισοδυναµίας και η κλάση του (, ) είναι το ελεύθερο διάνυσµα = [(, )] = {(KM) : (KM) ()}. Απόδειξη. Αϕήνεται ως άσκηση. Ετσι το σύνολο πηλίκο του = E E δια είναι το σύνολο των ελευθέρων διανυσµάτων V = / του επιπέδου. Παράδειγµα Στο σύνολο Z Z των Ϲευγών ακεραίων αριθµών (κλάσµατα) µε δεύτερο µέλος διάϕορο του 0, ορίζουµε τη σχέση Τότε ισχύουν : (a, b) (c, d) ad = bc.

27 1.4. ΓΙΝΟΜΕΝΑ, ΣΧΕΣΕΙΣ, ΠΗΛΙΚΑ = [(1, 2)] + [(1, 3)] = [(3, 6)] + [(2, 6)] = [(5, 6)] = 5 6 Σχήµα 1.12: Η πρόσθεση δύο ϱητών µέσω ισοδυνάµων οµωνύµων αντιπροσώπων. 1. Η σχέση αυτή είναι µια σχέση ισοδυναµίας. 2. και η κλάση του (a, b) Z Z είναι το [(a, b)] = {(x, y) Z Z : (x, y) (a, b)}. 3. Αν d = (a, b) είναι ο µέγιστος κοινός διαιρέτης των a, b τότε η κλάση του (a, b) Z Z είναι ο ϱητός αριθµός a b = [(a, b)] = {(k a d, k b d ) Z Z : k Z }. Απόδειξη. Αϕήνεται ως άσκηση. Ετσι το σύνολο πηλίκο του του Z Z δια είναι το σύνολο των ϱητών Q = Z Z /. Παράδειγµα Εστω = Z το σύνολο των ακεραίων αριθµών. Τότε 1. Η σχέση x y 5 x y είναι µια σχέση ισοδυναµίας. 2. Αν v είναι το υπόλοιπο της (Ευκλείδειας) διαίρεσης του a δια 5 τότε a v.

28 32 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ 3 b b 2 a 1 a f : Βελοειδές f : Καρτεσιανό Σχήµα 1.13: Βελοειδές και Καρτεσιανό διάγραµµα της f :. 3. Η κλάση του a Z είναι το [a] = {5k + v : k Z} = [v]. 4. Ετσι, όλες οι κλάσεις είναι [0] = {..., 15, 10, 5, 0, 5, 10, 15,... } = 0 [1] = {..., 14, 9, 4, 1, 6, 11, 16,... } = 1 [2] = {..., 13, 8, 3, 2, 7, 12, 17,... } = 2 [3] = {..., 12, 7, 2, 3, 8, 13, 18,... } = 3 [4] = {..., 11, 6, 1, 4, 9, 14, 19,... } = 4 και το σύνολο πηλίκο του Z δια µε όλο και απλούστερο συµ- ϐολισµό, είναι το Z mod 5 = Z/(5) = {[0], [1], [2], [3], [4]} = { 0, 1, 2, 3, 4 } = { 0, 1, 2, 3, 4 }. 1.5 Απεικονίσεις Στον Ορισµό είδαµε ότι η συνάρτηση (ή απεικόνιση) είναι µια ειδική περίπτωση σχέσης. Συγκεκριµένα ονοµάσαµε συνάρτηση µια σχέση απο το στο η οποία είναι µονότιµη και καθολοκή. Αυτή η σχέση εκϕράζει ουσιαστικά µια αντιστοιχία µε την οποία κάθε στοιχείο του αντιστοιχεί σε ένα ακριβώς στοιχείο του. Τις συναρτήσεις, όπως όλες τις σχέσεις, τις παριστάνουµε γραϕικά µε ϐελοειδή και καρτεσιανά διαγράµµατα (Σχήµα 1.13). Επειδή η συνάρτηση είναι πολύ ϐασική έννοια για όλα τα Μαθηµατικά και τις Εϕαρµογές τους ϑα τη µελετήσουµε λίγο περισσότερο στην παράγραϕο αυτή. Εστω λοιπόν και δύο σύνολα. Μια συνάρτηση f απο το στο

29 1.5. ΑΠΕΙΚΟΝΙΣΕΙΣ 33 f x y Σχήµα 1.14: Η απεικόνιση f : x y. x f y Σχήµα 1.15: Η απεικόνιση f : x y σαν µαύρο κουτί. κατά την οποία το x αντιστοιχεί στο y, δηλαδή (x, y) f, τη συµβολίζουµε µε οποιονδήποτε (τον καταλληλότερο κατά περίπτωση) από τους επόµενους τρόπουσ: f :, y = f(x), f :, x f y, f : x y, f : x f y. Στη συνάρτηση f το λέγεται πεδίο ορισµού της f, το πεδίο τιµών της f, το x πρότυπο του y και το y εικόνα του x. Επίσης τα x και y ϑεω- ϱούµενα ως µεταβλητές, λέγονται ανεξάρτητη και εξαρτηµένη µεταβλητή αντιστοίχως. Η εικόνα f(x) του x εκϕράζεται και µε το συµβολισµό του δείκτη f x. Εκϕράζοντας όλα τα προηγούµενα και τη µονότιµη αντιστοιχία που χαρακτηρίζει µια απεικόνιση, παριστάνουµε τις απεικονίσεις γραϕικά και µε ένα ιδιαίτερο τρόπο όπως στο Σχήµα 7.8. Ακόµη, για ειδικούς λόγους, όταν π.χ. η απεικόνιση παριστάνει µια λειτουργία ή διεργασία, παριστάνουµε µια απεικόνίση σαν «µαύρο κουτί», όπως όπως στο Σχήµα Η έννοια του µαύρου κουτιού είναι ότι δεν µας ενδιαϕέρει (ή δεν ξέρουµε) τί γίνεται µέσα στο κουτί, αλλά µας ενδιαϕέρει µόνο η είσοδος x και η έξοδος y. ηλαδή δεν ϐλέπουµε µέσα στο κουτί. Το σύνολο όλων των απεικονίσεων (συναρτήσεων) από το στο συµ- ϐολίζεται µε = {f : }.

30 34 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ Παράδειγµα Θεωρούµε τα σύνολα και µια τυχούσα συνάρτηση = {a, b}, = {p, q, r} f : µε f(a) = x, f(b) = y όπου ϐέβαια x, y = {p, q, r}. Για την απλότητα της γραϕής µ- πορούµε να γράψουµε την f διαδοχικά ως εξήσ: ]} [ ] a b f = {(a, x), (b, y)} = {[ a x ], [ b y οπότε, µε αυτή την απλή γραϕή, το είναι το = x y = [ x y ] = xy, = {p, q, r} {a,b} = {rr, rq, rp, qr, qq, qp, pr, pq, pp}. Η λογική για να ϐρούµε τις συναρτήσεις είναι η ίδια όπως αν τα p, q, r ήταν τα ψηϕία 0, 1, 2 αντίστοιχα και παίρναµε όλους τους διψήϕιους τριαδικούς µε αυτά τα ψηϕία. Θα είχαµε τότε τους 9 = 3 2 τριαδικούς αριθµούς 00, 01, 02, 10, 11, 12, 20, 21, 22 που είναι οι δεκαδικοί 0, 1, 2, 3, 4, 5, 6, 7, 8. Οι απεικονίσεις του παριστάνονται στο Σχήµα Παράδειγµα Θεωρούµε τα σύνολα και µια τυχούσα συνάρτηση = {a, b, c}, = {p, q} f :, µε f(a) = x, f(b) = y, f(c) = z. όπου ϐέβαια πάλι x, y, z = {p, q}. Με ολοένα και απλούστερο συµβολισµό γράϕουµε την f διαδοχικά ως εξήσ: {[ ] [ ] [ ]} [ ] a b c a b c f = { (a, x), (b, y), (c, z) } =,, = x y z x y z = [ x y z ] = xyz, οπότε, µε αυτή την απλή γραϕή, το είναι το = = {p, q} {a,b,c} = {ppp, ppq, pqp, pqq, qpp, qpq, qqp, qqq} = {f : } = {f 1, f 2, f 3, f 4, f 5, f 6, f 7, f 8 }.

31 1.5. ΑΠΕΙΚΟΝΙΣΕΙΣ 35 a b r q p a b r q p a b r q p a b r q p a b r q p a b r q p a b r q p a b r q p a b r q p Σχήµα 1.16: Οι γραϕικές παραστάσεις των συναρτήσεων του συνόλου = {p, q, r} {a,b}. Η λογική για να ϐρούµε τις συναρτήσεις, όπως στο Παραδειγµα 1.5.1, είναι η ίδια όπως αν τα p, q ήταν τα ψηϕία 0, 1 αντίστοιχα και παίρναµε όλους τους τριψήϕιους διαδικούς µε αυτά τα ψηϕία. Θα είχαµε τότε τους 8 = 2 3 διαδικούς αριθµούς 000, 001, 010, 011, 100, 101, 110, 111 που είναι οι δεκαδικοί 0, 1, 2, 3, 4, 5, 6, 7, 8. Οι απεικονίσεις του παριστάνονται στο Σχήµα Παράδειγµα Μια ειδική περίπτωση στο Παραδειγµα Οταν = {0, 1}, δηλαδή έχουµε τα σύνολα = {a, b, c}, = {0, 1}, τότε έχουµε το σύνολο των συναρτήσεων = {0, 1} {a,b,c} = { f : } = { f : {a, b, c} {0, 1} }, που παίζει, όπως ϑα δούµε, σηµαντικό ϱόλο στη µελέτη των συνόλων και των ασαϕών συνόλων. Με το συµβολισµό του Παραδείγµατος έχουµε το σύνολο συναρτήσεων = {0, 1} {a,b,c} = {000, 001, 010, 011, 100, 101, 110, 111}

32 36 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ q p q p 0 q p a b c 4 q p a b c 1 q p a b c 5 q p a b c 2 q p a b c 6 q p a b c 3 a b c 7 a b c Σχήµα 1.17: {p, q} {a,b,c}. Οι γραϕικές παραστάσεις των συναρτήσεων του συνόλου δηλαδή (όπως στο Παράδειγµα 1.5.2) είναι οι 8 = 2 3 τριψήϕιοι διαδικοί αριθµοί 000, 001, 010, 011, 100, 101, 110, 111 που είναι οι δεκαδικοί 0, 1, 2, 3, 4, 5, 6, 7. Οι απεικονίσεις του παριστάνονται στο Σχήµα 1.17, όπου τώρα αντί p, q έχουµε 0, 1 αντίστοιχα. Ορισµός Θεωρούµε µια συνάρτηση f : και τα σύνολα K, M. Τα σύνολα 1. f(k) = { y : x K, y = f(x) } = {f(x) : x K}, 2. f 1 (M) = { x : y M, y = f(x) }, λέγονται εικόνα του Κ και αντίστροϕη εικόνα του Μ αντίστοιχα (Σχήµα 1.19). Αν K = {x} ή M = {y}, συµβολίζουµε αντίστοιχα 1. f ( {x}) = f(x), 2. f 1 ({y}) = f 1 (y). Θεώρηµα Για τα f(k), f 1 (M) ισχύουν οι επόµενες προτάσεις. 1. f(k M) = f(k) f(m), 2. f(k M) f(k) f(m), 3. f 1 (K M) = f 1 (K) f 1 (M),

33 1.5. ΑΠΕΙΚΟΝΙΣΕΙΣ 37 K f f(k) f 1 (M) M Σχήµα 1.18: Η εικόνα και η αντίστροϕη εικόνα ενός συνόλου. 4. f 1 (K M) = f 1 (K) f 1 (M). Απόδειξη. Αϕήνεται ως άσκηση. Παράδειγµα Θεωρούµε τα σύνολα = {1, 2, 3, 4, 5, 6}, = {x, y, z, w, s} και µια συνάρτηση f : µε f(1) = x, f(2) = y, f(3) = y, f(4) = z, f(5) = w, f(6) = s, όπως φαίνεται στο Σχήµα Επίσης ϑεωρούµε τα υποσύνολα του. Τότε είναι K = {1, 2, 3}, M = {2, 3, 4, 5} f(k) = {x, y} f(m) = {y, z, w} f(k) f(m) = {y, z} K M = {2, 3} f(k M) = {y} ηλαδή f(k) f(m) f(k M). Στο παράδειγµα αυτό φαίνεται ότι δεν ισχύει γενικά η σχέση f(k) f(m) = f(k M). Ετσι διευκρινίζεται η εξαίρεση απο το = στο 2. του Θεωρήµατος Το = στο 2. του Θεωρήµατος ισχύει µόνο σε ειδικές περιπτώσεις για την f (Άσκηση 3).

34 38 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ 4 K M K f M 5 6 f(m) y f(k M) w x z f(k) f(m) f(k) s Σχήµα 1.19: Η συνάρτηση του Παραδείγµατος Ενα σύνολο συναρτήσεων που χρησιµοποιούµε πολύ συχνά είναι το σύνολο των πραγµατικών συναρτήσεων που ορίζονται σε ένα τυχόν σύνολο E, δηλαδή το σύνολο R E = { f : E R }. Αυτό το σύνολο συναρτήσεων είναι αρκετά γενικό και περιλαµβάνει πολλές συνηθισµένες περιπτώσεις. Είναι σηµαντικό να δούµε ότι αυτές οι συνηθισµένες περιπτώσεις συναρτήσεων είναι ειδικές περι-πτώσεις του R E. Με E R έχουµε τις επόµενες ειδικότερες περι-πτώσεις που εξετάζονται στα Παραδείγµατα Παράδειγµα Για έχουµε το σύνολο συναρτήσεων, E = {1, 2,..., n} = (n) R (n) = R {1,2,...,n} = {f : (n) R} = { } f : {1, 2,..., n} R. Αρχίζοντας από την απλούστατη περίτωση, για n = 1, έχουµε το E = {1} = (1) και το σύνολο των συναρτήσεων είναι Με τον συµβολισµό R {1} = R (1) = { f : {1} R }. f = ( f(1) ) = (f 1 ) = (x) = x απλουστεύουµε τη γραϕή και το σύνολο των συναρτήσεων γράϕεται R {1} = R (1) = {x : x R} = R.

35 1.5. ΑΠΕΙΚΟΝΙΣΕΙΣ 39 ηλαδή το σύνολο R {1} των απεικονίσεων f : {1} R είναι το σύνολο R των πραγµατικών αριθµών, αϕού κάθε απεικόνιση την παραστήσαµε µε ένα πραγµατικό αριθµό (f 1 ) = (x) = x που είναι η εικόνα του 1. Η αµέσως επόµενη απλή περίπτωση είναι, για n = 2 έχουµε το E = {1, 2} = (2) και το σύνολο των συναρτήσεων είναι Με τον συµβολισµό R {1,2} = R (2) = {f : {1, 2} R}. f = ( f(1), f(2) ) = (f 1, f 2 ) = (x, y) απλουστεύουµε τη γραϕή και το σύνολο των συναρτήσεων γράϕεται R {1,2} = R (2) = {(x, y) : x R, x R} = R 2. ηλαδή το σύνολο R {1,2} των απεικονίσεων f : {1, 2} R είναι το σύνολο R 2 των διατεταγµένων 2-άδων (Ϲευγών)πραγµατικών αρι-ϑµών, αϕού κάθε απεικόνιση την παραστήσαµε µε ένα διατεταγµένο Ϲεύγος πραγ- µατικών αριθµών (f 1, f 2 ) = (x, y) που είναι οι εικόνες των 1 και 2 αντίστοιχα. Η γενική περίπτωση εδώ είναι E = {1, 2,..., n} = (n) και το σύνολο των συναρτήσεων είναι { } R {1,2,...,n} = R (n) = f : {1, 2,..., n} R = {f : (n) R}. Με τον συµβολισµό ( ) f = f(1), f(2),..., f(n) = (f 1, f 2,..., f n ) = (x 1, x 2,..., x n ) απλουστεύουµε τη γραϕή και το σύνολο των συναρτήσεων γράϕεται R {1,2,...,n} = R (n) = {(x 1, x 2,..., x n ) : x i R, i (n)} = R n. ηλαδή το σύνολο R (n) των απεικονίσεων f : (n) R είναι το σύνολο R n των (διατεταγµένων) n-άδων (f 1, f 2,..., f n ) πραγµατικών αρι- ϑµών, αϕού κάθε απεικόνιση την παραστήσαµε µε µια διατεταγµένη n- άδα πραγµατικών αριθµών (f 1, f 2,..., f n ) = (x 1, x 2,..., x n ) που είναι οι εικόνες των 1, 2,..., n αντίστοιχα. Μια παράσταση των συναρτήσεων R {1} = R 1 = R, R {1,2} = R 2, R {1,2,3} = R 3 έχουµε στο Σχήµα 1.20 όπου κάθε συνάρτηση παριστάνεται µε δύο τρόπους :

36 40 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ R n n = 1, 2, 3 G(f) = {(i, f i ) : i (n)} n = 1, 2, 3 R 1 y R 2 x 1 x f = (f 1) G(f) = {(1, f 1)} y R 2 y R 2 x 1 2 x f = (f 1, f 2) G(f) = {(1, f 1), (2, f 2)} z x y f = (f 1, f 2, f 3) R 3 y G(f) = {(1, f 1), (2, f 2), (3, f 3)} x R 2 Σχήµα 1.20: Οι συναρτήσεις R {1}, R {1,2}, R {1,2,3}. 1. Ως σηµείο στον αντοίστοιχο χώρο R n, n = 1, 2, Ως γράϕηµα G(f) της f στον R 2. Παράδειγµα Για E = {1, 2,..., n,... } = N και το σύνολο των συναρτήσεων είναι, R {1,2,...,n,... } = R N = {f : N R},

37 1.5. ΑΠΕΙΚΟΝΙΣΕΙΣ 41 δηλαδή το σύνολο των ακολουθιών πραγµατικών αριθµών. Με τον συµ- ϐολισµό f = ( f(1), f(2),..., f(n),... ) = (f 1, f 2,..., f n,... ) = (x 1, x 2,..., x n,... ) απλουστεύουµε τη γραϕή και το σύνολο των συναρτήσεων γράϕεται R N = {(x 1, x 2,..., x n,... ) : x i R, i N} = R ℵ 0 (= R ), όπυ ℵ 0 (άλεϕ µηδέν) είναι το πλήθος των φυσικών αριθµών. Η γραϕή R δεν είναι ακριβής, όπως ϑα δούµε (αλλά πολλές φορές αναϕέρεται και αυτή). Ετσι το σύνολο R N των ακολουθιών πραγµατικών αριθµών f : N R είναι το σύνολο R ℵ 0 των διατεταγµένων ℵ 0 -άδων («απειράδων») πραγµατικών αριθµών. Παράδειγµα Για E = I J, όπου I = {1, 2, 3,..., m}, J = {1, 2, 3,..., n} έχουµε το σύνολο M(m, n) των m n-πινάκων. Αρχίζοντας πάλι από µια απλή περίτωση, για m = n = 2 έχουµε το E = (2) (2) = {1, 2} {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)} = [ (1, 1) (1, 2) (2, 1) (2, 2) ], έχουµε το σύνολο R (2) (2) = {f : (2) (2) R}. Με τον συµβολισµό [ f11 f f = (f(i, j)) = (f i,j ) = 12 f 21 f 22 ], έχουµε το σύνολο M(2, 2) των 2 2-πινάκων. Γενικά, µε E = I J, όπου I = {1, 2, 3,..., m}, J = {1, 2, 3,..., n}

38 42 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ έχουµε το σύνολο M(m, n) των m n-πινάκων. δηλαδή για E = I J = {1, 2, 3,..., m} {1, 2, 3,..., n} = = {(1, 1),..., (1, n), (2, 1),..., (2, n),..., (m, 1),..., (m, n)} = = { (1, 1), (1, 2), (1, 3),..., (1, n), (2, 1), (2, 2), (2, 3),..., (2, n), (m, 1), (m, 2), (m, 3),..., (m, n) (1, 1), (1, 2), (1, 3),..., (1, n), (2, 1), (2, 2), (2, 3),..., (2, n), (m, 1), (m, 2), (m, 3),..., (m, n) } έχουµε το σύνολο R I J = {f : I J R}. Με τον συµβολισµό f 11 f f 1n f 21 f f 2n f = (f(i, j)) = (f i,j ) =..., f m1 f m2... f mn έχουµε το σύνολο M(m, n) των m n - πινάκων. Παράδειγµα Για E = [a, b] R έχουµε το σύνολο R [a,b] = {f : [a, b] R} δηλαδή το σύνολο των πραγµατικών συναρτήσεων µε πεδίο ορισµού το [a, b]. Παράδειγµα Για έχουµε το σύνολο E = [a, b] [c, d] R 2 R [a,b] [c,d] = {f : [a, b] [c, d] R}

39 1.5. ΑΠΕΙΚΟΝΙΣΕΙΣ 43 δηλαδή το σύνολο των πραγµατικών συναρτήσεων µε δύο µεταβλητές και µε πεδίο ορισµού το [a, b] [c, d]. Στα προηγούµενα Παραδειγµατα είχαµε συναρτήσεις µε µία ή δύο µεταβλητές και µε µεταβλητή διακριτή ή συνεχή. Η γενίκευση σε περισσότερες µεταβλητές είναι προϕανής και άµεση. Αυτές οι συναρτήσεις καλύπτουν το µεγαλύτερο και συνηθέστερο φάσµα εϕαρµογών και είναι οι ϐασικές. Ορισµός Είδη συναρτήσεων. Μια συνάρτηση f :, f(x) = y λέγεται : 1. ένα προς ένα ή 1-1 ή αµϕιµονότιµη (injective) αν ισχύει f(a) = f(b) = a = b. 2. επί (surjective) αν ισχύει f() =, 3. απλή ή ένα προς ένα και επί (bijective) αν είναι ένα προς ένα και επί. 4. Για κάθε σύνλο έχουµε µια συνάρτηση I = I = 1 I :, I (x) = x η οποία λέγεται ταυτότητα στο Α ή ταυτοτική συνάρτηση στο Α (Σχήµα 1.22). Ορισµός Σύνθεση συναρτήσεων και αντιστρέψιµη συνάρτηση. 1. Αν έχουµε δύο συναρτήσεις f :, g : C, f(x) = y g(y) = z τότε ορίζεται η συνάρτηση h : C, h(x) = z η οποία λέγεται σύνθεση της g µε την f και συµβολίζεται µε h = g f. Για την g f (Σχήµα 1.19) έχουµε λοιπόν (g f)(x) = h(x) = z = g(y) = g(f(x)).

40 44 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ f x y g Σχήµα 1.21: Η παράσταση της ισότητας f = g µε µαύρα κουτιά. x x Σχήµα 1.22: Η ταυτοτική απεικόνιση f = I X σαν µαύρο κουτί. 2. Μια συνάρτηση f : λέγεται αντιστρέψιµη αν υπάρχει συνάρτηση g : τέτοια ώστε να ισχύουν g f = I και f g = I. f y g x z x g f y Σχήµα 1.23: Η παράσταση της σύνθεσης f g µε µαύρα κουτιά.

41 1.5. ΑΠΕΙΚΟΝΙΣΕΙΣ 45 x f x x f y y f y Σχήµα 1.24: Η παράσταση της ταυτότητας f I X = f = I Y f µε µαύρα κουτιά. g f x f 3 y g 3 C z Σχήµα 1.25: Η σύνθεση g f. Θεώρηµα Ισχύουν : 1. Αν η f : είναι αντιστρέψιµη, τότε η g : µε την ιδιότητα g f = I και f g = I είναι µοναδική και ισχύει f(x) = y g(y) = x. 2. Η f είναι αντιστρέψιµη ακριβώς τότε όταν η f είναι απλή. Απόδειξη. Αϕήνεται ως άσκηση. Ορισµός Οταν η f : είναι απλή, η µοναδική g µε την ιδιότητα g f = I και f g = I λέγεται τότε αντίστροϕη της f και συµβολίζεται µε f 1.

42 46 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ Θεώρηµα Ισχύουν : 1. Για την σύνθεση ισχύει (προσεταιριστική) f (g h) = (f g) h. 2. Για την συνάρτηση f :, y = f(x) ισχύουν : (α ) I f = f I = f, (ϐ ) Οι I, I µε την (προηγούµενη) ιδιότητα (2α) είναι µοναδικές. 3. Η I είναι απλή. 4. Αν η f είναι απλή τότε και η f 1 είναι απλή και ισχύουν (α ) f f 1 = I, (ϐ ) f 1 f = I, 5. Αν υπάρχει η σύνθεση g f και οι f, g είναι απλές τότε ισχύουν : (α ) η g f είναι απλή, (ϐ ) (g f) 1 = f 1 g 1. Απόδειξη. Αϕήνεται ως άσκηση. Η Χαρακτηριστική Συνάρτηση Για τη περιγραϕή ενός υποσυνόλου κάποιου καθολικού συνόλου X, εκτός από την αναγραϕή (για πεπερασµένα υποσύνολα) και την περιγραϕή (των στοιχείων του) µπορούµε να χρησιµοποιήσουµε και ένα άλλο τρόπο. Αυτό γίνεται µε τη χαρακτηριστική συνάρτηση (Σχήµατα 1.27, 1.28, 1.29). Ορισµός Θεωρούµε ένα καθολικό σύνολο X και X. 1. Η συνάρτηση χ : X {0, 1}, χ (x) = λέγεται χαρακτηριστική συνάρτηση του Α. 2. η συνάρτηση { 0, x / 1, x χ : P(X) {0, 1} X, χ() = χ λέγεται χαρακτηριστική συνάρτηση στο Χ.

43 1.5. ΑΠΕΙΚΟΝΙΣΕΙΣ 47 X X Σχήµα 1.26: Το υποσύνολο µε περίγραµµα ή µε τονισµό των στοιχείων του. X X Σχήµα 1.27: Το υποσύνολο µε επισήµανση των στοιχείων του. Θεώρηµα Η συνάρτηση χ (χαρακτηριστική συνάρτηση στο X) είναι ένα-πρός-ένα και επί απεικόνιση, δηλαδή ισχόυν : 1. χ() = χ() = =, 2. a {0, 1} X, P(X), χ() = a. Απόδειξη. Αϕήνεται ως άσκηση. Θεώρηµα Για τη χαρακτηριστική συνάρτηση ισχύουν : 1. χ χ, 2. χ = χ =. Απόδειξη. Αϕήνεται ως άσκηση. Θεώρηµα Για τη χαρακτηριστική συνάρτηση ισχύουν : 1. χ = max{χ, χ } = χ + χ χ χ

44 48 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ 2. χ = min{χ, χ } = χ χ 3. χ c = 1 χ 4. χ = 0 5. χ X = 1 6. χ \ = χ χ χ Απόδειξη. Αϕήνεται ως άσκηση. Αν συµβολίσουµε a = χ, b = χ, x = χ X, τότε µερικές σχέσεις απλουστεύονται πολύ. Εχουµε π.χ. a b a = b = Ορισµός Θεωρούµε το σύνολο των συναρτήσεων { } {0, 1} X = f : X {0, 1} και ορίζουµε σ αυτό δύο ειδικές συναρτήσεις, ένα τελεστή και δύο πράξεις, ως εξήσ: 1. Οι συναρτήσεις u = 0 : X {0, 1}, u(x) = 0. I = 1 : X {0, 1}, I(x) = 1. λέγονται µηδενική και µοναδιαία συνάρτηση, αντίστοιχα. 2. Ο τελεστής ā = a : X {0, 1}, a (x) = 1 a(x). λέγεται συµπλήρωµα του a. 3. Οι πράξεις max, min (α ) (a + b)(x) = max{a(x), b(x)} = max(a, b)(x), (ϐ ) (a b)(x) = min{a(x), b(x)} = min(a, b)(x). λέγονται πρόσθεση και πολλαπλασιασµός, αντίστοιχα.

45 1.5. ΑΠΕΙΚΟΝΙΣΕΙΣ 49 Παράδειγµα Θα δούµε εδώ πως µελετάµε τις ιδιότητες των συνόλων εϕαρµόζοντας τα προηγούµενα. Θα αποδείξουµε την ιδιότητα P 8. του Θεωρήµατος 1.3.2, δηλαδή το Νόµο De Morgan για το συµπλήρωµα της ένωσης : =. Απόδειξη. 1. Με διαγράµµατα Venn. Σχηµατίζουµε διαδιχικά τα διαγράµµατα Venn των και των,,,,,,, και παρατηρούµε ότι τα, έχουν το ίδιο διάγραµµα. Η διεργασία φαίνεται στο Σχήµα 1.30 (και για το δεύτερο Νόµο DeMorgan Q 8.) και στο Σχήµα 1.29 παριστάνεται µε αντιµεταθετικό διάγραµµα (επίσης και για το δεύτερο Νόµο De Morgan Q 8.). Πρέπει να πούµε όµως ότι η όποια διαπίστωση µε διαγράµµατα Venn δεν πρέπει να ϑεωρείται σαν απόδειξη, αλλά µόνο ως ϐοηθητικό µέσο, όπως ακριβώς µε τα γεωµετρικά σχήµατα. 2. Με τους κανόνες της Λογικής. Αποδεικνύουµε ότι τυχόν στοιχείο, ανήκει στο ένα µέλος ακριβώς τότε όταν ανήκει στο άλλο. x x [ x ] [ x x ] ( x ) ( x ) (x ) (x ) (x ) (x ) x 3. Με τη χαραακτηριστική συνάρτηση. Αποδεικνύουµε ότι τα δύο µέλη εχουν την ίδια χαραακτηριστική συνάρτηση. X ( ) = 1 X ( ) = 1 [ X () + X () X ()X () ] = 1 X () X () + X ()X () = [ 1 X () ] [ 1 X () ] = X ( ) X ( ) = X ( ). Θεώρηµα Ιδιότητες των πράξεων των χαρακτηριστικών συναρτήσεων {0, 1} X. Για τις συναρτήσεις a, b, c F = {0, 1} X ισχύουν :

46 50 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ 1 X X Σχήµα 1.28: Το υποσύνολο µε τη χαρακτηριστική συνάρτηση. 1. Νόµοι Αντιµεταθετικοί. P 1. a + b = b + a, Q 1. a b = b x. 2. Νόµοι Επιµεριστικοί. P 2. a (b + c) = (a b) + (a c), Q 2. a + (b c) = (a + b) (a + c). 3. Νόµοι Ταυτότητας. P 3. a + 0 = a, Q 3. a 1 = a. 4. Νόµοι Συµπληρώµατος. P 4. a + a = 1, Q 4. a a = 0. Απόδειξη. Αϕήνεται ως άσκηση. 1.6 Μαθηµατικά και Πληροϕορική Τα Μαθηµατικά για να λειτουργήσουν χρησιµοποιούν µια γλώσσα, τη γλώσσα των Μαθηµατικών. Η γλώσσα των Μαθηµατικών περιγράϕεται µε µια άλλη γλώσσα, τη µεταγλώσσα, που είναι µια κοινή γλώσσα (π.χ. ελληνικά, αγγλικά). Συνήθως στη πράξη, η Μαθηµατική γλώσσα ενσωµατώνεται στη µεταγλώσσα και εκϕράζεται µαζί µε αυτή. Από

47 1.6. ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗ 51 C ( ) c = c c, C c, c C ( ) c = c c Σχήµα 1.29: Νόµοι De Morgan, Τα διαγράµµατα είναι αντιµεταθετικά και εκϕράζουν τις ιδιότητες C = C, C = C. µια τυπική άποψη τα Μαθηµατικά είναι ένα σύστηµα εννοιών και προτάσεων, οι οποίες προτάσεις εκϕράζουν σχέσεις µεταξύ των εννοιών. Για παράδειγµα, η πρόταση : «σε κάθε τριγώνο, το άθροισµα των γωνιών είναι 2 ορθές» είναι µια σχέση ανάµεσα στις έννοιες : τρίγωνο, άθροισµα γωνιών, ορθή γωνία. Στα Μαθηµατικά, οι έννοιες πρέπει να έχουν ορισµό, ο οποίος όµως ϐασίζεται σε προηγούµενες έννοιες, δηλαδή σε προηγούµενους ορισµούς. Ετσι, είναι φανερό ότι κάποιες από τις έννοιες εισάγονται ως αρχικές έννοιες, δηλαδή χωρίς ορισµό, και οι υπόλοιπες ως παραγόµενες έννοιες δηλαδή µε ορισµό. Οµοια, επειδή οι προτάσεις πρέπει να έχουν απόδεξη, η οποία όµως ϐασίζεται σε προηγούµενες πρτάσεις, δηλαδή σε προηγούµενες αποδείξεις, είναι φανερό ότι κάποιες προτάσεις εισάγονται ως αρχικές προτάσεις ή αξιώµατα, δηλαδή χωρίς απόδειξη, και οι υπόλοιπες ως παραγόµενες προτάσεις ή ϑεωρήµατα, δηλαδή µε απόδειξη. Ετσι κάθε Μαθηµατική Θεωρία, αλλά και όλα τα Μαθηµατικά που είναι το σύστηµα όλων των Μαθηµατικών Θεωριών, ϐασίζεται σε ένα σύστηµα αξιωµάτων, την Αξιωµατική Βάση της ϑεωρίας. Κάθε Μαθηµατική ή Αξιωµατική Θεωριά λοιπόν, έχει µια δοµή και λειτουργία που εκϕράζεται από το Σχήµα Σε µια Αξιωµατική Θεωρία, η Αξιωµατική Βάση δεν είναι ϐέβαια ένα τυχαίο σύνολο προτάσεων. Πολλές φορές λέγεται ότι είναι προτάσεις που είναι «αυτονόητα φανερές». ηλαδή προτάσεις που «η αλήθεια τους είναι φανερή». Αυτό όµως τί νόηµα µπορεί να έχει ; ηλαδή, δεν είναι φανερό και αυτονήτο ότι σε ένα παραλληλόγραµµο οι απέναντι πλευρές είναι ίσες ; γιατί πρέπει να το αποδείξουµε ; γιατί δηλαδή να είναι ϑεώρηµα ; Το «αυτονόητο» µιας αλήθειας είναι σχετικό. Άλλωστε αϕού είναι φανερά και αυτονόητα τα αξιώµατα της Ευκλείδειας Γεωµετρίας γιατί δηµιουργήθηκαν άλλες, µη Ευκλείδειες Γεωµετρίες µε διαϕορετικά Αξιώµατα ; Πολλές

48 52 ΚΕΦΑΛΑΙΟ 1. ΠΡΟΤΑΣΕΙΣ, ΣΥΝΟΛΑ, ΑΠΕΙΚΟΝΙΣΕΙΣ U U U U U U U U c c c c Σχήµα 1.30: Οι Νόµοι De Morgan µε διαγράµµατα Venn.

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Συναρτήσεις, Ορια, Συνέχεια ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των συναρτήσεων,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

of Mathematics των I.Stewart και D.Tall, Oxford University Press.

of Mathematics των I.Stewart και D.Tall, Oxford University Press. Σημειώσεις του Μαθήματος Μ1124 Θεμέλια των Μαθηματικών Βασισμένες στο βιβλίο των I.Stewart και D.Tall Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2012 Εισαγωγή Αρχίζοντας τη μελέτη των μαθηματικών

Διαβάστε περισσότερα

Κεφάλαιο 0 Χρήσιµα στοιχεία σχετικά µε τα σύνολα

Κεφάλαιο 0 Χρήσιµα στοιχεία σχετικά µε τα σύνολα Κεφάλαιο 0 Χρήσιµα στοιχεία σχετικά µε τα σύνολα Υποθέτουµε ότι ο αναγνώστης είναι ήδη κάπως εξοικειωµένος µε τον συνηθισµένο καθηµερινό συνολοθεωρητικό εξοπλισµό. Παρ όλα αυτά, θα παρουσιάσουµε συνοπτικά

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά (Τσικνο)Πέµπτη, 12/02/2015 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Aλγεβρα A λυκείου α Τομος

Aλγεβρα A λυκείου α Τομος Aλγ ε β ρ α A Λυ κ ε ί ο υ Α Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο, Θετικές Επιστήμες Άλγεβρα Α Λυκείου, Α Τόμος Παναγιώτης Γριμανέλλης Στοιχειοθεσία-σελιδοποίηση,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 19/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1 Μαθηµατική

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 ιαιρετότητα και Ισοτιµίες Β και Γ Λυκείου Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Ιούλιος 2009 1 ιαιρετοτητα και Ισοτιµιες ΠΡΟΛΟΓΟΣ Το

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Λογική και Προτασιακός Λογισµός ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 16 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύντοµη εισαγωγή στην Λογική

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Μαθηματικές Προτάσεις Στοιχεία Προτασιακής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Mathematics and its Applications, 5th

Mathematics and its Applications, 5th Μαθηµατικα για Πληροφορικη Εφαρµογες και τεχνικες Ηλιας Κουτσουπιάς Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Σχετικα µε το µαθηµα Σχετικα µε το µαθηµα Το µαθηµα πραγµατευεται καποια ϑεµατα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο Κεφάλαιο 3 ιανύσµατα στον -διάστατο και στον 3-διάστατο χώρο 3.1 Εισαγωγή στα ιανύσµατα (Γεωµετρική) Πολλές ϕυσικές ποσότητες, όπως το εµβαδόν, το µήκος, η µάζα και η ϑερµοκρασία, περιγράφονται πλήρως

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Λογάριθµοι ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Λογάριθµοι ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ Παραθέτουµε αρχικά τις βασικές ιδιότητες των δυνάµεων µε βάση έ- ναν θετικό πραγµατικό αριθµό και εκθέτη έναν ρητό αριθµό. α x.α y = α x+y (α.β) x = α x.β x α x :α

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΡΟΛΟΓΟΣ Αγαπητοί συνάδελφοι, Φίλοι µαθητές και µαθήτριες Η καινούργια µας σειρά βιβλίων µε τον τίτλο ΒΙΒΛΙΟµαθήµατα δηµιουργήθηκε από µια ιδέα µας για το περιοδικό

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα