ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. (α + β) 2 = α 2 + 2αβ + β 2. αx 2 + βx + γ = 0, α 0. x = Γ ΓΥΜΝΑΣΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. (α + β) 2 = α 2 + 2αβ + β 2. αx 2 + βx + γ = 0, α 0. x = Γ ΓΥΜΝΑΣΙΟΥ"

Transcript

1 ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ (α + β) = α + αβ + β α + β + γ = 0, α 0 = β ± β 4αγ α Γ ΓΥΜΝΑΣΙΟΥ

2

3 Πράξεις με Πραγματικούς αριθμούς. Μονώνυμα - Πράξεις με μονώνυμα Πολυώνυμα - Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός πολυωνύμων Αξιοσημείωτες ταυτότητες Παραγοντοποίηση αλγεβρικών παραστάσεων Διαίρεση πολυωνύμων Ε.Κ.Π και Μ.Κ.Δ. ακεραίων αλγεβρικών παραστάσεων Ρητές αλγεβρικές παραστάσεις Πράξεις Ρητών παραστάσεων

4

5 ΕΝΟΤΗΤΑ Η : Πράξεις με πραγματικούς αριθμούς ΕΝΟΤΗΤΑ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ.. Ποιές είναι οι ιδιότητες των πράξεων της πρόσθεσης και του πολλαπλασιασμού; Οι ιδιότητες των πράξεων της πρόσθεσης και του πολλαπλασιασμού παρουσιάζονται στον επόμενο πίνακα: Πρόσθεση Πολλαπλασιασμός Ιδιότητα α + β = β + α α. β = β. α αντιμεταθετική (α + β) + γ = α + (β + γ) α. ( β. γ ) = ( α. β ). γ προσεταιριστική α + 0 = α α + ( α) = 0 α. ( β + γ ) = α. β + α. γ α. = α α α =, α 0 α. 0 = 0 επιμεριστική.. Να γράψετε τους ορισμούς και τις ιδιότητες των δυνάμεων. Ορισμοί: Ιδιότητες: Αν α πραγματικός αριθμός και ν φυσικός με ν Με την προϋπόθεση ότι κάθε φορά ορίζονται οι δυνάμεις και οι πράξεις που σημειώνονται έχουμε: τότε ορίζουμε: α ν = ααα... α. α μ. α ν = α μ+ν ν παραγοντες Για ν = ορίζουμε α = α. Για α 0, ορίζουμε α 0 = και Είναι α ( ) β β α ν = ( )ν α ν = ν α., α, β 0. α α μ ν = α μ ν. α ν. β ν = (α. β) ν ν ν α 4. = ν β ( α β ) 5. (α μ ) ν = α μν.. Τι ονομάζουμε τετραγωνική ρίζα ενός θετικού αριθμού α;. Τετραγωνική ρίζα ενός θετικού αριθμού α, ονομάζουμε τον θετικό αριθμό που, όταν υψωθεί στο τετράγωνο, μας δίνει τον αριθμό α. Δηλαδή α =, τότε = α ή ( ) α = α. Ακόμα ορίζουμε 0 = Να αποδείξετε ότι α β = αβ, με α, β 0. Υψώνουμε κάθε μέλος της ισότητας στο τετράγωνο και έχουμε: Από το ο μέλος: ( α β) α β = α.β = ( ) ( ) Από το ο μέλος: ( αβ ) = α.β

6 4 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις Άρα ( α β) = ( αβ) και επομένως α β = αβ..5. Να αποδείξετε ότι α β = α β με α 0 και β > 0. Υψώνουμε κάθε μέλος της ισότητας στο τετράγωνο και έχουμε: Από το ο μέλος: Από το ο μέλος: Άρα α β = α β α β α β = ( α ) ( β ) = α β και επομένως = α β α β =.5.. Αν α > 0 και β > 0 τότε α+ β α + β Η ισότητα α+ β = α + β ισχύει αν ένας τουλάχιστον είναι ίσος με 0. α β. ΑΣΚΗΣΕΙΣ Α Ομάδα.6. Να υπολογίσετε την τιμή της παράστασης 6 0+ (4 y ) Α = 00 ( + ( z) + ( y+ z) ) y, αν είναι + y = 00. [Απ. Α=-00].. Αν = και y = 0, να υπολογίσετε την τιμή της παράστασης Α = 5. ( y y) [Απ ].7. Να βρείτε την τιμή της παράστασης Π = ( ) 4 6 [Απ. Π=].. Δείξτε ότι = Δείξτε ότι =..8. Να μετατρέψετε την παράσταση: ( ).(.. ) σε δύναμη με βάση το Να μετατρέψετε την παράσταση: ( ) : +. + σε δύναμη με βάση το. [Απ. 0 ] [Απ. 7 ].5. Να γίνουν οι πράξεις: α) 4 β) Να εκτελέσετε τις πράξεις: 0 6 α) β) 5 [Απ. α) β)] [Απ. α) β)].0. Αν ισχύει + 4y = 5 να αποδείξετε ότι το κλά- y σμα Α = + y y.. Αν = 0,0 και y = 0 έχει σταθερή τιμή., να βρείτε την αριθμητική τιμή της παράστασης Α = [Απ. Α=] 7 5 ( y ) : y. [Απ. Α=000].7. Να εξετάσετε αν η παράσταση: είναι πολλαπλάσιο του 7. [Απ. 4=πολ.7].8. Αν α, β είναι μη αρνητικοί αριθμοί, να υπολογίσετε την παράσταση: 49 β + 4β + α α. [Απ. 7]

7 ΕΝΟΤΗΤΑ Η : Πράξεις με πραγματικούς αριθμούς 5.9. Να απλοποιήσετε τις παραστάσεις: Α = 4 + και Β = 8 0 [Απ. Α=+, Β=4-5 ].5. Να βρείτε το αποτέλεσμα: [Απ. 7].0. Αν, y είναι μη αρνητικοί αριθμοί, τότε να δείξετε ότι η παράσταση: 5 y y y y είναι ίση με μηδέν... Να βρείτε το εμβαδόν ενός τριγώνου με μια πλευρά cm και αντίστοιχο ύψος cm. [Απ. Ε=cm ].. Να βρείτε το αποτέλεσμα: i) 6 6+ ii) [Απ. i)5 ii)4].. Αν Α = + και Β = 8, να υπολογιστούν οι παραστάσεις: Α+Β, Α Β, Α. Β. [Απ. Α+Β= -, Α-Β= -, ΑΒ=].4. Να απλοποιήσετε οι παραστάσεις i) Α = + 7 ii) Β = [Απ. i)α=6 ii)β= ].6. Να λύσετε την εξίσωση: = 5 ( ).7. Να λύσετε την εξίσωση: 5 = Να αποδείξετε ότι η τιμή της παράστασης : είναι ίση με Να αποδείξετε ότι: 5 60 : =. 5 [Απ. =] [Απ. = 5 ].0. Ένα τραπέζιο έχει βάσεις 7 cm και cm και ύψος cm. Πόσες φορές είναι μεγαλύτερο το εμβαδόν του από το εμβαδόν τετραγώνου πλευράς 5 cm; [Απ. φορές] β Ομάδα.. Να αποδείξετε ότι ( ) + ( + ) =... Να συμπληρώσετε το παρακάτω τετράγωνο ώστε να γίνει μαγικό, δηλαδή όλες του οι γραμμές, οι στήλες και οι διαγώνιοι να έχουν το ίδιο άθροισμα Να υπολογιστεί η παράσταση [Απ. 6]

8 6 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις ΕΝΟΤΗΤΑ. ΜΟΝΩΝΥΜΑ - ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ.. Τι ονομάζουμε αλγεβρικές παραστάσεις; Οι εκφράσεις που περιέχουν μεταβλητές, λέγονται αλγεβρικές παραστάσεις.... Για παράδειγμα, αλγεβρικές παραστάσεις είναι: 5, 4α, α + 9β,,6κ 4 + λμ.. Τι ονομάζουμε αριθμητική τιμή μιας αλγεβρικής παράστασης; Αν σε μια αλγεβρική παράσταση αντικαταστήσουμε τις μεταβλητές με αριθμούς και εκτελέσουμε τις πράξεις που σημειώνονται, προκύπτει ένας αριθμός που λέγεται αριθμητική τιμή της αλγεβρικής παράστασης.... Για παράδειγμα: Αν για α = η τιμή της αλγεβρικής παράστασης α 5α 8 είναι ( ) 5( ) 8 = = = 4... Τι ονομάζουμε μονώνυμο; Μονώνυμο ονομάζουμε την αλγεβρική παράσταση που σημειώνεται μόνο η πράξη του πολλαπλασιασμού.... Παραδείγματα μονωνύμων:, α, 5, α β 4, 4,5κ 6 λ μ Ποια μονώνυμα λέγονται όμοια; Δύο ή περισσότερα μονώνυμα που έχουν το ίδιο κύριο μέρος λέγονται όμοια μονώνυμα..4.. Για παράδειγμα: Τα μονώνυμα α βγ 5, 9α βγ 5,,7α βγ 5 είναι όμοια..5. Πως βρίσκουμε το άθροισμα όμοιων μονωνύμων; Το άθροισμα όμοιων μονωνύμων είναι ένα όμοια με αυτά μονώνυμο που έχει συντελεστή το άθροισμα των συντελεστών τους..5.. ΠΑΡΑΔΕΙΓΜΑ: Το άθροισμα των όμοιων μονωνύμων 5α β, α β, α β είναι: 5α β + α β + ( α β) = (5 + )α β = 4α β..6. Τι ονομάζουμε πολυώνυμο; Πολυώνυμο ονομάζουμε την αλγεβρική παράσταση που είναι άθροισμα μονωνύμων που δεν είναι όμοια..6.. Για παράδειγμα:, 5α β +,α β, 6μ 5 μν + 4 μ νρ 5.

9 ΕΝΟΤΗΤΑ 4 Η : Μονώνυμα Πράξεις με μονώνυμα 7.7. Πως βρίσκουμε το γινόμενο μονωνύμων; Το γινόμενο μονωνύμων είναι ένα μονώνυμο που έχει συντελεστή το γινόμενο των συντελεστών τους και ως κύριο μέρος όλες τις μεταβλητές με εκθέτη σε καθεμιά το άθροισμα των εκθετών τους..7.. ΠΑΡΑΔΕΙΓΜΑ: Το γινόμενο των μονωνύμων α β, 4 αβ5 γ 4, αβγ 5 είναι: (α β).( 4 αβ5 γ 4 ).( αβ) = ( 4 )( )α αα.ββ 5 β.γ 4 γ.) = α4 β 7 γ Πως βρίσκουμε το πηλίκο δύο μονωνύμων; Το πηλίκο δύο μονωνύμων βρίσκεται, όπως και στους αριθμούς, με πολλαπλασιασμό επί τον αντίστροφο του διαιρέτη..8.. ΠΑΡΑΔΕΙΓΜΑ: () α 5 β γ : ( α βγ) = α 5 β γ. α βγ () ( 0 y ω) : ( 5y 4 ω) = ( 0 y ω). 4 5y ω 5 5 αβγ = = β γ α = 4α β. αβγ α β γ 0 y ω = = 0 y ω 4 4 5y ω 5 y ω = y..8.. ΠΑΡΑΤΗΡΗΣΗ: Στο προηγούμενο παράδειγμα βλέπουμε ότι το πηλίκο δύο μονωνύμων ΔΕΝ είναι πάντοτε μονώνυμο. ΑΣΚΗΣΕΙΣ.9. Να βρείτε ποιες από τις επόμενες παραστάσεις είναι μονώνυμα i) α β γ ii),4 4 y 5 iii) y iv) 4 6 ω - v) vi) (+ 5 )κλ.0. Αν +y = να υπολογίσετε την τιμή της παράστασης: ( ) + y(y ) + y [Απ. 0].. Να αντικαταστήσετε τα κενά με τα κατάλληλα μονώνυμα στην ισότητα α) α y 7α y 5 y 5 + 7α y + + = 5α y β) 0,6α β γ + α γ 5 α β γ + + 4γ α = α γ.. Για ποια τιμή του κ η αλγεβρική παράσταση (5κ+4)α 4 β γ είναι το μηδενικό μονώνυμο;.. Να βρείτε ποια από τα επόμενα μονώνυμα, y, y, y, y,, είναι όμοια..4. Να κάνετε τις πράξεις: i) y y y + y ii) y ω ωy 5y ω y ω + 6 iii) κ λ μ 4 κ λ μ 4,5κ μ 4 λ κ λ μ 4.5. Δίνονται τα μονώνυμα α y β+, y 4 β. Να βρείτε τις τιμές των α, β ώστε τα παραπάνω μονώνυμα να είναι όμοια. [Απ. α=, β=].6. Να προσδιορίσετε τους ακέραιους αριθμούς κ, μ ώστε να είναι μονώνυμο η αλγεβρική παράσταση: α κ+ + 5α μ+.7. Να προσδιορίσετε τους ακέραιους αριθμούς λ, μ ώστε να είναι μονώνυμο η αλγεβρική παράσταση: α y μ+7 + α λ+ y.8. Να κάνετε τις πράξεις: i) y. ( y 4 ) ii) ( ). ( ) iii) 5 y ω. 5 ( 5 y ω) 8 iv) y. ( 4 y). ( 4 y 6 ) v) y. ( α β γ). 4α γ 5. ( α βγ ).9. Να κάνετε τις πράξεις: i) ( ) αβ. ( β α 5 ). ( αβ 4 γ) ii) ( y ω). ( ) 4 ω y α 4 αy

10 8 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις iii) ( κλ μ ). ( κ 4 λμ ). 5 6 ( ) μκλ v) ( α β y) ( αβ y ) ( a y ).0. Να κάνετε τις πράξεις: i) 8 : ( 6 5 ) ii) ( 4α 9 β 7 ) : (6α 5 β ) iii) ( 8α β ) : (9α β) iv) 0y 4 z : ( 5 y 4 z 5 ).. Να εκτελέσετε τις πράξεις: i) [ y 4. ( 6 y)] : ( 4 5 y 7 ) ii) [( 4α β ). α 5 ). ( α 6 β)] : ( 4α β 5 4 ) iii) ( α 5 ) : ( 9 4 α 4 4 ) 4 iv) ( κλμ) :( κλ) :( μλ) 4

11 ΕΝΟΤΗΤΑ Η : Πολυώνυμα - Πρόσθεση & Αφαίρεση πολυωνύμων 9 ΕΝΟΤΗΤΑ. ΠΟΛΥΩΝΥΜΑ - ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ..Τι ονομάζουμε αναγωγή των όμοιων όρων; Αν σε μια αλγεβρική παράσταση αντικαταστήσουμε τους όμοιους όρους με το άθροισμά τους, η εργασία αυτή λέγεται αναγωγή των όμοιων όρων.... ΠΑΡΑΔΕΙΓΜΑ: 5α α +6β + + 9β α + β + α = 4α α + 4β +. ΑΣΚΗΣΕΙΣ..Να κάνετε τις αναγωγές των όμοιων όρων i) ii) iii) α + + α iv) α 6α + 5α + α α Αν Α = +, Β = ++5 και Γ = να βρεθούν τα επόμενα αθροίσματα i) Α + Β ii) Α + Β + Γ iii) Α Β Γ.4.Να κάνετε τις πράξεις: i) [(5 ) + 4 ( +6)] + ( 5) ii) 5α (α +α ) + [ (α α 4) + ( +6α)].5.Να εκτελέσετε τις πράξεις: i) ( ) [ ( )] { [+4 ( )]} ii) { [ ( )]+} { + [+( ) ] } 4

12 0 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις ΕΝΟΤΗΤΑ 4. ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 4.. Πως πολλαπλασιάζουμε μονώνυμο με πολυώνυμο; Για να πολλαπλασιάσουμε μονώνυμο με πολυώνυμο, πολλαπλασιάζουμε το μονώνυμο με κάθε όρο του πολυωνύμου και προσθέτουμε τα γινόμενα που προκύπτουν ΠΑΡΑΔΕΙΓΜΑ: (α β).(αβ β γ + 4) = 6α β α β γ + 8α β. 4.. Πως πολλαπλασιάζουμε δύο πολυώνυμα; Για να πολλαπλασιάσουμε δύο πολυώνυμα, πολλαπλασιάζουμε κάθε όρο του ενός με κάθε όρο του άλλου και προσθέτουμε τα γινόμενα που προκύπτουν ΠΑΡΑΔΕΙΓΜΑ: (α ).(α α 4) = α α 4α α + 6α + 8 = α 5α + α ΣΗΜΕΙΩΣΗ: Όταν κάνουμε τον πολλαπλασιασμό μονωνύμου με πολυώνυμο ή δύο πολυωνύμων, λέμε πολλές φορές ότι αναπτύσσουμε τα γινόμενα αυτά και το αποτέλεσμα λέγεται ανάπτυγμα του γινομένου. ΑΣΚΗΣΕΙΣ 4.. Να γίνουν οι πράξεις: ( y)y + (y+y )( ) + (+y)( y) (+)y. Μετά να βρείτε την αριθμητική τιμή του εξαγόμενου για = και y = Να δείξετε ότι η αλγεβρική παράσταση (α α+) (α+)(α ) (α +) + α έχει σταθερή τιμή για τις διάφορες τιμές των α, Να εκτελέσετε τις παρακάτω πράξεις και μετά να βρείτε την αριθμητική τιμή του εξαγόμενου για τις τιμές των μεταβλητών που αναφέρονται. α) (+)( + ) ( )(+), =. β) ( y y )( y) (+y) ( y)( y ), =, και y = Να γίνουν οι πράξεις: α) ( ) 4 (+) + 4( ) β) 5 ( +4) +( )( 4 ) ( ) γ) α(α αβ+β ) β (α β)( αβ) 4α β δ) [ (+4) ] [ + ( )] 5 ε) α{αβ [α ( αβ+4)] + } (α ) 4.7. Να αντικατασταθούν οι παρακάτω αστερίσκοι έτσι, ώστε να ισχύει κάθε μια από τις ισότητες: α) *. (4β 7β+8) = 8β 49β + 56β β) *. ( +8 7) = * * γ) 5α β ( * 9β + * ) = 0α 5 β 7 * + α 4 β Να εκτελέσετε τους πολλαπλασιασμούς: α) (+)( ) β) ( +4)( 5) γ) (+)( )(+5) δ) (+)(+)(+) 4.9. Να εκτελέσετε τους πολλαπλασιασμούς: α) (κ )( κ)(κ ) β) μ(μ )(4μ+)( μ) γ) ( )( 5)( +5 ) δ) (α+)( α)(α α )(4 α ) 4.0. Να γίνουν οι πράξεις:

13 ΕΝΟΤΗΤΑ 4 Η : Πολλαπλασιασμός πολυωνύμων i) ( )( ) + ( +)( + ) ii) α(α+)( α) (α +α )( α+α ) 4.. Αν Α = α α+, Β = α+ και Γ = α να βρεθούν τα εξαγόμενα: Α. Β, Β. Γ, Α. Γ και Α. Β + Β. Γ Γ. Α. 4.. Αν Κ = 4, Λ = και Μ = + να βρεθούν τα εξαγόμενα: K. Λ, Λ. Μ, Κ. Μ και K. Λ Κ. (Λ. Μ Κ. Μ). 4.. Να εκτελέσετε τις πράξεις: 5 7 y y y y ( y)(4 y) ( )( ) ( ) 4.4. Ένα τραπέζιο έχει βάσεις, και ύψος. Ένα τετράγωνο έχει πλευρά. Να βρείτε το λόγο των εμβαδών του τραπεζίου και του τετραγώνου. [Απ. 4 ]

14 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις ΕΝΟΤΗΤΑ 5. ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ 5..Τι ονομάζουμε ταυτότητα; Κάθε ισότητα που περιέχει μεταβλητές και επαληθεύεται για όλες τις τιμές των μεταβλητών αυτών λέγεται ταυτότητα ΠΑΡΑΔΕΙΓΜΑΤΑ: (i) α(α ) = α α (ii) ( + )( + 5) = (iii) κ + λ = (κ + λ) κλ Τετράγωνο αθροίσματος 5..Να αποδείξετε την ταυτότητα (α + β) = α + αβ + β. Είναι : (α + β) = (α + β)(α + β) = α + αβ + βα + β = α + αβ + β ΠΑΡΑΔΕΙΓΜΑΤΑ: (i) (α + ) = α + α. + = α + 6α + 9. (ii) (5 + 4y) = (5) y + (4y) = y + 6y. (iii) (μ + 4 ν ) = (μ ) +. μ. 4 ν + ( 4 ν ) = 4μ 6 + μ ν + 6 ν4. Τετράγωνο διαφοράς 5..Να αποδείξετε την ταυτότητα (α β) = α αβ + β. Είναι : (α β) = (α β)(α β) = α αβ βα + β = α αβ + β ΠΑΡΑΔΕΙΓΜΑΤΑ: (i) (β ) = β β. + = β β +. (ii) ( 6 + 7α) = (7α 6 ) = (7α). 7α. 6 + (6 ) = 49α 84α κ (iii) 4λμ = κ + 4λμ = κ + 4λμ = κ +. 4 κ. 4λμ + (4λμ ) 8 = κ + 4κ 4 λμ + 6λ μ 6. 4

15 ΕΝΟΤΗΤΑ 5 Η : Αξιοσημείωτες ταυτότητες Κύβος αθροίσματος 5.4.Να αποδείξετε την ταυτότητα (α + β) = α + α β + αβ + β. Είναι : (α + β) = (α + β)(α + β) = (α + β)(α + αβ + β ) = α + α β + αβ + βα + αβ + β = α + α β + αβ + β. Κύβος διαφοράς 5.5.Να αποδείξετε την ταυτότητα (α β) = α α β + αβ β. Είναι : (α β) = (α β)(α β) = (α β)(α αβ + β ) = α α β + αβ βα + αβ β = α α β + αβ β. Γινόμενο αθροίσματος επί διαφορά 5.6.Να αποδείξετε την ταυτότητα (α + β)(α β) = α β. Είναι : (α + β)(α β) = α αβ + βα β = α β ΠΑΡΑΔΕΙΓΜΑΤΑ: (i) (9α + βy)(9α βy) = (9α) (βy) = 8α 4β y. (ii) ( μ 5 + λ ν )(μ 5 + λ ν ) = (λ ν μ 5 )( λ ν + μ 5 ) = (λ ν ) (μ 5 ) = λ 6 ν 4 9μ 0. Διαφορά κύβων Άθροισμα κύβων 5.7.Να αποδείξετε τις ταυτότητες (i) α β = (α β)(α + αβ + β ). (ii) α + β = (α + β)(α αβ + β ). (i) Το ο μέλος της ταυτότητας γράφεται: (α β)(α + αβ + β ) = α + α β + αβ βα αβ β = α β. (ii) Το ο μέλος της ταυτότητας γράφεται: (α + β)(α αβ + β ) = α α β + αβ + βα αβ + β = α + β. ΑΣΚΗΣΕΙΣ Α Ομάδα 5.8.Να βρείτε τα αναπτύγματα: α) ( + 5) β) ( ) γ) (α 7β) δ) (y + ) ε) ( 4y) στ) (α αβ ) 5.9.Να βρείτε τα αναπτύγματα: α) ( + 4y) β) (7α β ) γ) (α α ) δ) ( 4a + α β) ε) ( 5 6 y 4 y ) στ) ( αβ γ 6 βγ ) 5.0.Να βρείτε τα αναπτύγματα: y ) α) ( α + β 4 ) β) ( + 4 γ) ( α 4 β5 ) δ) ( 4 y 6 y ) 5..Να μετατρέψετε την παράσταση (α + β) + (αγ + βγ) σε μία δύναμη. 5..Να συμπληρώσετε τα κενά έτσι ώστε να προκύψουν τέλεια τετράγωνα και μετά να τα γράψετε ως τέλεια τετράγωνα: α) + α + β) 4 + 4y + γ) 9α 6αβ + δ) + 4y +

16 4 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις ε) 5α + 4β + στ) 8μ + 49ν ζ) 40y η) 60κλ + 9κ + θ) μ ν + 4ν Να συμπληρώσετε τα κενά έτσι ώστε να προκύψουν τέλεια τετράγωνα και μετά να τα γράψετε ως τέλεια τετράγωνα: α) α αβ + β) α γ) δ) 49α6 + β 8 + ε) 9 4 6y + στ) 5 4 a 5β Αν (α+β) = α + β +, να αποδείξετε ότι οι αριθμοί α, β είναι αντίστροφοι. 5.5.Να αποδείξετε ότι η αριθμητική τιμή της παράστασης Α = (ν+) (ν ) είναι πάντοτε πολλαπλάσιο του 4, όταν ο ν παίρνει ακέραιες τιμές. 5.6.i) Να συγκρίνετε τους αριθμούς κ + λ και κλ. ii) Με τη βοήθεια της προηγούμενης σύγκρισης να αποδείξετε ότι: α + β + γ αβ + βγ + γα. 5.7.Να βρείτε τα γινόμενα: α) (4+)(4 ) β) (αβ+)(αβ ) γ) (5α β )(5α+β ) δ) ( y 4 a )( y 4 +a ) 5.8.Να βρείτε τα γινόμενα: α) (7a+4β)(4β 7α) β) ( 5 y ω )(ω + 5 y ) γ) (4α 9β y)( 4α 9β y) δ) ( a 4 κ)( a 4 κ ) 5.9.Να βρείτε τα γινόμενα: α) (+y )(+y+) β) (+y ω)(+y+ω) γ) (α+β γ)(α β+γ) δ) ( + +)( +) ε) (α +β y)(α++β+y) 5.0.Αν α =, β = +, να υπολογιστούν: αβ( α + β ) i) α.β ii) α + β iii) α+ β [Απ. i) ii) iii)6] 5..Να βρείτε τα αναπτύγματα: α) ( + 4) β) ( ) γ) ( y) δ) (y + ) ε) ( + y) στ) ( a α ) 5..Να γίνουν οι πράξεις: α) (α+β) (α β) 5β β) ( α) (α β)(α+β ) ( β) γ) ( +y ) (y + ) + ( y )( +y ) δ) (+) + ( ) + (+)( ) ( 5) 5..Να εκτελέσετε τις πράξεις: α) (+) +( ) +( ) (+) + (+)( ) (+)( ) β) (+5) ( 5) + ( ) (+) ( )(+) γ) (+) + (+)( ) (+)( ) ( )( ) δ) ( +) + ( ) ( +4) + ( ) + ( )( +) 5.4.Να αποδείξετε ότι: (+)( )( ) ( ) ( )( 5) + 5 = 0( ). 5.5.Αν α = 4 5 και β = 6 0 τότε: i) Να υπολογίσετε την τιμή της παράστασης α β. ii) Να αποδείξετε ότι οι αριθμοί α και β είναι αντίθετοι. 5.6.Οι κάθετες πλευρές ενός ορθογώνιου τριγώνου ΑΒΓ δίνονται από τις ισότητες β = και γ = Να βρείτε την περίμετρο και το εμβαδόν του τριγώνου. [Απ. Π=0, Ε=0] 5.7.Αν αφαιρέσουμε από το τετράγωνο του ημιαθροίσματος δύο αριθμών, το τετράγωνο της ημιδιαφοράς τους, βρίσκουμε τον αριθμό. Να εξετάσετε αν οι αριθμοί αυτοί είναι αντίστροφοι. 5.8.Να αποδείξετε ότι ο αριθμός ρ = λύση της εξίσωσης: = 0. είναι 5.9.Αν 6y + y 8y + 8 = 0 α) Να δείξετε ότι: ( y) + (y ) = 0. β) Να βρεθούν οι συντεταγμένες του σημείου Α(,y) που επαληθεύουν την παραπάνω εξίσωση. [Απ. β)α(6,)] 5.0.Να αποδείξετε ότι: α) α β = (α β) + αβ(α β). β) α + β = (α + β) αβ(α + β). 5..Να εκτελεστούν οι πράξεις: α) ( ) (+) ( )(+) β) (+y) y( y)(+y) ( y) γ) (+) ( ) + ( )(+)( ) 5..Να βρείτε τα εξαγόμενα: i) (+) + (+) ( ) + (+)( ) + ( ) ii) ( y) ( y) (+y) + ( y)(+y) (+y) iii) (κ+λ) (κ λ) (κ+λ) (κ λ) + (κ+λ)(κ λ)

17 ΕΝΟΤΗΤΑ 5 Η : Αξιοσημείωτες ταυτότητες 5 iv) 5 y y Να αποδείξετε ότι: α) (α+β) (α β) = 4αβ β) (α +β ) (αβ) = (α β ) α+β γ) ( ) α β ( ) + 5 y 5 y y 5 y = αβ δ) (+y) ( y) 5y = 0y ε) (α +4)( +) (α+) = ( α) στ) (α +β )( +y ) = (α+βy) + (αy β) 5.4.Να αποδείξετε ότι: ( ) α) αα+ αα ( ) = α 5.5.Αν μ > ν, να αποδείξετε ότι οι αριθμοί μ + ν, μ ν και μν είναι πλευρές ορθογώνιου τριγώνου. 5.6.Αν μ >, να αποδείξετε ότι οι αριθμοί μ, και μ + είναι πλευρές ορθογώνιου τριγώνου. μ 5.7.Να αποδείξετε ότι: α) (α+β) + (β+γ) + (γ+α) α β γ = (α+β+γ) β) ( +y +y) = y + (+y) ( +y ) γ) (α+β+γ) + (α+β γ) + (α β+γ) + (α β γ) = 4(α +β +γ ) 5.8.Να αποδείξετε ότι: ( +) ( +) ( ) + 7 = 5( 4 ) ( )(4 +) 5.9.Να υπολογίσετε τις αριθμητικές παραστάσεις: α) β) γ) = (000+)( ) δ) ε) Να συμπληρώσετε τα κενά: i) (α + ) = + + 9β ii) (α + ) = iii) ( y ) = iv) ( κ) = 4μ κ + v) ( + ) = 4α + 9β 4 + vi) ( ) = Να συμπληρώσετε τα κενά: i) ( 5α + )( 8β ) = ii) ( )( + ) = α β y 6 iii) ( )( + ) = α β Να συμπληρώσετε τα κενά: i) ( + ) = 64α β ii) ( + ) = 8α + α β + + iii) ( α) = Να αποδείξετε τις ισότητες: i) (α+) = α(α ) + (α ) ii) (α+β) = α(α β) + β(β α) iii) ( +y ) ( +y ) + y (+y) = (y) 5.44.Αν = α β, y = αβ και ω = α +β, να αποδείξετε ότι θα είναι + y = ω Αν α = (+), β = ( ) και γ = α+8 τότε α- ποδείξτε ότι: α β + γ = (+) 5.46.Αν + y = και y =, να υπολογίσετε τις α- ριθμητικές τιμές των παραστάσεων: i) + y ii) + y [Απ.i) ii)6] 5.47.Αν + y = α και y = β, να αποδείξετε ότι: i) + y = α β ii) + y = α αβ 5.48.Αν α = 5 + και β = 5, να βρεθεί η τιμή των επόμενων παραστάσεων: i) Α = α αβ + β ii) Β = α + β αβ 5.49.Να βρεθούν δύο διαδοχικοί φυσικοί αριθμοί που τα τετράγωνά τους να διαφέρουν κατά 99. [Απ.49, 50] 5.50.Αν α = 7, να υπολογίσετε την τιμή των παραστάσεων: α i) α + ii) α α α. [Απ.i)5 ii)64] 5.5.Αν > 0 και ( + ) = 9, να βρείτε την τιμή της παράστασης +. [Απ.8] 5.5.Να αποδείξετε τις επόμενες ανισότητες: i) α + β αβ ii) (α + β) 4αβ + iii)

18 6 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις iv) α + α, α > 0 Πότε ισχύει η ισότητα σε κάθε μία από αυτές; 5.5.Στο παρακάτω σχήμα το τετράγωνο ΕΖΗΘ είναι εγγεγραμμένο στο τετράγωνο ΑΒΓΔ. A Ε Β Να χρησιμοποιήσετε την ισότητα που προκύπτει από τα εμβαδά των δύο τετραγώνων και των ίσων τεσσάρων ορθογωνίων τριγώνων για να συμπεράνετε το Πυθαγόρειο θεώρημα, δηλαδή ότι: + y = z Δίνεται το επόμενο σχήμα: B Γ y z y ω ω Θ Η Ζ Γ A Μ Να χρησιμοποιήσετε την ισότητα που προκύπτει από τα εμβαδά των δύο σχημάτων για να συμπεράνετε το Πυθαγόρειο θεώρημα, δηλαδή ότι: + y = ω. y Β Ομάδα 5.55.Χρησιμοποιήστε το πιο κάτω σχήμα για να δικαιολογήσετε τον τύπο: (α + ) = α + 4α +4. [Απ. =7w] 5.6.Να υπολογίσετε τους αριθμούς α, β και γ οι ο- ποίοι ικανοποιούν την παρακάτω σχέση: α + β + γ α 4β 6γ + 4 = 0. [Απ. α=, β=, γ=] 5.6.Για το επόμενο σχήμα δίνεται ότι: Γ 5.56.Αν οι αριθμοί, y, z είναι πλευρές ορθογώνιου τριγώνου με υποτείνουσα το, τότε δείξτε ότι και οι αριθμοί α = + y + z, β = + y + z, γ = + y + z είναι πλευρές ορθογώνιου τριγώνου Να δείξετε ότι το γινόμενο τεσσάρων διαδοχικών φυσικών αριθμών αυξημένο κατά μια μονάδα είναι τέλειο τετράγωνο. Δηλαδή, ν(ν+)(ν+)(ν+) + = (ν +ν+) Αν.y = 6 και y + y + +y = 5 να βρείτε την τιμή της παράστασης + y. [Απ. ] 5.59.Δίνεται η αλγεβρική παράσταση: Α = α 0αβ + 7β 8β + 8. α) Να μετασχηματίσετε την παράσταση Α σε ά- θροισμα τετραγώνων. β) Να βρείτε τις τιμές των α, β για τις οποίες η παράσταση Α παίρνει την ελάχιστη τιμή. [Απ. β)α=0, β=] Α y Ε Η Το τρίγωνο ΑΒΓ είναι ορθογώνιο και ισοσκελές. ΑΔ =, ΑΕ = y, ΑΓ = + y. Το εμβαδόν (ΔΕΖΗ) του τετραγώνου ΔΕΖΗ ισούται με τα του εμβαδού (ΑΒΓ) του τριγώνου 5 ΑΒΓ. Να υπολογίσετε: i) Το λόγο y ii) Το λόγο (ΑΔΕ) (ΑΒΓ) Ζ Β [Απ. i) ii) 5 ] 5.60.Για τους πραγματικούς αριθούς, y, z, w ισχύει η ισότητα + 0y + 0z + 9w = 6(y + yz + zw). α) Να μετασχηματίσετε την ισότητα ώστε στο ένα μέλος να γραφεί σαν άθροισμα τριών τέλειων τετραγώνων και στο άλλο μέλος το 0. β) Να βρείτε τη σχέση που συνδέει τους και w.

19 ΕΝΟΤΗΤΑ 6 Η : Παραγοντοποίηση Αλγεβρικών Παραστάσεων 7 ΕΝΟΤΗΤΑ 6. ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΑΛΓΕΒΡΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ 6.. Τι ονομάζουμε παραγοντοποίηση; Η διαδικασία να μετατρέπουμε μια παράσταση από άθροισμα σε γινόμενο, λέγεται παραγοντοποίηση. ΑΣΚΗΣΕΙΣ Κοινός παράγοντας 6.. Να γίνουν οι παραγοντοποιήσεις: α) αβ 4αγ β) 6 + γ) y + 6y y δ) 5α β 5αβγ + 0αβ γ 6.. Να γίνουν οι παραγοντοποιήσεις: α) α( ) + β) κ(α ) + 6 α γ) α(+y) 7β(+y) (y+) 6.4. Να γίνουν οι παραγοντοποιήσεις: α) (α β) + (α+β) (α β) β(α +β ) β) (5α β)(4 y) + (y 4)α 6.5. Να αποδείξετε ότι ο αριθμός: ν+ ν+ + ν είναι πολλαπλάσιο του 9. Ομαδοποίηση 6.6. Να μετατρέψετε σε γινόμενα τις αλγεβρικές παραστάσεις α) α + ay + + 6y β) 5y 5ω λω + λy γ) 4αy βy + αω βω δ) 5α + 6β 0yα 8yβ ε) y + y 6y στ) ζ) α 5 + α 4 + α + α + α Να παραγοντοποιήσετε τα πολυώνυμα: α) α + αβ β β) + y y γ) α 6α + 5α 0 δ) α α β αβ + β ε) 8y 4y 7αy + α στ) + y y ζ) αβ αβy αγ + αγy η) Να παραγοντοποιήσετε τα πολυώνυμα: α) + (5 y) 5y β) α(α γ) β(β γ) γ) ( β) + y(α ) α( β) δ) y(α +β ) + αβ( +y ) ε) κλ(μ ν ) + μν(κ λ ) 6.9. Να παραγοντοποιήσετε τα πολυώνυμα: α) (α+β)(λ+μ) γλ γμ β) κ κy λ + λy + μ μy γ) α β + βy + γy γ αy δ) α β α + α + β αβ ε) y + yω + yφ + yφω + ω 6.0. Οι αριθμοί, y είναι μη μηδενικοί και διάφοροι μεταξύ τους. Αν + y + = τότε να δείξετε ότι οι y, y είναι αντίστροφοι. Διαφορά τετραγώνων 6.. Να κάνετε τις παραγοντοποιήσεις: α) 8α 49β β) y 7 y γ) 45 y 4 80ω δ) 0κ 5 y ε) 9 4 στ) 4 ζ) 8 ζ) 6α 6 49β 8

20 8 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις 6.. Να υπολογίσετε τις αριθμητικές παραστάσεις: α) 00 β) γ) ε) 6, 7,69 4, δ) , 7, 97,4 6.. Να κάνετε τις παραγοντοποιήσεις: α) α β α + α + β αβ β) 8 4 6y 4 γ) 8 δ) 7 ε) Να κάνετε τις παραγοντοποιήσεις: α) α 5α 4α + 0 β) y 8y + 7 γ) α 4α + 4 δ) α 5 + α 4 α ε) α + β αy βy στ) α α (y + z) ζ) 9α 4α 9β + 4β 6.5. Να μετατρέψετε σε γινόμενα τις αλγεβρικές παραστάσεις i) (5 6) 9 ii) (μ ν) 6ν iii) (α β) (β α) iv) ( 5y) 9(+y) v) 9(α β) 6(α+β) vi) (y z) 6.6. Αν ο είναι φυσικός αριθμός, τότε η παράσταση ( ++) είναι γινόμενο τεσσάρων διαδοχικών φυσικών αριθμών Να γίνουν οι παραγοντοποιήσεις: α) (4 8) (4 +) β) 5(4 ) ( ) γ) (5 )(+4) + ( 5)( ) Αν ο κ είναι ακέραιος τότε δείξτε ότι ο κ κ γράφεται σαν γινόμενο τριών διαδοχικών ακεραίων Έστω ν θετικός ακέραιος και Α = ν ν + ν. i) Να παραγοντοποιήσετε τον Α. ii) Να βρείτε τις τιμές του ν, για τις οποίες ο Α είναι πρώτος αριθμός. [Απ. ii)ν=] Διαφορά & άθροισμα κύβων 6.0. Να παραγοντοποιήσετε τις παραστάσεις i) α 5 ii) 8κ + 7 iii) 7α + 64β iv) 6ω v) Να παραγοντοποιήσετε τις παραστάσεις i) 64 y ii) 6 κ μ 8 iii) α β Ανάπτυγμα τετραγώνου 6.. Να παραγοντοποιήσετε τα πολυώνυμα: α) + β) κ 4κy + 4y γ) y + 64y δ) y y ε) + 4 y στ) + y Να μετατρέψετε σε γινόμενα τις αλγεβρικές παραστάσεις α) α(α+) + β) 9(+y) 6y(+y) + y γ) + +, > 0 δ) y y Να μετατρέψετε σε γινόμενα τις αλγεβρικές παραστάσεις α) α α + 8α β) γ) y + y Τριώνυμο 6.5. Να παραγοντοποιήσετε τα τριώνυμα α) β) α + α + 7 γ) y + y 0 δ) α + α 5 ε) 6 4 στ) 40 ζ) 4 5 η) θ) 7 84 ι) β + 6β + 5β 6.6. Να αποδείξετε ότι η παράσταση Α = παίρνει θετικές τιμές, για κάθε > Να παραγοντοποιήσετε τα τριώνυμα α) + 9α + 4α β) α 4αβ + β γ) μ + 4μν 5ν Ανάπτυγμα τετραγώνου και διαφορά τετραγώνων 6.8. Να παραγοντοποιήσετε τα πολυώνυμα: α) α + 6α 9

21 ΕΝΟΤΗΤΑ 6 Η : Παραγοντοποίηση Αλγεβρικών Παραστάσεων 9 β) 4y + 4y γ) 9 9α β + 6αβ δ) 9α α + 4 4β ε) + α +βγ α β γ στ) 9y ζ) y η) 6y Να παραγοντοποιήσετε τις παραστάσεις: i) α + β + (αβ 8) ii) κ λ y + β γ κλβ γy iii) y 4yω + ω ω 6.0. Να παραγοντοποιήσετε τα πολυώνυμα: i) α 4 + α + ii) α 4 + α β + β 4 iii) α 4 α β + β 4 iv) v) y 4 y + vi) 5α 4 + α β + 6β Να παραγοντοποιήσετε τα πολυώνυμα: i) κ 4 + 4λ 4 + κ λ ii) 4 + 9y + 5 y iii) κ 4 κ + 6 Ανάπτυγμα κύβου 6.. Να παραγοντοποιήσετε τα πολυώνυμα: α) β) 8α α + 6α γ) α + 6α + α Να παραγοντοποιήσετε τις παραστάσεις α) (+y) (+y). y + (+y). y y β) (κ+λ) + (κ λ) + (κ+λ). (κ λ) + (κ+λ). (κ λ) Όλες οι περιπτώσεις 6.4. Να παραγοντοποιηθούν οι παραστάσεις: α) ( )(+) + β) (α+β)(β α) + (α β) (α 4β ) γ) ( 9) (+) δ) ( 5+) ε) 5κ 9 5 κ στ) y y 6.5. Να παραγοντοποιήσετε τις παραστάσεις: i) κ + λ κ + λ κλ ii) + (α+) + α + α iii) γ + 9(β α ) + 6βγ iv) α + β γ δ αβ + γδ v) α + α(β+) +β(α+) + β 6.6. Να παραγοντοποιηθούν οι παραστάσεις i) α + αβ + β ii) 9 4y 4y iii) y ω + yω + iv) y + 9y 4 v) 9( + y) 6y( + y) + y vi) (α ) (α ) (α ) vii) (ω ) (ω 4) + (4 ω ) 6.7. Να παραγοντοποιήσετε τα πολυώνυμα: i) ( 5+6)( ) ( )( ) ii) 4(αδ + βγ) (α β γ + δ ) iii) (5α +α ) (α α ) iv) ( 6)( ) (5 0)( ) v) (ω 9) (ω + ) 6.8. Να γίνει γινόμενο η παράσταση: (ν + ν + ). [Απ.ν(ν+)(ν+)(ν+)] 6.9. Να παραγοντοποιηθούν οι παραστάσεις α) κ 4 λ 4 (κ+λ)(κ λ) β) (α + ) 4α γ) α 6 δ) (α + β γ ) 4α β Να παραγοντοποιηθούν οι παραστάσεις α) 4α 4α + α(α ) + 8α 9α β) κ 5 + κ 4 + κ κ κ 6.4. Να παραγοντοποιηθούν οι παραστάσεις: i) ii) (++ ) iii) (++ ) iv) Να παραγοντοποιηθούν οι παραστάσεις i) α + β α β α β αβ ii) αβ α β + βγ β γ + α γ αγ iii) αβ + α β + βγ + β γ + α γ + αγ + αβγ iv) α β α β + β γ β γ + γ α γ α Θέματα με παραγοντοποίηση 6.4. i) Να αποδείξετε ότι για κάθε τιμή των μη αρνητικών ακεραίων α, β με α > β ο αριθμός (α+ ) (β+ ) κ = 4 είναι θετικός ακέραιος. ii) Να προσδιορίσετε τις τιμές των α, β για τις οποίες ο κ είναι πρώτος, δηλαδή είναι κ > και οι μοναδικοί θετικοί διαιρέτες του είναι οι αριθμοί και κ. [Απ. ii)α=, β=0] Αν ισχύει ( ) (0 5 5) = 0 ν, όπου ν φυσικός αριθμός, να βρεθεί η τιμή του ν. [Απ. ν=7]

22 0 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις Να απλοποιηθεί το κλάσμα: Κ = [Απ. Κ= ] Να γίνει γινόμενο η παράσταση Π = α + β α β α β αβ Να παραγοντοποιήσετε την παράσταση: Α = ( + + ) (Υπόδειξη: Προσθέστε και αφαιρέστε τον.) [Απ. Α=(++ )(4+ )] α) Να παραγοντοποιηθεί η παράσταση: 4 + 4y 4. β) Αν οι αριθμοί, y είναι θετικοί ακέραιοι και y, να αποδείξετε ότι ο αριθμός 4 + 4y 4 είναι σύνθετος Δίνεται το άθροισμα S = α) Να αποδείξετε ότι = και έπειτα ότι S = β) Να υπολογίσετε το S χρησιμοποιώντας τη μέθοδο που εφάρμοσε ο Gauss όταν ήταν μικρός. [Απ. β)s=5050]

23 ΕΝΟΤΗΤΑ 7 Η : Διαίρεση Πολυωνύμων ΕΝΟΤΗΤΑ 7. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΕΙΣ 7.. Να κάνετε τις διαιρέσεις: i) ( + 45) : ( + 5) ii) ( ) : ( 5) iii) ( 7 ) : ( + ) iv) (5α 4α + 7α + 6) : (5α + ) 7.. Να εκτελέσετε τις διαιρέσεις: i) ( ) : ( + ) ii) (ω + 4ω ω 0) : (ω ω 6) iii) ( y 4 + 8y 6y + 8) : (y 4) iv) ( ) : ( + + ) 7.. Να γίνουν οι διαιρέσεις: i) [(+5) + (+) (+4) (+) ] : ( ) ii) [( 9) (+5)( ) ] : ( + ) iii) 7.4. Να βρεθεί το πολυώνυμο, το οποίο πολλαπλασιαζόμενο με το + να δίνει γινόμενο το Να βρεθεί το πολυώνυμο, το οποίο πολλαπλασιαζόμενο με το + γίνεται Αν είναι φ() = 5 +, να εκτελεστεί η διαίρεση: [φ() + φ( ) φ( )] : ( ) 7.7. Αν είναι φ() = +, να γίνει η διαίρεση: [φ(+) + φ( ) φ()] : ( )

24 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις ΕΝΟΤΗΤΑ 8. Ε.Κ.Π. & Μ.Κ.Δ. ΑΚΕΡΑΙΩΝ ΑΛΓΕΒΡΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΑΣΚΗΣΕΙΣ 8.. Να βρείτε το Ε.Κ.Π. και το Μ.Κ.Δ. των παραστάσεων: α) α β γ, 5α β γ, 6α 4 β β) 8α, 4α 5, α γ) α (α β), 6α β(α β) (α + β) 8.. Να βρείτε το Ε.Κ.Π. και το Μ.Κ.Δ. των παραστάσεων: α) 4( y ), 6( + y), ( y) β) α β, (α β), α β γ) α 6α + α 8, α 4, α α δ) α α +, α + α 4, α α, α α +

25 ΕΝΟΤΗΤΑ 9 Η : Ρητές Αλγεβρικές Παραστάσεις ΕΝΟΤΗΤΑ 9. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 9.. Τι ονομάζουμε κλασματική αλγεβρική παράσταση; Μια αλγεβρική παράσταση που περιέχει μεταβλητή στον παρονομαστή, λέγεται κλασματική αλγεβρική παράσταση. Για παράδειγμα: Οι παραστάσεις, α 5y, είναι κλασματικές αλγεβρικές παραστάσεις. 4 β + y y ΑΣΚΗΣΕΙΣ 9.. Να απλοποιηθoύν τα κλάσματα i) αλμ α α ii) αλ 6α 8α iii) a 4 a 4β iv) α 6α α αβ 9.. Να απλοποιηθoύν τα κλάσματα α β 4 y i) ii) 4β 4α y y iii) + 9 iv) Να απλοποιηθoύν τα κλάσματα α 4αβ+ 4β i) ii) ( ) α 4β aλ αμ+ λ μ iii) iv) αβ αγ+ β γ α + β α αβ+ β 9.5. Να απλοποιηθoύν οι παραστάσεις 9 4y y 7y + 7 i) ii) 9 y+ 4y iii) 49 6y 49 56y+ 6y iv) αβ + α β 6α β 6αβ 6α β 9.6. Να απλοποιήσετε τα κλάσματα i) 4 ω ii) ω 9 4+ iii) ( αβ ) ( α+ ) ( 4) ( + ) iv) αβ+ α+ β Δίνεται το κλάσμα Κ = i) Για ποιες τιμές του ορίζεται το κλάσμα; ii) Να απλοποιήσετε το κλάσμα; iii) Για ποιες τιμές του παίρνει την τιμή μηδέν; [Απ. i) και iii)=-4] 9.8. Για ποιες τιμές του κ το παρακάτω κλάσμα παίρνει την τιμή μηδέν; κ 4κ+ 49 κ 49 [Απ. καμμία] (α β) (α β) 9.9. Δίνεται η παράσταση Α = (5α 4 β) (4α 5 β) και οι αριθμοί α, β δεν είναι ίσοι ούτε αντίθετοι. Να δείξετε ότι Α > Να απλοποιηθoύν οι παραστάσεις i) + ( α+ β) αβ ii) αβ β iii) 4 4 α β α β iv) a + a β + αβ + β α a β β 9.. Να απλοποιηθεί η παράσταση: y y + y 4 y y + y 9.. Δίνεται το κλάσμα Α = ( ) i) Ποιες τιμές δεν μπορεί να πάρει το ; ii) Να απλοποιήσετε το κλάσμα.

26 4 ΚΕΦΑΛΑΙΟ Ο : Αλγεβρικές Παραστάσεις iii) Να λυθεί η εξίσωση Α =. [Απ. iii)=-] 9.. Δίνονται οι παραστάσεις Α = 7+ 6, 6 Β = i) Για ποιες τιμές του ορίζονται οι δύο παραστάσεις; ii) Να απλοποιήσετε τις παραστάσεις Α και Β. iii) Να αποδείξετε ότι: (Α+Β) (Α Β) = Να δείξετε ότι: y + y y y+ y = + y + y

27 ΕΝΟΤΗΤΑ 0 Η : Πράξεις Ρητών Παραστάσεων 5 ΕΝΟΤΗΤΑ 0. ΠΡΑΞΕΙΣ ΡΗΤΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΑΣΚΗΣΕΙΣ Πολλαπλασιασμός Διαίρεση ρητών παραστάσεων 0.. Να γίνουν οι πράξεις: i) Να γίνουν οι πράξεις: α β i) ii) 4 6αβ 5α 5α iii) κ 6 κ : κ κ+ κ κ + κ 4 ii) : + α+ β α β α 6 : α+ α 8α+ 6 α 9 [Απ. i) 5α ii) α- α Να αποδείξετε ότι η παράσταση: 4 y y y + y A = : είναι σταθερή. y + y+ y 0.4. Να αποδείξετε ότι η παράσταση: 8 4 y : : είναι σταθερή. y + y+ y y y 0.5. Δίνεται το κλάσμα Α = i) Για ποιες τιμές του ορίζεται το κλάσμα; ii) Να απλοποιήσετε το κλάσμα. iii) κ -κ ] [Απ. A=] 0.6. Να δείξετε ότι: α + α + : α (4α+ 5)( α+ ) =. 5+ 4α 6α α α [Απ. ] 0.8. Να γίνουν οι πράξεις: i) y ii) + y y iii) + 4 α α + α 4 iv) + 6 α + α α 9 v) α β α + β α [Απ. i) + ( β) ( α)( β) ii) + y iii) α + iv) α + v)] 0.9. Αν οι αριθμοί, y, z είναι διαφορετικοί ανά δύο, να δείξετε ότι: + + = 0. ( y)( z) ( y z)( y ) ( z )( z y) 0.0. Να γίνουν οι πράξεις: + y 4y i) y y α + β α + β + αβ ii) + α αβ α β α α + β iii) + α αβ+ β αβ a + αβ α iv) y + ( α + ) ( α + y) y y y v) α α 4 α α + 4 a y [Απ. i) + y ii)- α β iii)- α β α iv) v)- ] α + Πρόσθεση Αφαίρεση ρητών παραστάσεων 0.7. Να εκτελέσετε τις πράξεις: i) β + 4 ii) 5αα 4β β [Απ. i)- α ii) 4 ] 0.. Να γίνουν οι πράξεις: i) + 5α + α + a 6a 6 ii) + α β α + αβ α αβ β iii) + α 4αβ α β β + α a 4β

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη Γ

Γυμνάσιο Μαθηματικά Τάξη Γ 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια στους

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων 9 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Β -- ΓΕΩΜΕΤΡΙΙΑ Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων Β. 1. 1 44. Τι ονομάζεται εμβαδόν μιας επίπεδης επιφάνειας και από τι εξαρτάται; Ονομάζεται εμβαδόν

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ. Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠΑ/ΣΗΣ ΔΩΔ/ΣΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ: ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ. 1. Θεωρούµε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο µέσο της πλευράς ΑΒ φέρουµε κάθετη ευθεία που τέµνει την ΑΓ στο Ε. Από το Ε φέρουµε ευθεία παράλληλη στη βάση ΒΓ που τέµνει την ΑΒ στο Ζ. α) Να αποδείξετε

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 2008 ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ ΣΠΑΡΤΗ 008 Κάθε γνήσιο αντίτυπο έχει την ιδιόχειρη υπογραφή του συγγραφέα Γενική επιμέλεια : Στράτης Αντωνέας Copyright : Στράτης Αντωνέας e-mail: stranton@otenet.gr Τηλέφωνα επικοινωνίας

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΛΥΚΕΙΑ 6 η Δοκιμασία ο Θέμα Στις ερωτήσεις έως και 4 να επιλέξτε τη σωστή απάντηση αιτιολογώντας την απάντησή σας. Ερώτηση

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Β ημφ, εφφ σφφ Μ Δ συνφ Α www.commonmaths.weebly.com Σελίδα 1 N Β, 90 ο Α, ο H O 1ο 3ο E Σ Δ, 180 ο 360 ο Ν, 70 ο 4ο 1 ο Τεταρτημόριο

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας.

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας. ΠΡΟΛΟΓΟΣ Τα πιο κάτω θεωρήματα καθώς και το Θεώρημα Ι σ. 104 είναι SOS όχι μόνο για θεωρία αλλά και για χρήση στις ασκήσεις, οπότε πρέπει να κατανοήσετε τι λένε, να ξέρετε την απόδειξη και να είστε έτοιμοι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να βρείτε τον συντελεστή διεύθυνσης μιας ευθείας ε, που σχηματίζει με τον άξονα x x γωνία: π 3 α) ω = β) ω = γ) ω = π 3. Να βρείτε τη γωνία ω που σχηματίζει με

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 3 4 3 7

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 3 4 3 7 ΒΑΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 4 7. Αν ισχύουν να αποδείξετε ότι. Αν ισχύει ότι 5 5 να αποδείξετε

Διαβάστε περισσότερα

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ Τηλ. 0 36653-0367784 - Fax: 0 36405 Tel. 0 36653-0367784 - Fax: 0 36405 ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 B ΓΥΜΝΑΣΙΟΥ 3 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5 A = a: b b. 5a ΘΕΜΑ ο Έστω α θετικός

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Παπαθανάση Κέλλυ Πατσιμάς Ανδρέας Πατσιμάς Δημήτρης Ραμαντάνης Βαγγέλης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια στους

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα