ФИЗИКА Кинематика тачке у једној. Шема прикупљања поена - измене. Предиспитне обавезе
|
|
- Ζώπυρος Λαγός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ФИЗИКА 9. Понедељак, 1. октобар, 9. Кинематика тачке у једној димензији Кинематика кретања у две димензије 1 Предиспитне обавезе Шема прикупљања поена - измене Активност у току предавања 5 поена (са више од 3 одсуствовања са предавања се не могу добити) Лабораторијске вежбе 1 поена обавезни сви поени односно све вежбе Излазни колоквијум максимално 5 поена Домаћи задаци максимално 5 поена Рачунске вежбе максимално 1 поена (ради се тест са задацима на крају вежби) Семинарски радови 5 поена колоквијума (теста) из градива (након шесте и дванаесте недеље предавања) по 1 поена поена Предиспитне обавезе максимално 6 поена (студент је у обавези да оствари најмање 3%, односно 18 поена да би изашао на испит) испит се полаже усмено (уиспитномроку) 4 поена Студенти који на датом колоквијуму освоје више од 5 поена немају питања из тог дела на усменом испиту Укупно 1 поена Кинематика тачке у једној димензији Кинематика тачке у једној димензији 1. Путања, пут, померај. Вектори и скалари 3. Време 4. Брзина 5. Убрзање 6. Праволинијско кретање константним убрзањем 7. слободан пад у гравитационом пољу 3 1
2 Кинематика тачке у две димензије Кинематика тачке у две димензије 1. Коси хитац. Сабирање брзина 3. Релативност кретања Кинематика ротационог кретања 1. Угао ротације и угаона брзина. Центрипетално убрзање 4 Кинематика кретање све је у стању кретања кретање непрекидна промена положаја тела (уодносунадругатела) три типа кретања: транслаторно, ротационо, осилаторно 5 Кинематика проучава кретање, без узимања у обзир маса тела и сила које делују међу њима. честични модел модел материјалне тачке. Занемарује се расподела маса тела по простору, тј. она се сматрају материјалним тачкама. 6
3 Путања, пут, померај кретање материјалне тачке познајемо ако знамо њен положај у простору за сваки моменат времена. положај одређујемо на основу референтног тела (непокретног)-система који везујемо за њега. Када се повеже низ тачака у којима је била м. т. добија се путања. Део путање је пут (јединица је метар). Померај (јединица је исто метар) промена положаја тела у простору. Са места x 1 на x, померај је: x x -x 1 7 Референтни систем везан за Земљу x 1 1,5 m, x 3,5 m 8 Померај и пређени пут нису исте величине померај је -1 м, а пређени пут је већи (укупна дужина плаве линије) у систему референце везаном за вагон ако га одређујемо у односу на систем референце везан за пругу морамо да урачунамо и кретање воза! померај није исто што и пут 9 3
4 Вектори и скалари Вектори: интензитет, правац и смер Сила, померај, убрзање, импулс, брзина Обично се означавају МАСНИМ словима, F, или стрелицом F r Њихов интензитет је означен обичним словом, F, или апсолутном вредношћу: F r Скалар, је одређен само бројчаном вредношћу Обично се означавају обичним словима, E Дужина, температура, енергија, топлота, маса Оба типа величина имају јединице!!! 1 Особине вектора Два вектора су једнака уколико су истог интензитета и истог правца и смера (независно од тога где се налазе у простору) Паралелно померање вектора самог себи га не мења. A B E y D F C x Који вектори на слици се једнаки ABED Зашто остали нису? C: Има исту величину али супротне смерове C-A F: Исти правац и смер али не и интензитет 11 Особине вектора Негативни вектор За дати вектор, њему негативан вектор је вектор који има исти интензитет, лежи на истом правцу а супротног је смера B-A, при чему је BA Резултујући вектор Резултујући вектор је збир датог скупа вектора 1 4
5 Операције са векторима Сабирање : Надовезивање: Спајасекрај/врх претходног вектора са почетком наредног Метод паралелограма: Повезују се врхови два вектора и налази дијагонала Сабирање вектора је комутативна операција: Измена редоследа вектора не мења резултат A+BB+A, A+B+C+D+EE+C+A+B+D A+B A B B A A+B или B A A+B Одузимање: Своди се на сабирање са негативним вектором:a - B A + (-B) B A A A-B C DA+B+C -B Множење скаларом утиче на интензитет (може и смер да промени, али никако правац) A, BA A BA B A 13 Време и брзина Није довољно знати померај, треба да знамо и колико дуго и којом брзином се тело креће Уводесеновефизичкевеличине: време и брзина Време да ли може да промени смер? да ли има апсолутни почетак и апсолутни крај? мерење времена? периодична кретања (клатно, Сунце-Земља,...) 14 Време и брзина Интервал времена разлика крајњег и почетног тренутка tt -t 1, Aко време меримо штоперицом t 1, t t, tt. Средња брзина преко помераја 15 5
6 Померај, средња брзина Кретање дуж једне линије (уједнојдимензији) x x x 1 Померај је разлика између финалне и иницијалне позиције тела које се креће (то је векторска величина). x - x 1 O x1 x x x1 x Средња брзина : v vsr t t1 t Померај по јединици времена (количник укупног помераја и интервала времена за који је извршен) x 16 Пример: Путник у возу који је направио померај од -1 м за секунди. Средња брзина x 1m v sr,5 m / s t s СИ јединица : m/s Друге јединице: километарначас(km/h), центиметар у секунди (cm/s),..., миља на час (mph), 17 Средња брзина тренутна брзина средња брзина не даје информацију о томе шта се дешавало имеђу x 1 и x. делимо укупни померај x tot, на делове x a, x b, што су мањи добија се потпунијасликаокретању када се смање јако пуно и направи однос са одговарајућим временским интервалом добија се тренутна брзина v v sr t v 18 6
7 Средње убрзање Износ промене брзине за јединични интервал времена. v v v 1 v v1 v a asr t t t Јединица: м/с. Векторска величина, има исти правац и смер као промена брзине. Брзина вектор може да се мења по: интензитету, правцу, смеру Средње убрзање тренутно убрзање средње убрзање за кретање приказанонаграфику(права линија) се веома мало разликује од тренутног (таласаста линија) Једнако убрзано праволинијско кретање Убрзањејесталноистевредности, a sr a Меримо време штоперицом, t 1, t t почетна тачка (x,), крајња тачка (x,t) x x x x t v + v v sr (.7) v sr + vsrt (.6) 1 7
8 Једнако убрзано праволинијско кретање Убрзањејесталноистевредности, a sr a Меримо време штоперицом, t 1, t t почетна брзина v, а крајња v v v1 v a asr t t t 1 v v t a v v + at (.8) Једнако убрзано праволинијско кретање v v + a t v v + at 7m / s + ( 1,5m / s )(4s) 1m / s sr 3 Једнако убрзано праволинијско кретање Додамо једначини (.8) почетнубрзинуиподелимоса v + v 1 v v + at (.8) v + at v + v v v sr (.7) v + 1 sr at 1 x x + vsrt (.6) x x + v t + at Решавање једначине (.8) по времену и замена у последњу даје v v + a( x x ) 4 8
9 Кретање константном брзином (приказано црвеним стрелицама исте дужине) Убрзање је при томе једнако нули 5 Брзина и убрзање су истог правца и смера Убрзањејеконстантно(плаве стрелице имају исту дужину) Брзина се повећава (црвене стрелице постајусве дуже и дуже) 6 Брзина и убрзање, иако истог правца, су супротних смерова Убрзање је константно (плаве стрелице имајуистудужину) Брзина се смањује (црвене стрелицепостајусве краће и краће) 7 9
10 Слободни пад слободни занемарујемо све друге силе осим гравитационе убрзање тела је независно од његове масе?! g 9,8 (9,81) m/s усмеренонадоле! служи за дефинисање појма вертикално 8 Одређивање убрзања Земљине теже убрзање тела је независно од његове масе?! 1 y + at ( y y ) a t 1 at y + v t y y + ( 1,m) a (,45173s) y-y 1 m, t,45173 s 9,81m / s 9 Кинематика у димензије Од кретања по линији (1димензионалног) чешће је кретање у димензије лоптица за билијар по столу, клизањеналеду,... AB < AP + PB 3 1
11 Кинематика у димензије тамна лопта креће без почетне брзине светла има почетну брзину у хоризонталном правцу слика мултифлеш фотографија у једнаким временским интервалима путања друге лопте је крива линија еквивалентно је кретању у независна правца по вертикали је слободан пад по хоризонатали је кретање константном брзином 31 Коси хитац кретање у пољу Земљине теже, почетна брзина v под неким углом θ у односу на хоризонт разлажемо кретање у два независна правца (по вертикали и хоризонтали) a x a y -g 3 Коси хитац хоризонтално кретање, a x x v v x x + v t ox x const вертикално кретање a y -g vy voy gt 1 y y o + v t gt v v y y g( y y ) укупни померај и брзина: r x + v + y v x v y 33 11
12 Висина пењања косог хица почетна брзина 7 м/с, почетни угао 7 o према хоризонту фитиљ се пали када достигне максималну висину h. колико износи h? унајвишојтачкије: v y, yh v v y y g( y y ) v y ( v sinθ) h g g (67,6m / s) 33m (9,8m / s ) 34 Вулкани и коси хитац 35 Домет косог хица Како почетна брзина утиче на домет косог хица? v sin θ g D 36 1
13 Домет косог хица за било који угао од до правог, осим 45 о, постоје угла за које је исти домет, при чему они када се саберу дају 9 о v sin θ g D 37 Домет косог хица за веће домете, долази до изражаја закривљеност Земље па је домет још већи, јер тело мора да падне нижедабидошлоназемљу ако је почетна брзина довољно велика пројектил неће пасти на Земљу... постаје њен сателит 38 река носе тела низводно ветар носи авион у смеру дувања v t - брзина тела у односу на средину v s - брзина средине v укупна брзина тела је збир ове две брзине. Сабирање брзина r v r r v t + v s v v t + v s tanθ vt v s 39 13
14 Класична релативност Брзина је релативан појам мора да се каже увек у односу на које тело се гледа Релативност у физици - како различити посматрачи који се крећу један у односу на другога, мере карактеристичне физичке величине Да ли нож који је испустио морнар на врху јарбола пада поред јарбола или не? 4 Кинематика ротационог кретања ротационо кретање: тело се креће по кружним путањама чији центри леже на оси ротације уколикојебрзинатела константна, кретање је униформно кружно кретање тачкекојеротирајуимају различите (линијске периферијске) брзине v јер се налазе на различитој удаљености од осе ротације даље се крећу брже. 41 Кинематика ротационог кретања ако се изврши ротација за пун угао, посматрана тачка је прешла пут једнак обиму кружнице πr πr θ π r дефиниција радијана π rad 1 pun obrtaj rad 57,3 π 4 14
15 Угаона брзина линијска брзина није иста за све тачке тела које ротира уводи се нова угаона брзина ω θ t s v t s r θ r θ v rω t v ω r 43 Угаона брзина угаона брзина је вектор штојевећаугаона брзина и што је већи полупречник точкова то се брже креће аутомобил ω θ t v ωr 44 Центрипетално убрзање брзина је вектор увек када се мења са временом постоји убрзање брзина може да се мења: по интензитету по правцу и смеру код униформне ротације се мења по правцу (вожња по кривини, ротација камена закаченог за канап, ротација Земље око Сунца) убрзање које се јавља услед промене правца брзине се назива центрипетално убрзање
16 Интензитет центрипеталног убрзања троугао који чине вектори положаја и брзина су једнакостранични иосимтога слични v / v r / r центрипетално убрзање a c v / t v v r / r v / t (v / r)( r / t) v /r брзина је тангента на путању промена брзине је усмерена ка центру 46 Интензитет центрипеталног убрзања v a c rω r центрипетално убрзање је пропорционално квадрату брзине! када дупло брже возимо аутомобил требачетирипутајаче да држимо волан да би савладали исту кривину аутомобил у кружном току 47 Интензитет центрипеталног убрзања колико је центрипетално убрзање аутомобила ако је полупречник кружног тока 5 метара, абрзина аутомобила 5 м/с? Упоредити обо убрзање са убрзањем Земљине теже. a c v /r1,5 m/s a c / g 1,5/9,8,18 аутомобил у кружном току 48 16
17 Интензитет центрипеталног убрзања честица се налази на 7,5 цм од осе ротације ултрацентрифуге која прави 75 обртаја у минути. Одредити однос центрипеталног убрзања и гравитационог. a c rω (,75m)(7854 rad/s) 4,63 x 1 6 m/s a c / g 4,7 x гравитационог ултрацентрифуга убрзања obrt π rad 1min rad ω min obrt 6s s 49 Подсетник-тригонометрија naspramna kateta sin θ hipotenuza nalegla kateta cosθ hipotenuza naspramna kateta tan θ nalegla kateta sin θ + cos θ 1 Питагорина теорема a +b c 5 17
ФИЗИКА. Кинематика. Кинематика
ФИЗИКА Кинематика тачке у једној димензији Кинематика кретања у две димензије 1 Кинематика кретање све је у стању кретања кретање промена положаја тела (у односу на друга тела) три типа кретања: транслаторно,
ФИЗИКА Кинематика тачке у једној. Кинематика тачке у две димензије. Кинематика тачке у једној димензији Кинематика кретања у две димензије
ФИЗИКА 11. Понедељак, 1. октобар, 11. Кинематика тачке у једној димензији Кинематика кретања у две димензије 11-Октобар-1 1 Кинематика тачке у једној димензији Кинематика тачке у једној димензији 1. Путања,
Кинематика тачке у једној ФИЗИКА Кинематика. Кинематика тачке у две димензије. Путања, пут, померај. Кинематика
ФИЗИКА 8. Понедељак, 13. октобар, 8. Кинематика тачке у једној димензији Кинематика кретања у две димензије Кинематика тачке у једној димензији Кинематика тачке у једној димензији 1. Путања, пут, померај.
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
& 2. Брзина. (слика 3). Током кратког временског интервала Δt тачка пређе пут Δs и изврши елементарни (бесконачно мали) померај Δ r
&. Брзина Да би се окарактерисало кретање материјалне тачке уводи се векторска величина брзина, коју одређује како интензитет кретања тако и његов правац и смер у датом моменту времена. Претпоставимо да
Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
Предмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:
Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом
У к у п н о :
ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И
Слика 1. Слика 1.2 Слика 1.1
За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика
КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни
ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК
ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК СКАЛАРНЕ И ВЕКТОРСКЕ ВЕЛИЧИНЕ Величибе које су одређене само својом бројном вредношћу и одговарајућом јединицом су скаларне величине или кратко, скалари.
Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10
Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење
TAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
МИЋО М. МИТРОВИЋ ФИЗИКА
МИЋО М МИТРОВИЋ ФИЗИКА 7 уџбеник за седми разред основне школе САЗНАЊЕ Београд, 013 ФИЗИКА 7 уџбеник за седми разред основне школе Аутор Проф др Мићо Митровић Редовни професор Физичког факултета Универзитета
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23
6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо
Кинематика и динамика у структуралном инжењерству, Звонко Ракарић, Механика 2, грађевинарство, Факултет техничких наука, Нови Сад,2017
КИНЕМАТИКА ТЕЛА МЕХАНИКА 2 ГРАЂЕВИНАРСТВО ФТН НОВИ САД Верзија 3 Октобар 207 ГЛАВА V КИНЕМАТИКА КРУТОГ ТЕЛА 5. УВОД У претходним Поглављима смо научили како да се у потпуности дефинише кретање једне (било
Ротационо симетрична деформација средње површи ротационе љуске
Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну
6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:
Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
Флукс, електрична енергија, електрични потенцијал
Флукс, електрична енергија, електрични потенцијал 1 Електрични флукс Ако линије поља пролазе кроз површину A која је нормална на њих Производ EA је флукс, Φ Генерално: Φ E = E A cos θ 2 Електрични флукс,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a
3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q
Разлика потенцијала Разлика потенцијала између тачака A и B се дефинише као промена потенцијалне енергије (крајња минус почетна вредност) када се наелектрисање q помера из тачке A утачку B подељена са
Количина топлоте и топлотна равнотежа
Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина
Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала
Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА
МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање
МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ Понедељак, 29. децембар, 2010 Хуков закон Период и фреквенција осциловања Просто хармонијско кретање Просто клатно Енергија простог хармонијског осцилатора Веза са униформним кретањем
6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
МИЋО М. МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 2013.
МИЋО М МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 1 ПРАКТИКУМ ФИЗИКА 7 Збирка задатака и експерименталних вежби из физике
Осцилације система са једним степеном слободе кретања
03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла
Координатни системи у физици и ОЕТ-у
Материјал Студентске организације Електрон ТРЕЋА ГЛАВА Координатни системи у физици и ОЕТ-у Припремио Милош Петровић 1 -Студентска организација ЕЛЕКТРОН- 1.ДЕКАРТОВ КООРДИНАТНИ СИСТЕМ Декартов координанти
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC
ТРОУГАО 1. У троуглу АВС израчунати оштар угао између: а)симетрале углова код А и В ако је угао код А 84 а код С 43 б)симетрале углова код А и В ако је угао код С 40 в)између симетрале угла код А и висине
ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент
Техничка Механика ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент Техничка Механика ОСНОВНИ ПОЈМОВИ МЕХАНИКЕ ПОДЕЛА МЕХАНИКЕ Процеси у Васељени (Универзуму) представљају непрекидно
4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима
50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног
МИЋО М. МИТРОВИЋ ФИЗИКА 6. уџбеник за шести разред основне школе
МИЋО М. МИТРОВИЋ ФИЗИКА 6 уџбеник за шести разред основне школе САЗНАЊЕ БЕОГРАД, 01 ФИЗИКА 6 уџбеник за шести разред основне школе Аутор Проф. др Мићо Митровић Редовни професор Физичког факултета Универзитета
ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).
СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која
I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )
Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P
2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
РИЗИК ОД МЕХАНИЧКИХ ДЕЈСТАВА
Ризик од механичких дјстава Увод РИЗИК ОД МЕХАНИЧКИХ ДЕЈСТАВА Ризик је вероватноћа настанка повреде, обољења или оштећења здравља запосленог услед опасности; ризик на раду се односи на могућност и на тежину
Анализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2
8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
ФИЗИКА. Динамика. Силе су вектори. Динамика
ФИЗИКА Динамика Сила Њутнови закони кретања Тежина, трење и друге силе Основне силе у природи Статика 1 Динамика При описивању кретања се користе још две величине, маса и сила. Даје везу између кретања
МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним
Математика Тест 3 Кључ за оцењивање
Математика Тест 3 Кључ за оцењивање ОПШТЕ УПУТСТВО ЗА ОЦЕЊИВАЊЕ Кључ за оцењивање дефинише начин на који се оцењује сваки поједини задатак. У општим упутствима за оцењивање дефинисане су оне ситуације
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање
Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање Mентор: Др Маја Стојановић Кандидат: Невена
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ
Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,
Закони термодинамике
Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо
Примена првог извода функције
Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први
Eлектричне силе и електрична поља
Eлектричне силе и електрична поља 1 Особине наелектрисања Постоје две врсте наелектрисања Позитивна и негативна Наелектрисања супротног знака се привлаче, а различитог знака се одбијају Основни носиоц
КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z
КОМПЛЕКСНИ БРОЈЕВИ z ib, Re( z), b Im( z), z ib b b z r b,( ) : cos,si, tg z r(cos i si ) r r k k z r (cos i si ), z r (cos i si ) z r (cos i si ), z r (cos i si ) z z r r (cos( ) i si( )), z z r (cos(
Припрема часа ФИЗИКА РАЗРЕД: VII РЕДНИ БРОЈ ЧАСА: 1. Градиво шестог разреда цело градиво
Припрема часа ФИЗИКА ПРЕДМЕТНИ НАСТАВНИК РАЗРЕД: VII РЕДНИ БРОЈ ЧАСА: НАСТАВНА ТЕМА НАСТАВНА ЈЕДИНИЦА ТИП ЧАСА МЕТОДЕ РАДА ОБЛИЦИ РАДА НАСТАВНА СРЕДСТВА Градиво шестог разреда цело градиво обнављање дијалошка
Ветар. Зашто ветар дува? Настанак ветра. гравитационе) тело остаје у стању мировања или раномерног праволинијског сила. 1. Њутнов закон: Свако
Ветар Зашто ветар дува? 1. Њутнов закон: Свако тело остаје у стању мировања или раномерног праволинијског кретања док год на њена не делује нека сила. 2. Њутнов закон: 3. Њутнов закон: При При интеракцији
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО
Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ
3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ Подсетимо се. Шта је сила еластичности? У ком смеру она делује? Од свих еластичних тела која смо до сада помињали, за нас је посебно интересантна опруга. Постоје разне опруге,
4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова
4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид
АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2
АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла
L кплп (Калем у кплу прпстпперипдичне струје)
L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве
4.4. Тежиште и ортоцентар троугла
50. 1) Нацртај правоугли троугао и конструиши његову уписану кружницу. ) Конструиши једнакокраки троугао чија је основица = 6 m и крак = 9 m, а затим конструиши уписану и описану кружницу. Да ли се уочава
РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ
Универзитет у Новом Саду Природно математички факултет Департман за физику РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ МАСТЕР РАД ментор: кандитат: Др Маја Стојановић Адријана Сарић
ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање
ФИЗИКА Час број Понедељак, 8. децембар, 008 Једначина стања идеалног и реалног гаса Притисак и температура гаса Молекуларно кинетичка теорија идеалног гаса Болцманова и Максвелова расподела Средњи слободни
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
ПРИЈЕМНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У БЕОГРАДУ јун године
ПРИЈЕМНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У БЕОГРАДУ јун 004. године Тест има 0 задатака. Време за рад је 80 минута. Задаци 4 вреде по 3 поена, задаци 8 вреде по 4 поена, задаци
p /[10 Pa] 102,8 104,9 106,2 107,9 108,7 109,4 r / 1,1 1,3 1,5 2,0 2,5 3,4
. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 9/. ГОДИНЕ II РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР,.... Хомогена кугла
КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.
КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ
Мајци Душанки Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ подела угла на три једнака дела подела угла на n једнаких делова конструкција сваког правилног многоугла уз помоћ једног шестара и једног лењира