Координатни системи у физици и ОЕТ-у

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Координатни системи у физици и ОЕТ-у"

Transcript

1 Материјал Студентске организације Електрон ТРЕЋА ГЛАВА Координатни системи у физици и ОЕТ-у Припремио Милош Петровић 1 -Студентска организација ЕЛЕКТРОН-

2 1.ДЕКАРТОВ КООРДИНАТНИ СИСТЕМ Декартов координанти систем се користи у математици за једнозначно дефинисање положаја тачака у простору. Карактеристика овог система је да су његове координатне осе међусобно нормалне. Декартов координатни систем у равни Дводимензиони Декартов координатни систем се користи да једнозначно одреди сваку тачку у равни помоћу два броја, који се обично означавају са x и y. Декартов координатни систем је дефинисан са две осе (x-оса или апсциса и y-оса или ордината). Избором мере за сваку осу и означавањем јединица мере дуж оса формира се скала. Слика 1. Пример координата неких тачака Коришћењем Декартовог координатног система геометријске фигуре (као што су криве) се могу исказати алгебарским једначинама, тј. једначинама које задовољавају координате на тачкама које леже на фигури. На пример, круг полупречника 2 се може приказати формулом x 2 + y 2 = 4. Слика 2. Круг 2 -Студентска организација ЕЛЕКТРОН-

3 Декартов координатни систем у простору Декартов координатни систем се може користити у простору (где се користе три координате: x, y и z) и у вишедимензионалним системима. Слика 3. Пример одређивања координата у тродимензионално м Декартовом координатном систему Ортови код Декартовог координатног система Декартов координатни систем има за сваку своју координатну осу по један ортвектор. Свакој оси x, y и z, одговара по један орт-вектро еx, еy и еz, редом. Интензитети тих вектора су 1. Векторски производ свака два орта, даје онај трећи. Па је тако еx x ey = ez, ey x ez = ex и ez x ex =ey. У једначинама све физичке величине чији се смер вектора поклапа се смером ортвектора неке координатне осе пише са знаком +, а све физичке величине чији је смер вектора супротан од смера орт-вектора неке координатне осе пише са знаком -. Може се ставити и обрнуто. То је као да смо једначину помножили са Студентска организација ЕЛЕКТРОН-

4 Углови код Декартовиг координатно система М1 N М2 Слика 4. Рачунање углова код ДКС Када рачунамо под којим углом се види нека тачка на координатној оси (М1 и М2) из тачке А, тада важи следећа правила. Повуче се нормала из тачке од које рачунамо угао (А) на координатну осу (N). Угао рачунамо од нормале ка датој тачки. Ако је смер раста угла у смеру координатне осе (орт-вектора те осе) тада је угао позитиван. Ако је смер угла у супротном смеру осе тада је угао негативан. А 4 -Студентска организација ЕЛЕКТРОН-

5 2.ПАРЦИЈАЛНИ ИЗВОДИ Када имамо ф-ју y=f(x) и када рачинамо њен извод, извод рачунамо по променљивој x јер нам је то једина променљива. Али када имамо више променљивих како ћемо знати по којој променљивој рачунамо извод? Пример: y=x 2 a 2 +xa+5x+5a+5 Да бисмо знали по којој променљивој рачунамо извод уводимо следећа правила: извод по променљивој x: извод по променљивој а: dy dx = 2xa2 +a+5 dy da = 2ax2 +x+5 3.ПАРАМЕТАРСКЕ ЈЕДНАЧИНЕ У математици, параметарска једначина је у неку руку слична функцији: оне омогућавају да се користе произвољне вредности, које се називају параметрима, уместо независних променљивих, које дају вредности за зависне променљиве. Једначина облика y=f(x) има свој параметарски облик y=f1(t) и x=f2(t), где је t нова променљива. Пример: y=x 2 се може параметарски написати као x=t и y=t Студентска организација ЕЛЕКТРОН-

6 4.ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ У ФИЗИЦИ Пример 1. Вертикални хитац наниже. Нека је тело бачено вертикално наниже брзином v 0. Циљ нам је да одредимо како се мења брзина са временом и положај тачке. Убрзање које делује на тачку је g и усмерено је наниже као и x оса па дифернцијална једначина кретања постаје, d 2 x dt 2 = g Како је брзина извод положаја, dx = v, имамо да је d2 x = dv = g. Ово што смо сада dt dt 2 dt добили је диференцијална једначина (знамо извод функције а не знамо функцију). dv = g dt v(t) dv v 0 t = g dt 0 v(t) = v 0 + gt v(t) v 0 = gt Сада када знамо брзину, лако долазимо до x(t) јер је dx = v(t) dx = v(t)dt dx = (v 0 + gt)dt x(t) dx 0 x(t) = v 0 t + gt2 2 dt t = (v 0 + gt)dt 0 Ако нас занима колико телу треба времена до земље, ако је бачено са висине h, то можемо лако израчунати из претходне једнакости. Нека тело пада време τ. У тренутку кад је t = τ, x = h, односно x(t = τ) = h h = v 0 τ + gτ2, одакле лако налазимо τ. Ако је у питању слободни пад (v 0 = 0) τ = 2h g Напомена: Дате једнакости су изведене за дати смер x осе. Често се тражи да се нађе зависност брзине од положаја. Ми имамо x(t) и v(t) а хоћемо v(x). Значи једначину x(t) треба решити по t и заменити у v(t) и добијамо v(x). Међутим то понекад може да одузме пунo времена, па се користи чињеница да је dv dt dt = dv dx dx (правило о сложеној функцији) 2 6 -Студентска организација ЕЛЕКТРОН-

7 dv dt = g dv dx = g v vdv = gdx vdv = gdx v v 0 v 2 = v gx Пример 2. Примена Декартовог координатног система 0 x v2 v = gx Дате су параметарске једначине кретања: x=bcoskt, y=csinkt. Одредити једначину трајекторије, векторе и интензитете врзине и убрзања. x=bcoskt x b = coskt y=csinkt y c = sinkt x 2 b 2 + y2 c 2 = 1 Vx = x = -bksinkt = - bk y c Vy = y = ckcoskt = ck x b V= Vx 2 + Vy 2 ax = V x = - ck 2 sinkt = - k 2 x ay = V y = - bk 2 sinkt = - k 2 y a = k 2 x 2 + y 2 = k 2 r, где је r растојање од координатног почетка 7 -Студентска организација ЕЛЕКТРОН-

8 Пример 3. Коси хитац на стрмој равни Са стрме равни избачени је тело као косс хитац, почетном бзином V0, под углом φ у односу на нормалу на стрму раван. Нагиб стрме равни према хориѕонтали је α. На ком месту, од места избацивања, ће тело ударити о стрму раван, мерено дуж стрме равни. Занемарити отпор ваздуха. Решење: Идеја је поставити координатни систем поставити тако да једна оца буде паралелна са стрмом равни, а друга нормална на њу!!! Убрзање које тело има је а=g : gx= gsinα, gy= - gcosα,, odakle je gsinα = d2 x dt 2, - gcosα=d2 y dt 2. Ако се стави да су у тренутку времена t=0 познате вредности x(0)=0, y(0)=0, Vx (0) = V0 sinφ i Vy (0)=V0 cosφ, параметарске једначине кретања косог хитца су: gsinα = d2 x = dvx dt 2 dt gsinαdt=dvx Слика 5. Слика уз пример 3. t t=0 gsinαdt Vx = dvx Vx0 gsinαdt=vx Vx(0) dx dt =Vx=gsinαt+Vx(0) x x=0 t t=0 dx= gsinαtdt x=v0sinφt gsinαt2 t + Vosinφdt t=0 На сличан начин се добија и параметарка једначина по y. Време лета тела се добија из постедње једначине стављајући услов да када је t=τ (где је τ време лета), тада је y(τ)=0, односно τ = 2Vоcosφ gcosα. Заменом последње једначине у параметарску једначину по џ, добија се домен 8 -Студентска организација ЕЛЕКТРОН-

9 D=x(τ)= 2V02 gcosα (tgαcos2 φ + sinφcosφ). 5.Цилиндрични координанти систем Поларни координатни систем Поларни координатни систем је дводимензионални координатни систем, па служи за описивање положаја тачака у равни. Положај тачке у равни је описан уређеним паром координата (ρ, φ) (слика 1). Слика 4. Поларни координатни систем На слици 4 је приказан Декартов правоугли координатни систем са координатним почетком и координатним осама. Тачка М има координате (x,y) у том координатном систему. Међутим, положај тачке М је одређен и растојањем од координатног почетка ρ (интензитет вектора ρ) и углом φ који вектор ρ заклапа са 9 -Студентска организација ЕЛЕКТРОН-

10 позитивним смером x-ose. Управо ова два параметра представљају поларне координате тачке М: М(ρ,φ). X-оса овде представља поларну осу у односу на коју се мери поларни угао φ. То је могао да буде било који други правац у равни који пролази кроз координатни почетак. Поларном углу φ можемо приписати одређени знак по следећој конвенцији: ако је смер угла φ такав да је супротан од смера кретања казаљке на сату, онда је φ>0 (као што је случај на слици 1), а ако је смер угла φ у смеру кретања казаљки на сату, онда је φ<0. Како би сваком пару (ρ,φ) одговарала само једна тачка и обрнуто, свакој тачки у простору одговарао само један уређен пар (ρ,φ), уведена је следећа конвенција о распону вредности за поларне координате: 0 ρ< и ако је ρ=0 тада је и φ= <φ Са слике 1 могу се одредити Декартове координате, ако су познате поларне : x=ρ cosφ (1.1) y=ρ sinφ (1.2) Инверзне трансформације (x,y) (ρ,φ) изгледају овако: ρ= x 2 + y 2 (1.3) tgφ = y x (1.4) Свакој координатној линији може се придружити одговарајући јединични вектор (орт) такав да смер тог вектора показује смер раста одговарајуће координате. У Декартовом координатном систему ти ортови су ex и ey са смером који се поклапа са смером раста одговарајућих координата. Када су у питању поларне координате, локално свакој тачки могу се придружити два орта дуж координатних линија које пролазе кроз ту тачку. Ти ортови eρ и eφ су за тачку М приказани на слици 1. Правац орта eφ је у правцу тангенте на кружницу која представља једну кружну линију. Смерови ортова су смерови раста одговарајућих координата. 10 -Студентска организација ЕЛЕКТРОН-

11 Цилиндрични координатни систем Цилиндрични координатни систем је тродимензионални координатни систем који описује положај тачке у простору. То је, у ствари, поларни координатни систем са додатом z-осом нормалном на поларни координатни систем. Дакле, положај тачака у простору у цилиндричном координатном систему одређен је уређеном тројком (ρ,φ,z). 11 -Студентска организација ЕЛЕКТРОН-

12 Слика 5. Цилиндрични координатни систем са одговарајућим ортовима (кликни за увећану слику) На слици 3 је приказана тачка М чији положај у цилиндричним координатама је описан као тројка (ρ,φ,z). Пројекција тачке М на поларну раван (а такође xy раван одговарајућег Декартовог правоуглог система) је тачка М'. Поларне координате тачке М' су истовремено прве две цилиндричне координате тачке М. Цилиндрична координата z је истовремено и Декартова правоугла координата z. Релације важе и за цилиндричне координате. На слици 3 приказан је и међусобни положај ортова цилиндричног координатног система. Веза између ортова дуж цилиндричних и Декартових координатних линија је дата релацијама: e ρ=e x cosφ+e y sinφ (1.9) e φ= e x sinφ+e y cosφ (1.10) e z=e z (1.11) 12 -Студентска организација ЕЛЕКТРОН-

13 Пример 4. Примена поларног координатног система Параметарске једначине кретања тачке М у поларном координатном систему су: ρ=2ρ0sinkt, φ=kt, при чему су ρ0 и k позитивна константе. Одредити: а) Временски интервал у коме је кретање физички реално, ако је почетни тренутак t=0, б) Једначину трајекторије, в) Интензитет брзине и убрзања. а) За радијалну координату важи да мора бити ρ 0, тако да следи да је временски интервал у коме је кретањњ физички могуће ρ 0 2ρ0sinкт 0, како је ρ0 const, мора бити sinкт 0, а то је за: б) Једначина трајекторије тачке М је: ρ= 2ρ0sinφ. 0 t π k, в) Брзина се добија као први, изод коодрината по времену: r(t)= ρ(t) * eρ(t) v (t)= dr = d dρ [ρ(t)*eρ(t) ]= dt dt dt eρ+ρdeρ = ρ eρ+ρφ eρ dt deρ dt =φ eφ добија се vρ=2ρ0kcoskt, и vφ=2ρ0ksinkt, па је интензитет врзине v=2kρ0. Убрзање се добија као први извод брзине по времену: а = dv = d dρ (ρ eρ+ρφ eφ) = eρ+ρ deρ dt dt dt dt a=( ρ ρφ 2 )eρ+(2ρ φ +ρφ )eφ + dρ φ eρ + ρdφ dt dt eφ +ρφ deφ dt deρ dt = - φeφ добија се aρ=-4ρ0k 2 sinkt, и aφ =4ρ0k 2 coskt, па је интензитет убрзања a=4k 2 ρ0 (брзина и убрзање су константни). 13 -Студентска организација ЕЛЕКТРОН-

14 Пример 5. Примена поларног координатног система Брод почиње да се креће са једне обале (тачка А) тако да је брзина брода Vb према води увек константна и управљена нормално на правац који спаја брод и непокретну тачку на насправној обали (тачку B која је насправна тачки А). Вода у реци тече константном брзином Vr у односу на обалу. Растојање између тачака А и B у t=0 је ρ0 =АB. Одредити једначину кретања брода у односу на непокретну тачку B. Решење: Брзина реке је преносна брзина. Кретање брода брнином је релативно кретање. Апсолутно кретање се добија као геометријски збир преносне и релативне брзине. Разлагањем по координатним осама добија се: Vρ = ρ = - Vr sinφ, Vφ = ρφ = Vb Vr cosφ, дељењем ових једначина добија се: dρ ρ = - Vr sinφ Vb Vr cosφ dφ Vr dρ ρ sinφ + InC = dφ cosφ Vb Vr C је интеграциона константа Vb In(ρC) = - In(cosφ - Vb Vr ) На основу почетних услова (када је φ=0, тада је ρ=ρ0) следи да је ρ φ φ Vr C = једначина 1 ρ0 (1 Vb Vr ), па је B A апсолутне трајекторије брода ρ(φ) = ρ0 1 Vr Vb 1 Vr Vb cosφ. 14 -Студентска организација ЕЛЕКТРОН-

15 6.СФЕРНИ КООРДИНАТНИ СИСТЕМ Слика уз пример 5. У математици, сферни координатни систем је координатни систем за представљање тела у три димензије коришћењем три координате: удаљеност тачке од фиксиране нулте тачке координатног система, зенит, угао који права која спаја тачку са координатним почетком заклапа са позитивним делом z-осе, и азимут, угао исте праве са позитивним делом x-осе. Три координате (ρ, φ, θ) су дефинисане као: ρ 0 је раздаљина од нулте тачке до дате тачке P. 0 φ 180 угао који заклапа позитивни део z-осе са правом која пролази кроз нулту тачку и P. 0 θ 360 је угао који заклапа позитивни део x-осе са правом која пролази кроз нулту тачку и тачку P пројектовану на xy-раван. φ се назива зенитом, а θ се назива азимутом. φ и θ нису од значаја када је ρ = 0, а θ није од значаја када је sin(φ) = 0 (у φ = 0 и φ = 180 ). Како би се нацртала тачка ако су познате њене сферне координате, потребно је прећи ρ јединица од почетка координатног почетка дуж позитивног дела z-осе, заротирати за угао φ око y-осе у правцу позитивне x-осе, и заротирати за угао θ око z-осе у правцу позитивне y-осе. Слика 3.1 Пример одређивања координата тачака у цилиндричним координатном систему 15 -Студентска организација ЕЛЕКТРОН-

16 Три сферне координате се из правоуглих координата добијају на следећи начин: Обратно, правоугле координате се из сферних добијају овим једначинама: 16 -Студентска организација ЕЛЕКТРОН-

17 ЛИТЕРАТУРА: (1)Др Предраг Маринковић ФИЗИКА 1 Скрипта (2) Др Константин Николић, Др Предраг Маринковић, Др Јован Цветић Збирка решених задатака из физике (3) Антоније Р. Ђорђевић Основи електротехнике 3. део Електромагнетизам (4) (5) Из главе, Бајо мој. Све је то из главе!!! 17 -Студентска организација ЕЛЕКТРОН-

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( ) Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

& 2. Брзина. (слика 3). Током кратког временског интервала Δt тачка пређе пут Δs и изврши елементарни (бесконачно мали) померај Δ r

& 2. Брзина. (слика 3). Током кратког временског интервала Δt тачка пређе пут Δs и изврши елементарни (бесконачно мали) померај Δ r &. Брзина Да би се окарактерисало кретање материјалне тачке уводи се векторска величина брзина, коју одређује како интензитет кретања тако и његов правац и смер у датом моменту времена. Претпоставимо да

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Универзитет у Источном Сарајеву Електротехнички факултет НАТАША ПАВЛОВИЋ ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Источно Сарајево,. године ПРЕДГОВОР Збирка задатака је првенствено намијењена

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

Кинематика и динамика у структуралном инжењерству, Звонко Ракарић, Механика 2, грађевинарство, Факултет техничких наука, Нови Сад,2017

Кинематика и динамика у структуралном инжењерству, Звонко Ракарић, Механика 2, грађевинарство, Факултет техничких наука, Нови Сад,2017 КИНЕМАТИКА ТЕЛА МЕХАНИКА 2 ГРАЂЕВИНАРСТВО ФТН НОВИ САД Верзија 3 Октобар 207 ГЛАВА V КИНЕМАТИКА КРУТОГ ТЕЛА 5. УВОД У претходним Поглављима смо научили како да се у потпуности дефинише кретање једне (било

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

Скрипта ријешених задатака са квалификационих испита 2010/11 г.

Скрипта ријешених задатака са квалификационих испита 2010/11 г. Скрипта ријешених задатака са квалификационих испита 00/ г Универзитет у Бањој Луци Електротехнички факултет Др Момир Ћелић Др Зоран Митровић Иван-Вања Бороја Садржај Квалификациони испит одржан 9 јуна

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Од површине троугла до одређеног интеграла

Од површине троугла до одређеног интеграла Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.i.ac.rs/mii Математика и информатика (4) (5), 49-7 Од површине троугла до одређеног интеграла Жарко Ђурић Париске комуне 4-/8, Врање

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

Тангента Нека је дата крива C са једначином y = f (x)

Тангента Нека је дата крива C са једначином y = f (x) Dbić N Извод као појам се први пут појављује крајем XVII вијека у вези са израчунавањем неравномјерних кретања. Прецизније, помоћу извода је било могуће увести појам тренутне брзине праволинијског кретања.

Διαβάστε περισσότερα

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Универзитет у Крагујевцу Машински факултет Краљево ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Краљево, март 011. године 1 Публикација Збирка решених задатака за пријемни испит из математике

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z

КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z КОМПЛЕКСНИ БРОЈЕВИ z ib, Re( z), b Im( z), z ib b b z r b,( ) : cos,si, tg z r(cos i si ) r r k k z r (cos i si ), z r (cos i si ) z r (cos i si ), z r (cos i si ) z z r r (cos( ) i si( )), z z r (cos(

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

4.1 Површи другог реда Класификација површи другог реда... 31

4.1 Површи другог реда Класификација површи другог реда... 31 1.1 Увођење вектора....................................... 1 1.2 Векторски простор...................................... 2 1.3 Линеарна независност вектора............................... 4 1.4 Скаларни

Διαβάστε περισσότερα

Испитвање тока функције

Испитвање тока функције Милош Станић Техничка школа Ужицe 7/8 Испитвање тока функције Испитивање тока функције y f подразумева да се аналитичким путем дође до сазнања о понашању функције, као и њеним значајним тачкама у координантном

Διαβάστε περισσότερα

ПРИЈЕМНИ ИСПИТ. Јун 2003.

ПРИЈЕМНИ ИСПИТ. Јун 2003. Природно-математички факултет 7 ПРИЈЕМНИ ИСПИТ Јун 00.. Одредити све вредности параметра m за које су оба решења једначине x x + m( m 4) = 0 (a) реална; (b) реална и позитивна. Решење: (а) [ 5, + (б) [

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

Вежба 4. Графика. Наредба има облик plot(x,y) Аргументи x и y су вектори, који морају имати исти број елемената.

Вежба 4. Графика. Наредба има облик plot(x,y) Аргументи x и y су вектори, који морају имати исти број елемената. Вежба Графика У МATLAB-у постоји много команди за цртање графика. Изглед графика може се подешавати произвољним избором боје, дебљине и врсте линија, уношењем мреже, наслова, коментара и слично. У овој

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК

ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК ЗБИРКА ЗАДАТАКА ЗА ПРИПРМУ ЗА ПРВИ КОНТРОЛНИ ЗАДАТАК СКАЛАРНЕ И ВЕКТОРСКЕ ВЕЛИЧИНЕ Величибе које су одређене само својом бројном вредношћу и одговарајућом јединицом су скаларне величине или кратко, скалари.

Διαβάστε περισσότερα

ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC

ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC ТРОУГАО 1. У троуглу АВС израчунати оштар угао између: а)симетрале углова код А и В ако је угао код А 84 а код С 43 б)симетрале углова код А и В ако је угао код С 40 в)између симетрале угла код А и висине

Διαβάστε περισσότερα

Писмени испит из Метода коначних елемената

Писмени испит из Метода коначних елемената Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. Владица Андрејић ( ) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2017.

АНАЛИТИЧКА ГЕОМЕТРИЈА. Владица Андрејић ( ) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2017. АНАЛИТИЧКА ГЕОМЕТРИЈА Владица Андрејић (27-04-2017) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2017. Глава 1 Вектори у геометрији 1.1 Увођење вектора Појам вектора у еуклидској геометрији можемо

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2015.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2015. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

КОМПЛЕКСНИ БРОЈЕВИ И ГЕОМЕТРИЈА

КОМПЛЕКСНИ БРОЈЕВИ И ГЕОМЕТРИЈА Математички факултет Београд КОМПЛЕКСНИ БРОЈЕВИ И ГЕОМЕТРИЈА - магистарски рад - Ментор: проф Миодраг Матељевић Кандидат: Слађана Бабић јун 009 Садржај I Комплексна раван, геометријска интерпретација сабирања

Διαβάστε περισσότερα

Осцилације система са једним степеном слободе кретања

Осцилације система са једним степеном слободе кретања 03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)

Διαβάστε περισσότερα

Површине неких равних фигура

Површине неких равних фигура Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.rs/mii Математика и информатика 3() (5), -6 Површине неких равних фигура Жарко Ђурић Париске комуне 4-/8, Врање zarkocr@gmail.com

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q

Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q Разлика потенцијала Разлика потенцијала између тачака A и B се дефинише као промена потенцијалне енергије (крајња минус почетна вредност) када се наелектрисање q помера из тачке A утачку B подељена са

Διαβάστε περισσότερα

ФИЗИКА. Кинематика. Кинематика

ФИЗИКА. Кинематика. Кинематика ФИЗИКА Кинематика тачке у једној димензији Кинематика кретања у две димензије 1 Кинематика кретање све је у стању кретања кретање промена положаја тела (у односу на друга тела) три типа кретања: транслаторно,

Διαβάστε περισσότερα

Флукс, електрична енергија, електрични потенцијал

Флукс, електрична енергија, електрични потенцијал Флукс, електрична енергија, електрични потенцијал 1 Електрични флукс Ако линије поља пролазе кроз површину A која је нормална на њих Производ EA је флукс, Φ Генерално: Φ E = E A cos θ 2 Електрични флукс,

Διαβάστε περισσότερα

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ

Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ Мајци Душанки Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ подела угла на три једнака дела подела угла на n једнаких делова конструкција сваког правилног многоугла уз помоћ једног шестара и једног лењира

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије ГРАЂЕВИНСКА ШКОЛА Светог Николе 9 Београд ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА са додатком теорије - за II разред IV степен - Драгана Радовановић проф математике Београд СТЕПЕНОВАЊЕ И КОРЕНОВАЊЕ

Διαβάστε περισσότερα

F( x) НЕОДРЕЂЕНИ ИНТЕГРАЛ

F( x) НЕОДРЕЂЕНИ ИНТЕГРАЛ НЕОДРЕЂЕНИ ИНТЕГРАЛ Штa треба знати пре почетка решавања задатака? Дефиниција: Интеграл једне функције је функција чији је извод функција којој тражимо интеграл (подинтегрална функција). Значи: f d F F

Διαβάστε περισσότερα

П Р В А К Р АГ У Ј Е В А Ч К А Г И М Н А З И ЈА М А Т У Р С К И Р А Д И З М А Т Е М А Т И К Е ПАРАБОЛА И ПАРАБОЛИЧНИ СВЕТ

П Р В А К Р АГ У Ј Е В А Ч К А Г И М Н А З И ЈА М А Т У Р С К И Р А Д И З М А Т Е М А Т И К Е ПАРАБОЛА И ПАРАБОЛИЧНИ СВЕТ П Р В А К Р АГ У Ј Е В А Ч К А Г И М Н А З И ЈА М А Т У Р С К И Р А Д И З М А Т Е М А Т И К Е ПАРАБОЛА И ПАРАБОЛИЧНИ СВЕТ МЕНТОР: УЧЕНИК : Снежана Маринковић Зоран Лазић, IV- Крагујевац, јун 5. САДРЖАЈ

Διαβάστε περισσότερα

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1 6. Четвороугао 6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова А Сл. 1 А На приложеним сликама сигурно уочаваш геометријске фигуре које су ти познате (троугао,

Διαβάστε περισσότερα

Кинематика тачке у једној ФИЗИКА Кинематика. Кинематика тачке у две димензије. Путања, пут, померај. Кинематика

Кинематика тачке у једној ФИЗИКА Кинематика. Кинематика тачке у две димензије. Путања, пут, померај. Кинематика ФИЗИКА 8. Понедељак, 13. октобар, 8. Кинематика тачке у једној димензији Кинематика кретања у две димензије Кинематика тачке у једној димензији Кинематика тачке у једној димензији 1. Путања, пут, померај.

Διαβάστε περισσότερα

ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент

ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент Техничка Механика ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент Техничка Механика ОСНОВНИ ПОЈМОВИ МЕХАНИКЕ ПОДЕЛА МЕХАНИКЕ Процеси у Васељени (Универзуму) представљају непрекидно

Διαβάστε περισσότερα

ФИЗИКА Кинематика тачке у једној. Кинематика тачке у две димензије. Кинематика тачке у једној димензији Кинематика кретања у две димензије

ФИЗИКА Кинематика тачке у једној. Кинематика тачке у две димензије. Кинематика тачке у једној димензији Кинематика кретања у две димензије ФИЗИКА 11. Понедељак, 1. октобар, 11. Кинематика тачке у једној димензији Кинематика кретања у две димензије 11-Октобар-1 1 Кинематика тачке у једној димензији Кинематика тачке у једној димензији 1. Путања,

Διαβάστε περισσότερα

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год. КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2014.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2014. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

Ознаке: f и. Парцијални изводи, парцијалних извода су парцијални изводи другог реда функције z = f (x, y): 2. извод другог реда по x 2 2

Ознаке: f и. Парцијални изводи, парцијалних извода су парцијални изводи другог реда функције z = f (x, y): 2. извод другог реда по x 2 2 Довољан услов за M M Дефинисати парцијалне изводе I реда и II реда функције I реда: Ако постоје коначне граничне вредности количника парцијалних прираштаја функције у тачки са одговарајућим прираштајима

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИJА. Владица Андреjић ( ) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2015.

АНАЛИТИЧКА ГЕОМЕТРИJА. Владица Андреjић ( ) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2015. АНАЛИТИЧКА ГЕОМЕТРИJА Владица Андреjић (01-03-2015) УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ БЕОГРАД 2015. Глава 1 Вектори у геометриjи 1.1 Увођење вектора Поjам вектора у еуклидскоj геометриjи можемо

Διαβάστε περισσότερα

Изометријске трансформације еуклидскее равни и простора и њихове групе

Изометријске трансформације еуклидскее равни и простора и њихове групе УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАКСИМОВИЋ ТАЊА Изометријске трансформације еуклидскее равни и простора и њихове групе МАСТЕР РАД Ментор: др. Александар Липковски Београд 2015. Садржај Увод

Διαβάστε περισσότερα