Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
|
|
- Σπυριδων Βαρνακιώτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
2 Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού συστήματος γραμμικών εξισώσεων (αντιστροφή πίνακα) Επίλυση τριδιαγώνιου συστήματος εξισώσεων Επίλυση τυχαίου συστήματος εξισώσεων με άμεσες μεθόδους Επίλυση τυχαίου συστήματος γραμμικών και διαφορικών εξισώσεων με επαναληπτικές μεθόδους
3 Πολλαπλασιασμός πίνακα με διάνυσμα (1/2) Πρόβλημα: Α = (α ij ) ΝxΝ Ν Ν πίνακας x = (x( j ) διάνυσμα Ν διαστάσεων Να υπολογιστεί το γινόμενο y = Ax,όπου N y = (y i ) και y i = ax ij j, 1 i N j= 1 sequential algorithm: 2N 2 N steps parallel algorithm: 2N 1 steps
4 Πολλαπλασιασμός πίνακα με διάνυσμα (2/2) Υπολογισμός γινομένου πίνακα με διάνυσμα για Ν = 4 με τη χρήση Ν διάστατου γραμμικού πίνακα
5 Πολλαπλασιασμός πινάκων (1/2) Πρόβλημα: A = (a( ij ) ΝxΝ Ν Ν πίνακας B = (b( ij ) ΝxΝ Ν Ν πίνακας Να υπολογιστεί το γινόμενο C = AB = (c( N ij με c = ij aikbkj, 1 i, j N. k = 1 ij ), sequential algorithm: O(N 3 ) parallel algorithm: 3N 2 steps
6 Πολλαπλασιασμός πινάκων (2/2) Υπολογισμός γινομένου πινάκων ΑxΒ, Α όπου Α, Β 4x44 πίνακες. Βρισκόμαστε στο 5 ο βήμα του αλγόριθμου, όπου το κελί (i,( j) j υπολογίζει το a ik b kj, με k = 7 i j και 1 k 4.
7 Βελτίωση της απόδοσης των παραπάνω αλγορίθμων κατά σταθερό παράγοντα
8 Βελτίωση της απόδοσης των παραπάνω αλγορίθμων κατά σταθερό παράγοντα
9 Τριγωνικοί Πίνακες A B = = κάτω τριγωνικός πίνακας άνω τριγωνικός πίνακας Ορίζουσα Επίλυση συστήματος εξισώσεων Υπολογισμός αντίστροφου
10 Επίλυση τριγωνικού συστήματος εξισώσεων (1/3) Έστω Α = (a( ij ) ΝxNΝ κάτω τριγωνικός πίνακας και Ν διάστατο διάνυσμα b = (b i ), θέλουμε να βρούμε το x = (x( j ), όταν Αx = b. Πρέπει a ii 0, για 1 i N. sequential algorithm: Πίσω αντικατάσταση
11 Επίλυση τριγωνικού συστήματος εξισώσεων (2/3) parallel algorithm: 2Ν 1 steps Ορίζω σύνολο ενδιάμεσων τιμών {t i } ως εξής: b i t a x = b 1 1 i ij j Όμως οπότε = j= 1 i ii i και συνεπώς: t i = = i 1 t = b a x i i ij j j= 1 x i a ii t a x
12 Επίλυση τριγωνικού συστήματος εξισώσεων (3/3) Αρχική τοποθέτηση δεδομένων για την επίλυση 4x4 κάτω τριγωνικού συστήματος εξισώσεων. Παρατήρηση: Οι τιμές των t i αρχικά ορίζονται ίσες με b i.
13 Αντιστροφή Τριγωνικών Πινάκων (1/2) Για την αντιστροφή πίνακα επιλύουμε το σύστημα των εξισώσεων AX = I. Ειδικότερα θεωρώντας τα Ν συστήματα εξισώσεων Αx j = e j, όπου e j = (0,, 0, 1, 0,, 0) T και Χ = (x( 1,, x N ) μπορούμε να τα επιλύσουμε ταυτόχρονα σε ένα NxN array σε 3Ν 2 βήματα, οπότε να βρεθεί και η λύση του AX = I.
14 Αντιστροφή Τριγωνικού Πίνακα (2/2) Αρχική τοποθέτηση των δεδομένων για την αντιστροφή ενός 4x44 4 κάτω τριγωνικού πίνακα Α. t ij =0 αν i j και 1 αν i = j Προσοχή: Τα διαφορετικά σχήματα κάνουν διαφορετικές διεργασίες!
15 Τριδιαγώνιοι Πίνακες Α = (a( ij ) τριδιαγώνιος αν a ij = 0 για κάθε i, j τέτοια ώστε i - j > 1 Παράδειγμα: A =
16 Επίλυση τριδιαγώνιου συστήματος εξισώσεων με τη μέθοδο odd even reduction (1/4) Γενική ιδέα: Αντικαθιστούμε κάθε odd index x i με μια γραμμική συνάρτηση των x i - 1, x i + 1. Το σύστημα που απομένει είναι τριδιαγώνιο,, οπότε συνεχίζοντας αναδρομικά καταλήγουμε στην εύρεση του x N (όταν το Ν είναι δύναμη του 2) 2 και με αντικατάσταση προκύπτει όλο το x.
17 Επίλυση τριδιαγώνιου συστήματος εξισώσεων με τη μέθοδο odd even reduction (2/4) Μαθηματική διατύπωση: Έστω τριδιαγώνιο σύστημα εξισώσεων Ax = b, όπου A d1 u1 l d u l d = l d u l N d N 1 N 1 N 1 κάνουμε πρώτα την αντικατάσταση για κάθε odd index x i (θεωρούμε οτι x 0 =0): 1 = x ( b l x ux ) i d i i i 1 i i+ 1 i N
18 Επίλυση τριδιαγώνιου συστήματος εξισώσεων με τη μέθοδο odd even reduction (3/4) Θεωρώντας οτι d i 0 για κάθε περιττό i, προκύπτει ένα νέο σύστημα εξισώσεων με μόνο even index x i. Ειδικότερα: (1) (1) (1) (1) για 1 i N/2: όπου: (1) l = 2i 2i 2i 1 2i 1 l x + d x + u x = b d u b 2i 2i 1 2i 2i 2i 2i+ 2 2i ll, d u l u l d d d uu, d lb ub b d d (1) 2i 1 2i = + 2i 2i 2i 2i+ 1 2i 1 2i+ 1 (1) = 2i 2i 2i+ 1 2i+ 1 (1) = 2i 2i 2i 2i 1 2i 2i+ 1 2i 1 2i+ 1,,
19 Επίλυση τριδιαγώνιου συστήματος εξισώσεων με τη μέθοδο odd even reduction (4/4)( Μετά από logn επαναλήψεις απομένει 1 εξίσωση με έναν άγνωστο, οπότε λύνουμε ως προς αυτόν, στη συνέχεια υπολογίζουμε το x N/2 /2,, μετά το x N/4 και το x 3N/4 κ.ο.κ. μέχρι να υπολογιστούν όλα τα x i.
20 Παρατηρήσεις Δε δουλεύει όταν κάποιο διαγώνιο στοιχείο είναι ή προκύψει 0. Είναι πολύ χρήσιμη για μεγάλες κλάσεις πινάκων, όπως οι συμμετρικοί θετικά ορισμένοι πίνακες και οι πίνακες με αυστηρή διαγώνια υπεροχή. Ιδιαίτερα για αυτές τις κλάσεις ο αλγόριθμος είναι αριθμητικά ευσταθής.
21 Multigrids
22 Parallel Prefix Algorithms (1/2) α) Μετατρέπουμε την i-οστή εξίσωση του συστήματος σαν γινόμενο πίνακα διανύσματος + + = d i l i b i x i+ 1 u i u i u i x i x i = x i 1 β) Με επαναλαμβανόμενες αντικαταστάσεις προκύπτει όπου H x i i i 1 1 x i+ 1 1 x 0 i = H i 1 1 (1) lx dx ux b i i i i i i i d l b i i i ui ui ui = GG... G και G = i 0 0 1
23 Parallel Prefix Algorithms (2/2) γ) Λύνουμε το 3Χ3 σύστημα εξισώσεων x N 1 x 0, N 1= H N lx + N N 1 dx = N N bn δ)διαδοχικά αντικαθιστούμε στην (1)( ) για την εύρεση των υπολοίπων x i. x
24 Παρατηρήσεις Ο συνολικός χρόνος που απαιτείται είναι O(logN logn) βήματα σε ένα Ν-leaf Ν πλήρες δυαδικό δέντρο. Ο αλγόριθμος δουλεύει καλά για κάθε τριδιαγώνιο πίνακα. Είναι αριθμητικά ασταθής όταν το u i << d i, l i, οπότε προτιμάται η odd-even reduction.
25 LU- Παραγοντοποίηση(1/2) A d 1 u1 l2 d 2 u2 l d u = = l d u l N d q N 1 N 1 N p q u 2 p 1 3 q... 3 u 3 = p 1 N q N 1 u N 1 p 1 N... q N N u όπου τα q i είναι μη-μηδενικά μηδενικά
26 LU-Παραγοντοποίηση(2/2) Για να λύσω το σύστημα Ax=y λύνω τα συστήματα Ly=b και Ux=y (όπου A = LU) Και το δύο λύνονται σε χρόνο O(logN logn) χρησιμοποιώντας πρός τα πίσω και πρός τα μπρός αντικαταστάσεις αντίστοιχα.
27 Παρατηρήσεις Η μέθοδος μπορεί να εφαρμοστεί μόνο σε ορισμένες κλάσεις πινάκων (σ αυτές που μπορούσε να εφαρμοστεί και η odd-even reduction). Ο υπολογισμός πινάκων L, U τέτοιων ώστε A = LU είναι μια διαδικασία που μπορεί επίσης να λυθεί με έναν parallel-prefix prefix αλγόριθμο.
28 Gaussian Elimination(1/) Χρησιμοποιείται στην επίλυση γενικού γραμμικού συστήματος εξισώσεων Ax = B. Γενική ιδέα: Προσπαθούμε να φέρουμε τον επαυξημένο πίνακα [A b][ στη μορφή [Ι Ι b b ] ] εφαρμόζοντας γραμμοπράξεις.
29 Gaussian Elimination(2/) Μέθοδος: Για την πρώτη σειρά 1. Βρίσκουμε την ψηλότερη γραμμή στην οποία το αριστερότερο στοιχείο είναι 0 και την τοποθετούμε πρώτη. 2. Πολλαπλασιάζουμε την πρώτη γραμμή με τον αντίστροφο του στοιχείου a 1,1 έτσι ώστε το a 1,1 να γίνει ίσο με Αφαιρούμε τα κατάλληλα πολλαπλάσια της πρώτης γραμμής από τις υπόλοιπες γραμμές ώστε σε κάθε γραμμή i, το στοιχείο a i,1 να προκύψει 0.
30 Gaussian Elimination(3/) Για τη δεύτερη σειρά Επαναλαμβάνουμε κατάλληλα τα βήματα 1 έως 3. Έπειτα αφαιρούμε το κατάλληλο πολλαπλάσιο της δεύτερης γραμμής από την πρώτη έτσι ώστε το στοιχείο a 1,2 =0. Για τις υπόλοιπες σειρές Επαναλαμβάνουμε τα τρία βήματα που περιγράφηκαν για τη δεύτερη σειρά μέχρι να σχηματιστεί ο μοναδιαίος πίνακας στις πρώτες Ν στήλες. Τελικά η λύση του συστήματος είναι η τελευταία στήλη.
31 Gaussian Elimination(4/) Η διαδικασία που περιγράφεται παραπάνω μοντελοποιείται από mesh of arrays και ολοκληρώνεται σε 4N 1 βήματα:
32 Gaussian Elimination(5/) Η ίδια διαδικασία μπορεί να μοντελοποιηθεί για να βρεθεί ο αντίστροφος ενός πίνακα Α,, αν στη θέση του διανύσματος b τοποθετήσουμε το μοναδιαίο πίνακα Ι. Η διαδικασία ολοκληρώνεται σε 5Ν 2 βήματα.
33
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +
Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)
Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas) Εστω το ακόλουθο n n τριδιαγώνιο γραµµικό σύστηµα Ax = d A = b 1 c 1 a 2 b 2 c 2 0 a 3 b 3 c
Κεφάλαιο 2.4 Matrix Algorithms
Κεφάλαιο 2.4 Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Κατασκευή ΝxNxN Mesh of trees (1/3) Στον ΝxNxN κύβο προσθέτω τους εξής κόμβους:
D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].
4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Διάλεξη 3: Βασικές τεχνικές επίλυσης γραμμικών συστημάτων Μάθημα Επιλογής 8 ου εξαμήνου
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών
Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.
Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πίνακες και Γραμμικά Συστήματα: Ο Αλγόριθμος Guss Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής
Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU
Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x+ y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y
Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια
Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Περιεχόμενα Μεταβατικό Κλείσιμο Συνεκτικές συνιστώσες Συντομότερα μονοπάτια Breadth First Spanning
Παναγιώτης Ψαρράκος Αν. Καθηγητής
Ανάλυση Πινάκων Κεφάλαιο 2: Παραγοντοποίηση LU Παναγιώτης Ψαρράκος Αν Καθηγητής ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο
Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan
Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jodan Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y 6 με απαλοιφή Gauss. Ο επαυξημένος πίνακας του συστήματος
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 06, 26 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Η ανάλυση LU 2. Η ανάλυση LDM T και η ανάλυση LDL T 3. Συμμετρικοί
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας
Διανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και
Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων
Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,
Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων
Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU ειδικές περιπτώσεις: Cholesky, Thomas..
2x y = 1 x + y = 5. 2x y = 1. x + y = 5. 2x y = 1 4x + 2y = 0. 2x y = 1 4x + 2y = 2
Σημειώσεις μαθήματος Μ22 Γραμμική Άλγεβρα Ι Βασισμένες στο βιβλίο του GStrang Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2 Εισαγωγή Αυτές οι σημειώσεις καλύπτουν την ύλη του μαθήματος
Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων
Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas)..
Γ 3 2Γ. Από τον τελευταίο πίνακα προκύπτει το ισοδύναμο με το αρχικό σύστημα. 3x 2 2x 3 = 1 x 3 = 2
Γραμμικά συστήματα Άσκηση. Να βρεθεί η λύση του γραμμικού συστήματος x 2x 2 + x 3 = x + x 2 x 3 = 2 2x x 2 + x 3 = Απόδειξη. Θεωρούμε τον επαυξημένο πίνακα του συστήματος 2 2 2 και εκτελούμε στοιχειώδεις
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες
Παναγιώτης Ψαρράκος Αν. Καθηγητής
Ανάλυση Πινάκων Κεφάλαιο 3: Παραγοντοποίηση QR Παναγιώτης Ψαρράκος Αν Καθηγητής ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο
Πεπερασμένες Διαφορές.
Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x
Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Γραμμικά Συστήματα- Απαλοιφή Gauss Επιμέλεια: I. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Γραμμικά Συστήματα- Απαλοιφή Gauss Επιμέλεια: I. Λυχναρόπουλος. Χρησιμοποιείστε απαλοιφή Gauss για να επιλύσετε τα ακόλουθα συστήματα: 5x 8y = 5x= + y
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ
2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4
Παράδειγμα 2x 1 +2x 2 +0x 3 +6x 4 = 8 2x 1 + x 2 x 3 + x 4 = 1 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4 Επαυξημένος πίνακας: 2 2 0 6 8 2 1 1 1 1 Ã = 3 1 1 2 3 1 2 6 1 4 Γενικό σύστημα a 11 x 1 +a
7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)
77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Συστήματα Γραμμικών Εξισώσεων Εισαγωγή Σύστημα γραμμικών εξισώσεων a x a x a x b 11
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 12: Μήτρες (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα
ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss
.4 Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss Σχέση ισοδυναμίας. Έστω το σύνολο των ρητών αριθμών Q και η σχέση της ισότητας σε αυτό που ορίζεται ως εξής: Δύο στοιχεία α, γ Q είναι ίσα αν
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Επίλυση Γραµµικών Συστηµάτων
Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n
ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ
ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n
Εάν A = τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό. det( A) = = ( 2)4 3 1 = 8 3 = 11. τότε η ορίζουσά του πίνακα ισούται με
Κεφάλαιο Ορίζουσες Βασικοί ορισμοί a b Εάν A τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό a b ad bc Συμβολίζουμε την ορίζουσα του πίνακα και ως A Εάν A τότε ( ) 8 Εάν a a a A a a a a a a τότε η
QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων
Κεφάλαιο 1 Συστήματα γραμμικών εξισώσεων
Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Γραμμική Άλγεβρα Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΠΡΩΤΟ - Διατύπωση προβλημάτων - Κατηγορίες εφαρμογών - Πράξεις με πίνακες ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ (in short) Που
= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις
1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2009-2010 Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι Ένα σύνολο m εξισώσεων n αγνώστων που έχει την ακόλουθη
Γραμμική Άλγεβρα Ι,
Γραμμική Άλγεβρα Ι, 207-8 Ασκήσεις2 και Ασκήσεις3: Γραμμοϊσοδύναμοι Πίνακες και Επίλυση Γραμμικών Συστημάτων Βασικά σημεία Γραμμοϊσοδυναμία πινάκων o Στοιχειώδεις πράξεις γραμμών o Ανηγμένη κλιμακωτή μορφή
Πίνακες Γραμμικά Συστήματα
Πίνακες Γραμμικά Συστήματα 1. Είδη Πινάκων Οι πίνακες είναι ένα χρήσιμο μαθηματικό εργαλείο, με εφαρμογές και διασυνδέσεις σε πολλές επιστήμες. Η σημαντικότερη εφαρμογή των πινάκων είναι στην επίλυση συστημάτων
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Τα κάτωθι προβλήµατα προέρχονται από τα κεφάλαια, και του συγγράµµατος «Γραµµική Άλγεβρα». Η ηµεροµηνία παράδοσης
τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:
κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ
0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,
I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διανυσματικοί Χώροι και Υπόχωροι: Βάσεις και Διάσταση Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a
Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)
Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Ασχολoύνται με την κατασκευή μαθηματικών μοντέλων και με τεχνικές ποσοτικής ανάλυσης και τη χρήση υπολογιστών για την ανάλυση και την επίλυση επιστημονικών
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
8.1 Διαγωνοποίηση πίνακα
Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml
III.5 Μέθοδοι Παραγοντοποίησης
III.5 Μέθοδοι Παραγοντοποίησης III.5. Μέθοδος διάσπασης LU Η µέθοδος πραγµατοποίησης η διάσπασης διάσπασης ενός πίνακα Α στη µορφή LU αναφέρεται στο πρόβληµα της A=LU (III.5.) Όπου Ο L είναι κάτω τριγωνικός
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 4. Μέθοδοι ανάλυσης κυκλωμάτων
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 4 Μέθοδοι ανάλυσης κυκλωμάτων ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Συστήματα εξισώσεων - Ορίζουσες Η μέθοδος των ρευμάτων των κλάδων Η μέθοδος των ρευμάτων βρόχων Η μέθοδος των τάσεων κόμβων
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
Fast Fourier Transform
Fast Fourier Transform Παναγιώτης Πατσιλινάκος ΕΜΕ 19 Οκτωβρίου 2017 Παναγιώτης Πατσιλινάκος (ΕΜΕ) Fast Fourier Transform 19 Οκτωβρίου 2017 1 / 20 1 Εισαγωγή Στόχος Προαπαιτούμενα 2 Η ιδέα Αντιστροφή -
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,
ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε
Linear Equations Direct Methods
Lier Equtios Direct ethods Πέμπτη, Μαΐου 5 :8 πμ 5.5. Σελίδα 5.5. Σελίδα 5.5. Σελίδα 3 5.5. Σελίδα 4 5.5. Σελίδα 5 Lier Equtios - Direct ethods Δευτέρα, 5 Μαΐου 5 5:5 μμ 5.5.5 Σελίδα 5.5.5 Σελίδα 5.5.5
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.
Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων
Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων 11 1 i) ii) 1 1 1 0 1 1 0 0 0 x = 0 x +x 4 +x 5 = x = 1 Λύνοντας ως προς x και στη συνέχεια ως προς x 4, ϐρίσκουµε ότι η γενική λύση του συστήµατος είναι η 5άδα
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 00) Η Εργασία χωρίζεται σε µέρη: Το πρώτο Ασκήσεις - περιλαµβάνει
Κεφάλαιο 2 Πίνακες - Ορίζουσες
Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΞΕΤΑΣΗ ΙΑΝΟΥΑΡΙΟΥ (28/1/2011)
Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός
3. Γραμμικά Συστήματα
3. Γραμμικά Συστήματα Ασκήσεις 3. Αποδείξτε ότι το γινόμενο δύο άνω τριγωνικών πινάκων είναι άνω τριγωνικός πίνακας. Επίσης, στην περίπτωση που ένας άνω τριγωνικός πίνακας U 2 R n;n είναι αντιστρέψιμος,
ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).
ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)
Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων Γ. Καραγιώργος ykarag@aegean.gr Quiz 2 Σύντομες Λύσεις Άσκηση 1. Βρείτε μία βάση και τη διάσταση, για τους διανυσματικούς χώρους M 3
Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ
Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑ 2Χ2 ΜΕ ΠΙΝΑΚΕΣ Έστω το σύστημα εξισώσεων 2Χ2 (2 εξισώσεις
Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων
Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση
ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ
ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ Η άλγεβρα πινάκων μας επιτρέπει: Να γράψουμε με περιεκτικό τρόπο ένα μεγάλο σύστημα γραμμικών εξισώσεων Να ελέγξουμε την ύπαρξη λύσης σε ένα σύστημα γραμμικών εξισώσεων με τη χρησιμοποίηση
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος
ΜΑΘΗΜΑΤΙΚΑ Ι Α ΜΕΡΟΣ
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Α ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ ΚΑΘ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 6 ΠΕΡΙΕΧΟΜΕΝΑ ΣΕΛ ΕΙΣΑΓΩΓΗ
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα
Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα
Μέθοδος κυβικών sples: Έστω ότι έχουμε τα δεδομένα,f με,,,...,,. Για κάθε διάστημα βρίσκουμε ένα πολυώνυμο παρεμβολής 3 ης τάξης S,,..., έτσι ώστε να ισχύουν τα παρακάτω: Συνθήκη Α: S f, S f S Συνθήκη
Ορισμοί και πράξεις πινάκων
Ορισμοί και πράξεις πινάκων B.. Εισαγωγή Κατά την εύρεση των μαθηματικών μοντέλων των σύγχρονων δυναμικών συστημάτων, διαπιστώνεται ότι οι διαφορικές εξισώσεις που εμπλέκονται μπορούν να γίνουν πολύ περίπλοκες