Kεφάλαιο 5. µετασχηµατισµού Laplace.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kεφάλαιο 5. µετασχηµατισµού Laplace."

Transcript

1 5 Εισαγωγή Kεφάλαιο 5 Ο µετασχηµατισµός Lplce Τόσο οι συνήθεις όσο και οι µερικές διαφορικές εξισώσεις περιγράφουν νόµους µε τους οποίους κάποιες ποσότητες µεταβάλλονται σε σχέση µε το χρόνο, όπως το ρεύµα σ ένα ηλεκτρικό κύκλωµα, οι ταλαντώσεις παλλόµενου ελατηρίου, η ροή θερµότητας σε µονωµένο αγωγό κλπ Αυτές οι εξισώσεις σε συνδυασµό µε τις αρχικές συνθήκες περιγράφουν την κατάσταση του συστήµατος κάθε χρονική στιγµή Μια σηµαντική µέθοδος για την επίλυση τέτοιων προβληµάτων είναι και η µέθοδος του µετασχηµατισµού Lplce Ο µετασχηµατισµός Lplce είναι σηµαντικός διότι: εφαρµόζεται σε µια µεγάλη ποικιλία συναρτήσεων και κυρίως σε συναρτήσεις/σήµατα βραχέας ή και στιγµιαίας διάρκειας Επιλύει σχετικά εύκολα µη οµογενείς γραµµικές δε µε σταθερούς συντελεστές (ή και συστήµατα δε) της µορφής ( n) ( n) n n y + y + + y + y= f, όπου η f µπορεί να µην είναι συνεχής (όπως απαιτείται στο Κεφ 3) αλλά και τµηµατικά συνεχής, ή και να είναι µια γενικευµένη συνάρτηση, όπως πχ η συνάρτηση Dirc Στη µελέτη του µετασχηµατισµού Lplce χρειάζονται κάποια στοιχεία της θεωρίας των γενικευµένων ολοκληρωµάτων και των µιγαδικών αριθµών που θα µας χρειασθούν Ο αναγνώστης µπορεί να θυµηθεί αυτές τις έννοιες ανατρέχοντας στις παραγράφους 3 και 4 του ου Κεφαλαίου 44

2 5 Ο µετασχηµατισµός Lplce Ορισµός 5 Εστω f :, [ ) Lplce της f, συµβολικά L ( f ) τη συνάρτηση + Καλούµε µετασχηµατισµό + b = = = F L f f() e d lim f() e d (5) b + για όλες τις τιµές του για τις οποίες το µη γνήσιο ολοκλήρωµα της f () e συγκλίνει Παρατηρήσεις (α) Ο µετασχηµατισµός Lplce ορίζεται και για f :, + ως µιγεδικές συναρτήσεις [ ) ( Re ) ( Im) L f = L f + i L f Στο εξής για απλότητα µελετούµε πραγµατικές συναρτήσεις (β) Ο µετασχηµατισµός Lplce απεικονίζει µια συνάρτηση f ορισµένη στο πεδίο του χρόνου σε µια νέα συνάρτηση F( ) ηλαδή: f L F (β) Εφόσον ο µετασχηµατισµός Lplce απεικονίζει συναρτήσεις σε συναρτήσεις, είναι λογικό να αναρωτηθούµε αν υπάρχει αντίστροφος µετασχηµατισµός L που να απεικονίζει το µετασχηµατισµό Lplce στην αρχική συνάρτηση f Πράγµατι υπό κατάλληλες συνθήκες υπάρχει ο αντίστροφος µετασχηµατισµός L όπως θα δούµε παρακάτω Ετσι για το µετασχηµατισµό Lplce γράφουµε: f L F Μια ικανή συνθήκη ύπαρξης του µετασχηµατισµού Lplce δίνει το ακόλουθο Θεώρηµα 5 Εστω f :, [ ) + είναι µια συνάρτηση: (i) τµηµατικά συνεχής (δηλαδή είναι συνεχής παντού πλην 45

3 πεπερασµένου πλήθος σηµείων,, N για τα οποία υπάρχουν τα πλευρικά όρια lim f ( ) και lim f ( ), i=,, N και είναι πεπερασµένα) και + i i (ii) εκθετικής τάξης α (δηλαδή είναι πραγµατικές σταθερές µε M, c > ) e f M > c, όπου M, c, Τότε ο µετασχηµατισµός Lplce της f ορίζεται για κάθε Re και επιπλέον lim F = Απόδ Εφόσον > έχουµε: f Me c () () + c () + = + c f e d f e d f e d > είναι To πρώτο ολοκλήρωµα υπάρχει, διότι η f ( ) e ολοκληρώσιµη ως τµηµατικά συνεχής στο [,c ] Για το δεύτερο ολοκλήρωµα έχουµε: c ( Re ) + + ( Re ) Me f () e d Me d =, Re > c c Re Aρα το δεύτερο ολοκλήρωµα συγκλίνει απόλυτα, (άρα συγκλίνει) Re > και έχουµε το ζητούµενο Το γεγονός ότι lim F = για είναι εύκολο Ας υπολογίσουµε το µετασχηµατισµό Lplce ορισµένων στοιχειωδών συναρτήσεων :, + : = f [ ) f ( ) Tότε Αρα: + e e d =, Re( ) = > + 46

4 f + f = :, [ ) : L () =, Re > Τότε µε ολοκλήρωση κατά παράγοντες παίρνουµε e + e e d = e d, Re( ) + = = > Yπενθυµίζουµε εδώ ότι e, (, n ) lim n + = > όπως µπορεί εύκολα να δειχθεί µε εφαρµογή του κανόνα L Hopil n φορές Αρα Re lim e = lim e = Re > + + Ετσι: L () =,Re() > Σηµείωση Μπορεί να αποδειχθεί επαγωγικά ότι n! L =,Re() >, n n n +, ( ) f :, [ + ) : f() =ηµ ( ) Τότε µε ολοκλήρωση κατά παράγοντες δυο φορές παίρνουµε + + ηµ e + I = ηµ ( ) e d = + συν ( ) e d ( ) + συν e + = ηµσυν ( ) e d I = I I =, Re( ) + > 47

5 Υπενθυµίζουµε εδώ ότι µε χρήση του κριτηρίου παρεµβολής βρίσκουµε lim ηµ + ( ) e = και συν ( ) e, ( Re ) lim + = > Αρα L ( ηµ ( ) ) =,Re() + >, f :, [ + ) : f() = συν ( ) Εργαζόµαστε όπως στην περίπτωση του ηµ και βρίσκουµε L ( συν ( ) ) =,Re() + > f :, [ + ) : f() = e ( ) Τότε Αρα: ( ) + + ( ) e e e d = e d = =, Re( ) > Re( ) + L ( e ) =, Re( ) > Re( ) Ασκήσεις Υπολογίστε το µετασχηµατισµό Lplce των συναρτήσεων f = e, Απ F f ( ) =, Απ F =, Re > ( ) 4e + =, Re( ) > 48

6 u =,, > < () u () = e < Απ F F e Απ =, Re > e e = +, Re > 49

7 53 Ιδιότητες του µετασχηµατισµού Lplce Αν εξαιρέσουµε κάποιες στοιχειώδεις συναρτήσεις της προηγούµενης παραγράφου των οποίων ο µετασχηµατισµός Lplce υπολογίζεται από τον τύπο (5) µε απ ευθείας ολοκλήρωση, για συναρτήσεις µε πιο πολύπλοκο τύπο τα πράγµατα δυσκολεύουν στον υπολογισµό του ολοκληρώµατος (5) Απ την άλλη µεριά ένα κριτήριο χρησιµότητας ενός µετασχηµατισµού είναι οι ιδιότητες αυτού που διευκολύνουν τους υπολογισµούς Στην ενότητα αυτή αναφέρουµε τις ιδιότητες του (µονόπλευρου) µετασχηµατισµού Lplce A Γραµµικότητα Θεώρηµα 5 Εστω f, g :[, ) έχουν µετασχηµατισµούς Lplce L ( f ) και ( g ) + είναι δυο συναρτήσεις που L αντιστοίχως Τότε ορίζεται ο µετασχηµατισµός Lplce της συνάρτησης f () ± bg(),, b η και ισχύει ( f ± bg ) = ( f ) ± b ( g ) L L L για κάθε στο κοινό πεδίο ορισµού των L ( f ) και ( g ) L Απόδ Αµεση συνέπεια του τύπου 5 και της γραµµικότητας του ολοκληρώµατος Παράδειγµα Υπολογίστε το µετασχηµατισµό Lplce των f () inh g () coh h () = ηµ για συναρτήσεων =, = και,, b Λόγω γραµµικότητας έχουµε Επειδή e e L( f ) = L( inh( ) ) = L = L( e ) L ( e ),Re() L ( e ) = > και L e =,Re() > + 5

8 (βλέπε προηγούµενη ενότητα), παίρνουµε L ( inh ( ) ) = =, Re > + Tελικά: L ( inh ( ) ) =, Re > Mε παρόµοιο τρόπο υπολογίζουµε e + e L( f ) = L coh( ) = L = L e + L e = + =, Re > + Tελικά: L ( coh ( ) ) =, Re > Τέλος για την h ηµ ( ) αποτετραγωνισµού ηµ ( ) = χρησιµοποιούµε τον τύπο ( ) συν = και έχουµε ( ) συν L( h) = L ( ) = L = L L ( ηµ ) ( () ( συν ( )) ) =, Re = > Β Μετάθεση στο πεδίο των συχνοτήτων Θεώρηµα 53 Εστω ότι µια συνάρτηση f :, [ ) µετασχηµατισµό Lplce L ( f ) = F, Re >, ( ) ορίζεται ο µετασχηµατισµός Lplce της συνάρτησης ( b ) και ισχύει έχει Τότε f ( ) e b 5

9 b L f ( e ) = F b, Re > + Re( b) Απόδ Αµεση απ τον τύπο (5) Παράδειγµα Υπολογίστε το µετασχηµατισµό Lplce των συναρτήσεων f () = e b inh( ) και b h () = e ηµ ( ) για,, b Από το προηγούµενο παράδειγµα έχουµε L ( inh ( ) ) =, Re > Τότε από το θεώρ 53 έχουµε L e inh = L inh b =, Re Re( b) > b ( ) ( ) Τελικά: b ( ) b b L e inh =, Re > Re( b) + b Mε παρόµοιο τρόπο εργαζόµαστε για την h () e ηµ ( ) στο προηγούµενο παράδειγµα ότι = Είδαµε Τότε L b ( ηµ ) L ( ηµ ( ) ) =, Re > ( + 4 ) e =, Re Re( b) > b b + ( 4 ) Γ Μετάθεση στο πεδίο του χρόνου Θεώρηµα 54 Εστω ότι µια συνάρτηση f :, [ ) µετασχηµατισµό Lplce L ( f ) = F, Re >, ( ) ορίζεται ο µετασχηµατισµός Lplce της συνάρτησης έχει Τότε 5

10 και ισχύει ( ) f b b g() =,, b> < b ( ) b, Re() L g = e L f > Απόδ Αµεση απ τον τύπο (5) Σηµείωση Εστω, > b ub () =,, b>, < b είναι είναι η µοναδιαία συνάρτηση βήµατος Ηeviide και η f ορίζεται στο Τότε η παραπάνω ιδιότητα γράφεται ως εξής: b ( b ), R e L u f b = e L f > ιαστολή/στάθµιση Θεώρηµα 55 Εστω ότι µια συνάρτηση f :, [ ) έχει µετασχηµατισµό Lplce L ( f ) = F, Re >, ( ) Τότε ορίζεται ο µετασχηµατισµός Lplce της συνάρτησης f ( b) ( b> ) και ισχύει L ( f ( b) ) = F, Re > b b b Απόδ Από τον τύπο (5) µε αλλαγή µεταβλητής b L y b f b f b e d f y e dy b + + / ( ) = = = y έχουµε + Re y b = f ye dy F, b = > b b b Ε Momen Θεώρηµα 56 Εστω ότι µια συνάρτηση f :, [ ) έχει 53

11 µετασχηµατισµό Lplce L ( f ) = F, Re >, ( ) Τότε n oρίζεται ο µετασχηµατισµός Lplce της συνάρτησης f() ( n ) και ισχύει Aπόδ Για n = έχουµε n n ( n) L f() = ( ) F (), Re() > F = f e d = f e d = F + ( () ) + (), (λόγω οµοιόµορφης σύγκλισης του ολοκληρώµατος ως προς ) Αρα η πρόταση ισχύει για n = Στη συνέχεια εργαζόµαστε επαγωγικά Παράδειγµα Υπολογίστε το µετασχηµατισµό Lplce της f () = συν για, συνάρτησης Λαµβάνοντας υπόψη το θεώρηµα 56 και το γεγονός ότι L + ( συν ( ) ) = F =,Re() > όπως είδαµε σε προηγούµενο παράδειγµα, παίρνουµε ( συν ( ) ) ( ) F L = =, Re = > + + Παράδειγµα Υπολογίστε το µετασχηµατισµό Lplce της συνάρτησης f () = e για, Λαµβάνοντας υπόψη το θεώρηµα 56 και το γεγονός ότι L e = F =,Re() > Re() όπως είδαµε σε προηγούµενο παράδειγµα, παίρνουµε 54

12 L( e ) = ( ) F = =, Re > Re( ) 3 ΣΤ ΑΝΤΙΠΑΡΑΓΩΓΟΣ στο πεδίο του χρόνου Τότε ορίζεται ο µετασχηµα- Θεώρηµα 57 Εστω ότι µια συνάρτηση f :, [ ) ολοκληρώσιµη στο [,+ ) και έχει µετασχηµατισµό L ( f ) = F, Re >, ( ) τισµός Lplce της συνάρτησης g() f ( u) du F ( ) είναι Lplce = και ισχύει { } L f udu =, > mx, Απόδ Αµεση απ τον τύπο (5) Ζ ΑΝΤΙΠΑΡΑΓΩΓΟΣ στο πεδίο των συχνοτήτων Θεώρηµα 58 Εστω ότι µια συνάρτηση f :, [ ) ολοκληρώσιµη στο [,+ ) και έχει µετασχηµατισµό L ( f ) = F, Re >, ( ) Αν υπάρχει το όριο τότε ορίζεται ο µετασχηµατισµός Lplce της συνάρτησης ισχύει f L = F( ω) dω,re() > είναι Lplce lim + f () f Απόδ Ξεκινούµε απ το δεξιό µέλος της παραπάνω χρησιµοποιώντας τον τύπο (5) Η ΠΑΡΑΓΩΓΟΙ Θεώρηµα 59 Εστω ότι µια συνάρτηση f :, [ ), και είναι n φορές παραγωγίσιµη µε εκθετικής τάξης παραγώγους ( n) ( n) f,, f για κάθε και τµηµατικά συνεχή παράγωγο f Αν F = L f > είναι ο µετασχηµατισµός Lplce της, Re 55

13 f, τότε ορίζεται ο µετασχηµατισµός Lplce των παραγώγων ( k συναρτήσεων f ), k =,, n και ισχύει L ( k) k k ( k) ( k) L f = f f f f, Re > Απόδ Χρησιµοποιούµε παραγοντική ολοκλήρωση n φορές στον τύπο (5) Παράδειγµα Εστω παραγωγίσιµη συνάρτηση y :, [ ) ικανοποιεί το πρόβληµα αρχικών τιµών y + y= e y = 3 Υπολογίστε το µετασχηµατισµό Lplce της y + που Παίρνουµε το µετασχηµατισµό Lplce και στα δυο µέλη της δε και έχουµε 3 3 ( ) ( y + y = e ) ( y ) + ( y) = ( e ) L L L L L Επειδή ( y ) = ( y) y L L και ( e ) 3 L =, Re( ) > 3 έχουµε + 3 L( y) y + L ( y) =, Re >3 + 3 ( + ) L ( y) =, Re > L =, Re >3 ( y) ( + )( + 3) Παράδειγµα Εστω συνάρτηση y :, [ ) πρόβληµα αρχικών τιµών + που ικανοποιεί το 56

14 y + y 3y= y = y = Υπολογίστε το µετασχηµατισµό Lplce της y Παίρνουµε το µετασχηµατισµό Lplce και στα δυο µέλη της δε και έχουµε ( y + y 3y) = ( y ) + ( y ) 3 ( y) = L L L L L L Επειδή L( y ) = L ( y) y y και ( y ) = ( y) y L () =, Re >, έχουµε ( ) L L και L y y y + L y y 3 L y =, Re > ( ) L y + L y 3 L y =, Re > L + y = + + > ( y) 3 5, Re + 5+ L =, Re( ) > ( )( + 3) Θ ΣΥΝΕΛΙΞΗ Ορισµός 54 Εστω f, g :[, + ) είναι τµηµατικά συνεχείς σε κάθε διάστηµα [, ], > Καλούµε συνέλιξη των f, g, συµβολικά f g να είναι η συνάρτηση () f g = f ω g ω dω Η παραπάνω συνάρτηση είναι καλά ορισµένη Με χρήση του ορισµού είναι εύκολο να δούµε ότι η συνέλιξη ικανοποιεί τις ακόλουθες ιδιότητες: 57

15 f g = g f (αντιµεταθετική) ( f g) h( ) = f ( g h)( ) (προσεταιριστική) f ( g + h) = f g + f h (επιµεριστική) Θεώρηµα 5 Εστω f, g :[, ) εκθετικής τάξης και L ( f ), ( g ) + είναι τµηµατικά συνεχείς και L είναι οι µετασχηµατισµοί Lplce των f και g αντιστοίχως Τότε ορίζεται ο µετασχη- µατισµός Lplce της f g και ισχύει, Re L f g = L f L g > Απόδ Ξεκινούµε απ το δεύτερο µέλος και θυµόµαστε ότι g u = u< Εχουµε, + + u ( ) L f L g f e d g u e du = u ( ) () () u ( + ) g u e du f e d f g u e dud = = Θέτουµε (για το εσωτερικό ολοκλήρωµα) u+ = w και έχουµε () () u ( + ) w f g u e dud = f g w e dwd Επειδή όµως g( w ) =, w< µπορούµε να γράψουµε w () ( ) = () ( ) w f g w e dwd f g w e dwd w Λόγω απόλυτης σύγκλισης του διπλού ολοκληρώµατος µπορούµε να εναλλάξουµε την ολοκλήρωση και έχουµε w ( ) = ( ) w f g w e dwd f g w e ddw w w w + w + w f g w e ddw f g w d e dw = = 58

16 ( f g) = L Παράδειγµα Υπολογίστε το µετασχηµατισµό Lplce της συνέλιξης ( b e e )( ) για,, b Εχουµε L b b e e = L e L e =, Re( ) mx { Re( ),Re( b ) } b > Παράδειγµα Για y :, [ ) Lplce της ολοκληρωτικής εξίσωσης +, υπολογίστε το µετασχηµατισµό Εχουµε () = + ( ) y e yω ηµ ω dω ( ω ηµ ω ω) ( ηµ ) L y = L e + L y d = L e + L y L + L( y) = + L( y) L ( y) =, Re( ) > Ι ΠΕΡΙΟ ΙΚΟΤΗΤΑ Θεώρηµα 5 Εστω f :, [ + ) R είναι περιοδική συνάρτηση µε περίοδο T, έτσι ώστε η f να είναι τµηµατικά συνεχής και εκθετικής τάξης στο [,T ] Τότε ο µετασχηµατισµός Lplce της f ικανοποιεί τη σχέση T L ( f ) = f () e d, Re > T e Απόδ Χρησιµοποιούµε τον ορισµό και την περιοδικότητα της f Ασκήσεις Με χρήση ιδιοτήτων υπολογίστε το µετασχηµατισµό Lplce των παρακάτω συναρτήσεων για : 59

17 f () = + Απ F () =, Re() + > 3 f () = + 3ηµ Απ F () = +, Re() > 3 + () = + Απ F () = +, Re() > f ηµ συν( ) f () = + Απ F () = +, Re() > 3 f () = e Απ F () =, Re() > ( ) f () e ηµ ( 5) = Απ 5 F () =, Re() > ( ) 5 f () = e ηµ ( 5) Απ F () =, Re() + 5+ > 3 3 f () = e συν Απ F () =, Re() > 3 + ( 3) e e f () =, f περιοδική Απ F () =, Re() > e, < < f() =,, < < f περιοδική Απ e e + F () =, Re() > ( e ) Υπολογίστε το µετασχηµατισµό Lplce των ακολούθων προβληµάτων αρχικών τιµών y + y= y = Απ F = ( + ) 6

18 y + y=συν y = 3 y + 4y= = = y y y + y + y= e y = y = Απ F Απ F = F ( + ) = + 4 Απ = ( + ) ( ) 3 Υπολογίστε το µετασχηµατισµό Lplce των ολοκληρωτικών εξισώσεων y () = + y( ω) συν ( ω) dω Απ F = + ( + ) e = y( ω) y( ω) dω Απ F =±, Re > Re( ) ( ) 6

19 54 Ο αντίστροφος µετασχηµατισµός Lplce Ορισµός 5 Εστω F: A : F = F Αν υπάρχει συνάρτηση f :, [ + ) : f = f() τέτοια ώστε L ( f ) = F, τότε η f καλείται αντίστροφος µετασχηµατισµός Lplce της F και γράφουµε f = L F Άρα L f = F L F = f Παρατηρήσεις (α) εν ορίζεται πάντοτε ο αντίστροφος µετασχηµατισµός Lplce συνάρτησης F (β) Αν µια συνάρτηση f έχει µετασχηµατισµό Lplce F = F(), τότε ο αντίστροφος µετασχηµατισµός Lplce της F ορίζεται µέσω του τύπου ir f () = γ lim e F d π i +, R γ ir όπου γ οποιοσδήποτε πραγµατικός αριθµός που εκλέγεται έτσι ώστε η κατακόρυφος Re = γ να περιέχει όλους τους πόλους της F στο αριστερό της µέρος Ο τύπος αυτός είναι ο τύπος αντιστροφής του µετασχηµατισµού Lplce και η χρήση του απαιτεί γνώσεις µιγαδικής ανάλυσης που ξεφεύγουν από το στόχο αυτών των σηµειώσεων Στο εξής για την εύρεση του αντιστρόφου µετασχηµατισµού Lplce θα χρησιµοποιούµε στοιχειώδους µεθόδους που θα αναπτύξουµε παρακάτω (γ) Οσον αφορά στο ερώτηµα αν υπάρχουν δυο διαφορετικοί αντίστροφοι µετασχηµατισµοί Lplce που αντιστοιχούν στην ίδια συνάρτηση f, η απάντηση είναι πως όχι αν η αρχική συνάρτηση f είναι συνεχής Πράγµατι ισχύει το Θεώρηµα (Lerch): Aν f, g είναι συνεχείς συναρτήσεις τέτοιες ώστε να υπάρχουν οι µετασχηµατισµοί Lplce αυτών, τότε L f = L g f = g Με άλλα λόγια αν υπάρχει µια συνεχής συνάρτηση f µε 6

20 µετασχηµατισµό Lplce F, τότε αυτή (η f ) είναι η µοναδική συνεχής συνάρτηση µ αυτό το µετασχηµατισµό Προφανώς αν ορίσουµε µια τµηµατικά συνεχή συνάρτηση () f, g =, f = τότε και αυτή η συνάρτηση έχει µετασχηµατισµό Lplce F Αυτό οφείλεται στον ορισµό του µετασχηµατισµού Lplce, διότι το ολοκλήρωµα έχει µηδενική µάζα σε σηµεία Εστω ότι ορίζονται οι µετασχηµατισµοί Lplce FG, δυο συνεχών συναρτήσεων f, g :[, + ) Με τη βοήθεια των ιδιοτήτων του µετασχηµατισµού Lplce αποδεικνύονται άµεσα οι ακόλουθες ιδιότητες του αντίστροφου µετασχηµατισµού Lplce: Α Γραµµικότητα Πράγµατι: ( F ± bg) = ( F ) ± b ( G) L L L ( F ± bg) = ( ( f ) ± b ( g )) = ( ( f ± bg ) ) L L L L L L Β Μετάθεση στο πεδίο συχνοτήτων ( ( f bg )) f bg ( F ) b ( G) = ± = ± = ± L L L L ( ) b L F b = f() e, Πράγµατι: ( ) ( ( b ) ) b L F b = L L f() e = f() e Γ Μετάθεση στο πεδίο χρόνου 4 ιαστολή L ( b e F ) = u f( b), (, b> ) b 63

21 5 Momen ( ) L F b = f,, b> b b L ( ) n F n = n f( ), 6 Αντιπαράγωγος 7 Συνέλιξη f ( ) ( ω) L F dω =, ( ( ω) ( ω) ) L F G = f g Παράδειγµα Να βρεθεί ο αντίστροφος µετασχηµατισµός Lplce της συνάρτησης F = + 9 Χρησιµοποιώντας τις ιδιότητες του αντίστροφου µετασχηµατισµού Lplce και λαµβάνοντας υπόψη το µετασχηµατισµό Lplce των ηµ έχουµε στοιχειωδών συναρτήσεων συν και L = συν = ( 3) ηµ ( 3 ), + 9 L + 9 L + 9 Παράδειγµα Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce της συνάρτησης F () = 3+ Χρησιµοποιούµε τη µέθοδο ανάλυσης σε απλά κλάσµατα Εχουµε A B = = ( )( ) 64

22 = A( ) + B( ) (5) A+ B= A= A B= B= Σηµείωση Στην παραπάνω σχέση = A( ) + B( ) (βλέπε (5)) µπορούµε να θέσουµε κατευθείαν =, οπότε = A( ) + B() A=, =, οπότε = A( ) + B() B= Μ αυτόν τον τρόπο υπολογίζουµε πιο γρήγορα και εύκολα τους συντελεστές A και B Τελικά F () = = + L = L L e e, L = + = + Παράδειγµα Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce της συνάρτησης Εφόσον έχουµε F () =, Re() > F () = = L ( F) = L e, = ( 3), Παράδειγµα Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce της συνάρτησης 65

23 Εχουµε Αρα F () =, Re() > ( + ) 3 + F () = = = ( + ) ( + ) ( + ) ( + ) e L ( F) = L e, L 3 = ( + ) ( + ) Παράδειγµα Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce της συνάρτησης ος τρόπος: F () = + 5 Το τριώνυµο του παρονοµαστή έχει αρνητική διακρίνουσα Με συµπλήρωση τετραγώνων παίρνουµε Αρα = + 5 ( ) + 4 L ( F) = L = = eηµ ( ), ( ) + 4 ( ) + 4 L ος τρόπος: Eργαζόµαστε µε τη µέθοδο των απλών κλασµάτων Ετσι έχουµε A B = = + 5 ( ) + + i i + i i ( ) = A i + B + i, AB,, Στην παραπάνω ισότητα θέτουµε όπου καθεµιά από τις ρίζες του τριωνύµου: 66

24 Τότε =, οπότε ( ) ( ) i i i = B( i + i ) B= =, 4i 4 i = A( + i i ) A= = 4i 4 = +, οπότε ( ) ( ) L ( F ) i i = 4 L + ( + i) 4 L ( i) i i i i ( i ) ( i ) ie ( e e + ) i i iee iee = e + e = + = Aπό τον τύπο Euler έχουµε Άρα i i e e iηµ = L ie iηµ i eηµ eηµ, = = = Παράδειγµα Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce της συνάρτησης F () =, Re() > ( ) Με ανάλυση σε µερικά κλάσµατα έχουµε A B F () = = + + Στην (53) θέτουµε Γ ( ) ( ) = A + B +Γ (53) 67

25 = (απλή ρίζα παρονοµαστή), οπότε A = = (διπλή ρίζα παρονοµαστή), οπότε Γ = Πως θα βρούµε όµως τη σταθερά B ; Παραγωγίζουµε την (53) και αντικαθιστούµε τις τιµές των A και Γ που βρήκαµε Ετσι έχουµε A=, Γ= = A + B + B+Γ = + B + B+ Ετσι Στη συνέχεια για πχ = βρίσκουµε άµεσα B = ( ) L F = L + L + L = + e + e, Ασκήσεις Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce των ακολούθων συναρτήσεων F () =, Re() >6 + 6 F () = + 5 Απ L ( F) Απ L ( F ) = e 6 ηµ = ( 5 ) F () = Απ L ( F ) συν = 3 F () = + + Απ L / 3 F = e ηµ 3 68

26 55 Εφαρµογή του µετασχηµατισµού Lplce στην επίλυση διαφορικών και ολοκληρωτικών εξισώσεων Μια σηµαντική εφαρµογή του µετασχηµατισµού Lplce είναι στην επίλυση διαφορικών εξισώσεων και ολοκληρωτικών εξισώσεων Η διαδικασία είναι η εξής: υπολογίζουµε το µετασχηµατισµό Lplce της άγνωστης συνάρτησης y και στη συνέχεια υπολογίζουµε την y µέσω του αντιστρόφου µετασχηµατισµού Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών y y=, y = Εφαρµόζουµε το µετασχηµατισµό Lplce και στα δυο µέλη της δε και έχουµε ( y y) ( y ) ( y) L = L() L L = L () L( y) y() L( y) = L () ( ) L( y) = y() + L () Αρα + ( y) = ( ) Re > L, + y () = L ( ) Αναλύουµε το µετασχηµατισµό Lplce σε απλά κλάσµατα και έχουµε Ετσι + A B = + A( ) + B= + ( ) Για = στην παραπάνω ισότητα βρίσκουµε B = 3/ Για = στην παραπάνω ισότητα βρίσκουµε A = / 69

27 + 3 3 = + = + e ( ) L L L, Παράδειγµα Να λυθεί η διαφορική εξίσωση y 5y + 6y= e Εστω y = A και y = B Εχουµε L( y 5y + 6 y) = L( e ) L( y ) 5 L( y ) + 6 L( y) = L ( e ) ( ( y) y() y ()) L ( ( y) A B) L 5 L( y) y() + 6 L( y) = L ( e ) 5 L( y) A + 6 L ( y) = ( 6 ) ( 5 ) ( 5+ 6)( ) A + B A + A+ B L ( y) = Αρα = ( 6 ) ( 5 ) ( )( )( 3) A + B A + A+ B ( )( )( 3) A B 6A 5A B y () = L Εστω bc,, έτσι ώστε ( 6 ) ( 5 ) = A B A A B b c ( 6 ) ( 5 ) ( 3) A + B A + A+ B = Στην τελευταία ισότητα θέτουµε διαδοχικά =, οπότε παίρνουµε = /, ( 3) + b + c 7

28 Ετσι =, οπότε παίρνουµε = 3, οπότε παίρνουµε 3A+ B+ b =, 4A+ B+ c = ( )( )( 3) A B 6A 5A B y () = L 3A+ B+ 4A+ B+ y = L + + L L 3 3A+ B+ 4A+ B+ 3 3 y= e + e + e = e + ce + ce Αν και κανονικά θα πρέπει να θεωρήσουµε, εν τούτοις παρατηρούµε µε επαλήθευση ότι η λύση ισχύει Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών y + x= x =, x y= y = Εφαρµόζουµε το µετασχηµατισµό Lplce ταυτόχρονα και στις δυο παραπάνω ισότητες και έχουµε L( y ) + L( x) = L( ) L( x ) L( y) = L() L( y) y() + L( x) = L( ) L( x) x() L( y) = L() L( y) + L( x) = L( ) + L( x) L( y) = L() + L( x) + L( y) = + L( x) L( y) = + 7

29 + + L( x) = ( + ) L( y) = + Αλλά: 3 L y = y= = + L + L + L + y= ηµ συν Για τη x εργαζόµαστε τη µέθοδο απλών κλασµάτων (βλέπε παραπάνω) και βρίσκουµε Τελικά: x = + συν+ ηµ x= + συν+ ηµ, y= ηµ συν Παράδειγµα Να λυθεί η ολοκληροδιαφορική εξίσωση Εστω y () ( ω) ω y = e + y e dω, = c Τότε έχουµε ( ω) ω ( ω) L y = L e + L y e d = L e + L y L e ( c+ + )( ) L( y) y = + L( y) L ( y) = + + ( y) ( c+ + )( ) ( )( + ) L =, > Με ανάλυση σε απλά κλάσµατα παίρνουµε: 7

30 ( c+ + )( ) A B Γ = + + ( )( + ) + ( + ) ( c )( ) A( ) B( )( ) ( ) + + = Γ Αρα: L Για = παίρνουµε A ( c ) = + 3/9 Για = παίρνουµε Γ = c /3 Παραγωγίζουµε την (54) και έχουµε ( y) ( c ) ( ) A( ) B ( ) ( ) = Γ, οπότε για πχ = παίρνουµε B ( c) c+ 3 6c c = = 6 /9 c+ 3 6c c L L L ( + ) y = + + c+ 3 6c c y= e + e + ηµ Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών y + y y= 4 y =, y = Εφαρµόζουµε το µετασχηµατισµό Lplce και στα δυο µέλη της δε και έχουµε ( y y y) ( y ) ( y ) ( y) L + = L(4) L + L L = L (4) 73

31 ( ) F y y F + F F =, >, 4 διότι d y =( ) = ( + ) Αρα: d L y F y F F 3 4 F + F = H τλευταία είναι µια γραµµική δε ης τάξης µε γενική λύση Eπειδή όµως F F / Ce = lim = θα πρέπει C =, συνεπώς F = y= L 3 3 = Ασκήσεις Να λυθούν οι κάτωθι δε µε χρήση του µετασχηµατισµoύ Lplce y + y= y = y + y=συν y = 3 y + y=συν y = 3 + = + = = y y y y Απ y= 3e + Απ y= e + συν+ ηµ Απ y= e + συν+ ηµ Απ y= + + συν ηµ 74

32 + + = = = y y y ( ) e y y e 8 Απ y= ( 7+ e + 4e + e ) Με χρήση του µετασχηµατισµoύ Lplce να λυθούν τα ακόλουθα συστήµατα δε y + x= x =, x y= y = Απ () = x = y x + y= x =, x y = y = x = 3 x + y =, x = x y= e y = x = 3ηµ Απ y () = + 3συν 6+ e + συν3ηµ x () = 6 Απ e + συν+ 3ηµ y () = 75

33 56 O τελεστής Dirc Ο τελεστής (ή «γενικευµένη συνάρτηση» Dirc µοντελοποιεί µε µαθηµατικό τρόπο ξαφνικές και στιγµιαίες φυσικές µεταβολές όπως πχ το στιγµιαίο χτύπηµα µε σφυρί σε σύστηµα µάζαςελατηρίου ή την ξαφνική αλλαγή τάσης λόγω κεραυνού Ο τελεστής Dirc ορίζεται «φορµαλιστικά» από τη σχέση () δ (), + f x d = f x x Τότε: L ( δ ) + δ b b = e d = e, b> b Ειδικά για b = ορίζουµε Ισχύει επίσης L ( δ ) δ = e d = δ + δ = b b Σηµειώνουµε ότι αν ub, b είναι η µοναδιαία συνάρτηση βήµατος Ηeviide, τότε b e L ( ub ) =, Re > Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών: δ y =, y = Παίρνουµε το µετασχηµατισµό Lplce και στα δυο µέλη και έχουµε L y = L δ Επειδή στο αριστερό µέλος ισχύει τελικά παίρνουµε ( y ) = ( y ) = ( y) y = ( y) L L L L, 76

34 L( y) = L ( y) = y=, ( > ) Για να ικανοποιείται και η αρχική συνθήκη έχουµε Η συνάρτηση Γάµµα Ας θυµηθούµε ότι > y = n n! + n n! L ( ) = e d = n+ n+ Για να επεκτείνουµε το παραπάνω αποτέλεσµα και για µη ακεραίους εκθέτες ας θεωρήσουµε ότι + x x L = e d, x> Θεωρούµε x >, διότι για x το µεταβλητής y=, > παίρονυµε lim + x e d + = Με αλλαγή x L + x y y + x y ( ) = e dy y e dy x+ = Η συνάρτηση + x y Γ x = y e dy, x> καλείται Γάµµα συνάρτηση Τότε: ( x ) + x x y Γ + L ( ) = y e dy=, x>, > x+ x+ H συνάρτηση γάµµα επεκτείνεται και σε όλους τους µιγαδικούς αριθµούς αρκεί να µην είναι αρνητικοί ακέραιοι,, 3, Ικανοποιεί δε την 77

35 ( x ) x ( x) Γ + = Γ δηλαδή είναι µια γενίκευση του παραγοντικού Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών: Εχουµε: y + y= u, y =, y =, > ( ) ( ) L y + y = L u L y y y + L y = ή ισοδύναµα e e ( + ) L( y) = + L ( y) = L ( y) = + e + + ηµ συν y = + u,, () y e ηµ < = ηµ + ( συν ( ) ) Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών:, π y + y=, y = y = > π Μπορούµε να γράψουµε: συνεπώς:, π u () uπ () =, > π ( π ) L L ( π ) y + y= ηµ u u y + y = u u 78

36 ( ) e L y y y + L y = π e π L ( y) = = ( e ) + + ( ) L = π π ( y) e e ( συν ) συν ( π ) π y= u + u, π Aσκήσεις Να λυθούν τα προβλήµατα αρχικών τιµών π y ( ) + y + y= δ π ( ), y = y = Απ ( π y= u e ) ( ) y ( ) y y e δ ( ) y y + + = +, = = Να λυθεί το πρόβληµα αρχικών τιµών y y y y e π ηµ π y u u e Απ = () + 3 ()( ) ( ), π + =, = = > π y= συν u u + u συν π, Απ π π 79

37 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ LAPLACE ΣΤΟΙΧΕΙΩ ΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ Ι ΙΟΤΗΤΕΣ Αρχική συνάρτηση f (), Μετασχηµατισµός Lplce F () = L f () f, Re > e, Re > Re( ) ηµ ( ), Re( ) > + inh( ), Re( ) > συν ( ), Re( ) > + coh( ), Re( ) > n n n!,re( ) > + x, x> ( b ) δ, b ( x ) Γ + x, Re( ) > + e b u, b b b e / n f() n ( n) ( ) F f + bg F() + bg() ub f ( b), b> b e F() e f() F ( ) f ( u) du F / + f ( ) F( ω) dω ( n f ) () n n F () f() ( n) ( n) f () f () f g L( f ) L ( g ) ειναι T περιοδικη T f T () e d e 8

38 ΑΝΤΙΣΤΡΟΦΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ LAPLACE ΣΤΟΙΧΕΙΩ ΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ Ι ΙΟΤΗΤΕΣ Μετασχηµατισµός Lplce L ( f ) = F Αντίστροφος Μετασχηµατισµός Lplce L F = f,, Re > e, Re > Re( ), Re( ) > + ηµ ( ), Re( ) > inh( ), Re( ) > + συν ( ), Re coh( ) > n n!,re( ) > + n Γ ( x + ) x, Re( ) > x, x> + b e, b δ b b e /, b u b F() + bg() f + bg b e F(), b ub f b F ( ) e f() n ( n) F > n f() F( ω ) dω f ( ) / F () f u du F G f g 8

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

6. Αρµονικές συναρτήσεις και συνοριακά προβλήµατα (Dirichlet).

6. Αρµονικές συναρτήσεις και συνοριακά προβλήµατα (Dirichlet). 6 Αρµονικές συναρτήσεις και συνοριακά προβλήµατα (Diichlet) Aρµονικές συναρτήσεις Ορισµός 61 Εστω E είναι ανοικτό σύνολο και f : E είναι µια πραγµατική συνάρτηση δύο πραγµατικών µεταβλητών και y Θα λέµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

3. Oρια-Συνέχεια-Παράγωγος. Ολόµορφες συναρτήσεις. . Το z ( )

3. Oρια-Συνέχεια-Παράγωγος. Ολόµορφες συναρτήσεις. . Το z ( ) 3 Oρια-Συνέχεια-Παράγωγος Ολόµορφες συναρτήσεις Τοπολογικοί ορισµοί Ορισµός 3 Εστω και ε > Καλούµε ε-ανοικτή περιοχή ή ανοικτό δίσκο κέντρου και ακτίνας ε το σύνολο { ε} D ( ) = : < ε Ορισµός 3 Έστω Το

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 5 Ορισµοί Εστω α δοθείσα πραγµατική ακολουθία Ορίζουµε µία νέα ακολουθία ως εξής: 3 3 = + + + = = + = + + Ορισµός 5 Εάν υπάρχει το lim + = τότε η ακολουθία καλείται

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a 7 Έστω Το θεώρηµα του Tylor στη µια µεταβλητή Ι ανοικτό διάστηµα Ι και : Ι φορές διαφορίσιµη συνάρτηση στο Ι, (. Γράφουµε, ( = + +... + +,, Ι, όπου!, είναι το υπόλοιπο Tylor ( κέντρου και τάξης και ( Ρ

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα Κεφάλαιο 8 Το αόριστο ολοκλήρωµα 8 Θεµελίωση έννοιας αορίστου ολοκληρώµατος Στο 7 0 Κεφάλαιο ορίσαµε την έννοια της αντιπαραγώγου µιας συνάρτησης f σ ένα κλειστό και φραγµένο διάστηµα Γενικότερα Ορισµός

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

2. Στοιχειώδεις µιγαδικές συναρτήσεις.

2. Στοιχειώδεις µιγαδικές συναρτήσεις. Στοιχειώδεις µιγαδικές συναρτήσεις Γενικά Εστω A, B και f : A B είναι µια απεικόνιση τέτοια ώστε σε κάθε µιγαδικό αριθµό A να αντιστοιχεί µοναδικός µιγαδικός αριθµός w= f Λέµε τότε ότι η f είναι µια µιγαδική

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Τελική Εξέταση 5 Ιουνίου 00 Απαντήστε όλα τα κάτωθι ερωτήµατα, παρέχοντας επεξηγηµατικά σχόλια όπου

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε Ανάλυση Γ Λυκείου όριο συνάρτησης στο ο Ιδιότητες των ορίων Όριο και διάταξη ΘΕΩΡΗΜΑ ο Αν f >, τότε f > κοντά στο Αν f

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Μετασχηµατισµός Laplace ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 4 Μαρτίου 29 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας του µετασχηµατισµού Laplace

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ 5 Πολυωνυµική παρεµβολή Εστω f πραγµατική συνάρτηση της οποίας είναι γνωστές µόνον οι τιµές f(x ) σε + σηµεία x = του πεδίου ορισµού της Το πρόβληµα εύρεσης µιας συνάρτησης φ (από

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΙΟΥΝΙΟΥ 4 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σελ. 5 σχολικού βιβλίου. Α. Θεωρία σελ. 73 σχολικού βιβλίου. Α3. Θεωρία σελ. 5 σχολικού βιβλίου. Α4. α) Λ, β) Σ, γ) Σ,

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1 εθοδολογία Παραδείγµατα σκ σκήσεις πιµέλεια.: άτσιος ηµήτρης Ρ ια να προσθέσουµε (ή να αφαιρέσουµε) δύο µιγαδικούς, προσθέτουµε (ή αφαιρούµε) τα πραγµατικά και τα φανταστικά τους µέρη, δηλαδή: ± = [Re

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y. ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΕΚΦΩΝΗΣΕΙΣ A. Έστω µια συνεχς συνάρτηση σ' ένα διάστηµα [α, ]. Αν G είναι µια παράγουσα της στο [α, ], τότε να δείξετε ότι

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΚΑΤΕΥΘΥΝΣΗ : «ΕΦΑΡΜΟΣΜΕΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Παράγωγος συναρτήσεων πολλών µεταβλητών. είναι µία κατεύθυνση στον (δηλαδή ένα. E. Αν υπάρχει το όριο ( + ) ( ) ( )

ΚΕΦΑΛΑΙΟ 2. Παράγωγος συναρτήσεων πολλών µεταβλητών. είναι µία κατεύθυνση στον (δηλαδή ένα. E. Αν υπάρχει το όριο ( + ) ( ) ( ) ΚΕΦΑΛΑΙΟ Παράγωγος συναρτήσεων πολλών µεταβλητών Κατευθυνόµενη Παράγωγος Ορισµός Έστω a είναι µία κατεύθυνση στον (δηλαδή ένα µοναδιαίο διάνυσµα του χώρου ), E είναι ένα ανοικτό υποσύνολο του, : E και

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. είναι διαµερίσεις των κλειστών διαστηµάτων [α,b] και [c,d] αντιστοίχως της µορφής

ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. είναι διαµερίσεις των κλειστών διαστηµάτων [α,b] και [c,d] αντιστοίχως της µορφής . Ορισµοί-Ιδιότητες ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Έστω f : R είναι µία φραγµένη συνάρτηση πάνω σε µία κλειστή ορθογώνια περιοχή Εστω (, y ) { } R =,y :a b, c y d. = είναι µια διαµέριση της ορθογώνιας περιοχής

Διαβάστε περισσότερα

Στροβιλισµός πεδίου δυνάµεων

Στροβιλισµός πεδίου δυνάµεων Στροβιλισµός πεδίου δυνάµεων Θεωρείστε ένα απειροστό απλό χωρίο στο χώρο τόσο µικρό ώστε να µπορεί να θεωρηθεί ότι βρίσκεται σε ένα επίπεδο Έστω ότι το χωρίο αυτό περικλείει εµβαδόν µέτρου Το έργο που

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (x+)(x 2 +) (ϐ) Να υπολογισθεί το ολοκλήρωµα f(x) f(x)+f(x+) για κάθε

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Ισοδυναµία τοπολογιών βρόχων.

Ισοδυναµία τοπολογιών βρόχων. Ισοδυναµία τοπολογιών βρόχων. Κατά κανόνα, συµφέρει να ανάγουµε τις «πολύπλοκες» τοπολογίες βρόχων σε έναν απλό κλειστό βρόχο, µε µία συνάρτηση µεταφοράς στον κατ ευθείαν κλάδο και µία συνάρτηση µεταφοράς

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΘΕΜΕΛΙΩΣΕΩΝ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ LIBATI@CEIDUPATRASGR Επιστήµη και Τεχνολογία των Υπολογιστών ΑΜ: Πρώτη Οµάδα Ασκήσεων 8// Να βρεθούν οι OGF για καθεµία από τις

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

7η ιεθνής Μαθηµατική Εβδοµάδα Θεσσαλονίκη Μαρτίου 2015 Ολοκληρωτικές εξισώσεις: τριτοβάθµια και δευτεροβάθµια εκπαίδευση

7η ιεθνής Μαθηµατική Εβδοµάδα Θεσσαλονίκη Μαρτίου 2015 Ολοκληρωτικές εξισώσεις: τριτοβάθµια και δευτεροβάθµια εκπαίδευση 7η ιεθνής Μαθηµατική Εβδοµάδα Θεσσαλονίκη 18 22 Μαρτίου 215 Ολοκληρωτικές εξισώσεις: τριτοβάθµια και δευτεροβάθµια εκπαίδευση Κυριαζής Χρήστος Πρωτοπαπάς Ελευθέριος 1 Ενότητες παρουσίασης Εισαγωγικές έννοιες

Διαβάστε περισσότερα

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3) Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Συνεχές ϕάσµα Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Στην κβαντική µηχανική τα ϕυσικά µεγέθη παρίστανται µε αυτοσυζυγείς τελεστές. Για έναν αυτοσυζυγή τελεστή ˆΩ = ˆΩ είναι γνωστό ότι οι ιδιοτιµές του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΙΑΝΥΣΜΑΤΙΚEΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΙΑΝΥΣΜΑΤΙΚΑ ΠΕ ΙΑ. 1. Όριο Συνέχεια Παράγωγος διανυσµατικών συναρτήσεων.

ΚΕΦΑΛΑΙΟ 6 ΙΑΝΥΣΜΑΤΙΚEΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΙΑΝΥΣΜΑΤΙΚΑ ΠΕ ΙΑ. 1. Όριο Συνέχεια Παράγωγος διανυσµατικών συναρτήσεων. ΚΕΦΑΛΑΙΟ 6 ΙΑΝΥΣΜΑΤΙΚEΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΙΑΝΥΣΜΑΤΙΚΑ ΠΕ ΙΑ Όριο Συνέχεια Παράγωγος διανυσµατικών συναρτήσεων Ορισµός 6 Εστω, > είναι δυο φυσικοί αριθµοί Κάθε συνάρτηση F : Ε Α καλείται διανυσµατική

Διαβάστε περισσότερα