Kεφάλαιο 5. µετασχηµατισµού Laplace.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kεφάλαιο 5. µετασχηµατισµού Laplace."

Transcript

1 5 Εισαγωγή Kεφάλαιο 5 Ο µετασχηµατισµός Lplce Τόσο οι συνήθεις όσο και οι µερικές διαφορικές εξισώσεις περιγράφουν νόµους µε τους οποίους κάποιες ποσότητες µεταβάλλονται σε σχέση µε το χρόνο, όπως το ρεύµα σ ένα ηλεκτρικό κύκλωµα, οι ταλαντώσεις παλλόµενου ελατηρίου, η ροή θερµότητας σε µονωµένο αγωγό κλπ Αυτές οι εξισώσεις σε συνδυασµό µε τις αρχικές συνθήκες περιγράφουν την κατάσταση του συστήµατος κάθε χρονική στιγµή Μια σηµαντική µέθοδος για την επίλυση τέτοιων προβληµάτων είναι και η µέθοδος του µετασχηµατισµού Lplce Ο µετασχηµατισµός Lplce είναι σηµαντικός διότι: εφαρµόζεται σε µια µεγάλη ποικιλία συναρτήσεων και κυρίως σε συναρτήσεις/σήµατα βραχέας ή και στιγµιαίας διάρκειας Επιλύει σχετικά εύκολα µη οµογενείς γραµµικές δε µε σταθερούς συντελεστές (ή και συστήµατα δε) της µορφής ( n) ( n) n n y + y + + y + y= f, όπου η f µπορεί να µην είναι συνεχής (όπως απαιτείται στο Κεφ 3) αλλά και τµηµατικά συνεχής, ή και να είναι µια γενικευµένη συνάρτηση, όπως πχ η συνάρτηση Dirc Στη µελέτη του µετασχηµατισµού Lplce χρειάζονται κάποια στοιχεία της θεωρίας των γενικευµένων ολοκληρωµάτων και των µιγαδικών αριθµών που θα µας χρειασθούν Ο αναγνώστης µπορεί να θυµηθεί αυτές τις έννοιες ανατρέχοντας στις παραγράφους 3 και 4 του ου Κεφαλαίου 44

2 5 Ο µετασχηµατισµός Lplce Ορισµός 5 Εστω f :, [ ) Lplce της f, συµβολικά L ( f ) τη συνάρτηση + Καλούµε µετασχηµατισµό + b = = = F L f f() e d lim f() e d (5) b + για όλες τις τιµές του για τις οποίες το µη γνήσιο ολοκλήρωµα της f () e συγκλίνει Παρατηρήσεις (α) Ο µετασχηµατισµός Lplce ορίζεται και για f :, + ως µιγεδικές συναρτήσεις [ ) ( Re ) ( Im) L f = L f + i L f Στο εξής για απλότητα µελετούµε πραγµατικές συναρτήσεις (β) Ο µετασχηµατισµός Lplce απεικονίζει µια συνάρτηση f ορισµένη στο πεδίο του χρόνου σε µια νέα συνάρτηση F( ) ηλαδή: f L F (β) Εφόσον ο µετασχηµατισµός Lplce απεικονίζει συναρτήσεις σε συναρτήσεις, είναι λογικό να αναρωτηθούµε αν υπάρχει αντίστροφος µετασχηµατισµός L που να απεικονίζει το µετασχηµατισµό Lplce στην αρχική συνάρτηση f Πράγµατι υπό κατάλληλες συνθήκες υπάρχει ο αντίστροφος µετασχηµατισµός L όπως θα δούµε παρακάτω Ετσι για το µετασχηµατισµό Lplce γράφουµε: f L F Μια ικανή συνθήκη ύπαρξης του µετασχηµατισµού Lplce δίνει το ακόλουθο Θεώρηµα 5 Εστω f :, [ ) + είναι µια συνάρτηση: (i) τµηµατικά συνεχής (δηλαδή είναι συνεχής παντού πλην 45

3 πεπερασµένου πλήθος σηµείων,, N για τα οποία υπάρχουν τα πλευρικά όρια lim f ( ) και lim f ( ), i=,, N και είναι πεπερασµένα) και + i i (ii) εκθετικής τάξης α (δηλαδή είναι πραγµατικές σταθερές µε M, c > ) e f M > c, όπου M, c, Τότε ο µετασχηµατισµός Lplce της f ορίζεται για κάθε Re και επιπλέον lim F = Απόδ Εφόσον > έχουµε: f Me c () () + c () + = + c f e d f e d f e d > είναι To πρώτο ολοκλήρωµα υπάρχει, διότι η f ( ) e ολοκληρώσιµη ως τµηµατικά συνεχής στο [,c ] Για το δεύτερο ολοκλήρωµα έχουµε: c ( Re ) + + ( Re ) Me f () e d Me d =, Re > c c Re Aρα το δεύτερο ολοκλήρωµα συγκλίνει απόλυτα, (άρα συγκλίνει) Re > και έχουµε το ζητούµενο Το γεγονός ότι lim F = για είναι εύκολο Ας υπολογίσουµε το µετασχηµατισµό Lplce ορισµένων στοιχειωδών συναρτήσεων :, + : = f [ ) f ( ) Tότε Αρα: + e e d =, Re( ) = > + 46

4 f + f = :, [ ) : L () =, Re > Τότε µε ολοκλήρωση κατά παράγοντες παίρνουµε e + e e d = e d, Re( ) + = = > Yπενθυµίζουµε εδώ ότι e, (, n ) lim n + = > όπως µπορεί εύκολα να δειχθεί µε εφαρµογή του κανόνα L Hopil n φορές Αρα Re lim e = lim e = Re > + + Ετσι: L () =,Re() > Σηµείωση Μπορεί να αποδειχθεί επαγωγικά ότι n! L =,Re() >, n n n +, ( ) f :, [ + ) : f() =ηµ ( ) Τότε µε ολοκλήρωση κατά παράγοντες δυο φορές παίρνουµε + + ηµ e + I = ηµ ( ) e d = + συν ( ) e d ( ) + συν e + = ηµσυν ( ) e d I = I I =, Re( ) + > 47

5 Υπενθυµίζουµε εδώ ότι µε χρήση του κριτηρίου παρεµβολής βρίσκουµε lim ηµ + ( ) e = και συν ( ) e, ( Re ) lim + = > Αρα L ( ηµ ( ) ) =,Re() + >, f :, [ + ) : f() = συν ( ) Εργαζόµαστε όπως στην περίπτωση του ηµ και βρίσκουµε L ( συν ( ) ) =,Re() + > f :, [ + ) : f() = e ( ) Τότε Αρα: ( ) + + ( ) e e e d = e d = =, Re( ) > Re( ) + L ( e ) =, Re( ) > Re( ) Ασκήσεις Υπολογίστε το µετασχηµατισµό Lplce των συναρτήσεων f = e, Απ F f ( ) =, Απ F =, Re > ( ) 4e + =, Re( ) > 48

6 u =,, > < () u () = e < Απ F F e Απ =, Re > e e = +, Re > 49

7 53 Ιδιότητες του µετασχηµατισµού Lplce Αν εξαιρέσουµε κάποιες στοιχειώδεις συναρτήσεις της προηγούµενης παραγράφου των οποίων ο µετασχηµατισµός Lplce υπολογίζεται από τον τύπο (5) µε απ ευθείας ολοκλήρωση, για συναρτήσεις µε πιο πολύπλοκο τύπο τα πράγµατα δυσκολεύουν στον υπολογισµό του ολοκληρώµατος (5) Απ την άλλη µεριά ένα κριτήριο χρησιµότητας ενός µετασχηµατισµού είναι οι ιδιότητες αυτού που διευκολύνουν τους υπολογισµούς Στην ενότητα αυτή αναφέρουµε τις ιδιότητες του (µονόπλευρου) µετασχηµατισµού Lplce A Γραµµικότητα Θεώρηµα 5 Εστω f, g :[, ) έχουν µετασχηµατισµούς Lplce L ( f ) και ( g ) + είναι δυο συναρτήσεις που L αντιστοίχως Τότε ορίζεται ο µετασχηµατισµός Lplce της συνάρτησης f () ± bg(),, b η και ισχύει ( f ± bg ) = ( f ) ± b ( g ) L L L για κάθε στο κοινό πεδίο ορισµού των L ( f ) και ( g ) L Απόδ Αµεση συνέπεια του τύπου 5 και της γραµµικότητας του ολοκληρώµατος Παράδειγµα Υπολογίστε το µετασχηµατισµό Lplce των f () inh g () coh h () = ηµ για συναρτήσεων =, = και,, b Λόγω γραµµικότητας έχουµε Επειδή e e L( f ) = L( inh( ) ) = L = L( e ) L ( e ),Re() L ( e ) = > και L e =,Re() > + 5

8 (βλέπε προηγούµενη ενότητα), παίρνουµε L ( inh ( ) ) = =, Re > + Tελικά: L ( inh ( ) ) =, Re > Mε παρόµοιο τρόπο υπολογίζουµε e + e L( f ) = L coh( ) = L = L e + L e = + =, Re > + Tελικά: L ( coh ( ) ) =, Re > Τέλος για την h ηµ ( ) αποτετραγωνισµού ηµ ( ) = χρησιµοποιούµε τον τύπο ( ) συν = και έχουµε ( ) συν L( h) = L ( ) = L = L L ( ηµ ) ( () ( συν ( )) ) =, Re = > Β Μετάθεση στο πεδίο των συχνοτήτων Θεώρηµα 53 Εστω ότι µια συνάρτηση f :, [ ) µετασχηµατισµό Lplce L ( f ) = F, Re >, ( ) ορίζεται ο µετασχηµατισµός Lplce της συνάρτησης ( b ) και ισχύει έχει Τότε f ( ) e b 5

9 b L f ( e ) = F b, Re > + Re( b) Απόδ Αµεση απ τον τύπο (5) Παράδειγµα Υπολογίστε το µετασχηµατισµό Lplce των συναρτήσεων f () = e b inh( ) και b h () = e ηµ ( ) για,, b Από το προηγούµενο παράδειγµα έχουµε L ( inh ( ) ) =, Re > Τότε από το θεώρ 53 έχουµε L e inh = L inh b =, Re Re( b) > b ( ) ( ) Τελικά: b ( ) b b L e inh =, Re > Re( b) + b Mε παρόµοιο τρόπο εργαζόµαστε για την h () e ηµ ( ) στο προηγούµενο παράδειγµα ότι = Είδαµε Τότε L b ( ηµ ) L ( ηµ ( ) ) =, Re > ( + 4 ) e =, Re Re( b) > b b + ( 4 ) Γ Μετάθεση στο πεδίο του χρόνου Θεώρηµα 54 Εστω ότι µια συνάρτηση f :, [ ) µετασχηµατισµό Lplce L ( f ) = F, Re >, ( ) ορίζεται ο µετασχηµατισµός Lplce της συνάρτησης έχει Τότε 5

10 και ισχύει ( ) f b b g() =,, b> < b ( ) b, Re() L g = e L f > Απόδ Αµεση απ τον τύπο (5) Σηµείωση Εστω, > b ub () =,, b>, < b είναι είναι η µοναδιαία συνάρτηση βήµατος Ηeviide και η f ορίζεται στο Τότε η παραπάνω ιδιότητα γράφεται ως εξής: b ( b ), R e L u f b = e L f > ιαστολή/στάθµιση Θεώρηµα 55 Εστω ότι µια συνάρτηση f :, [ ) έχει µετασχηµατισµό Lplce L ( f ) = F, Re >, ( ) Τότε ορίζεται ο µετασχηµατισµός Lplce της συνάρτησης f ( b) ( b> ) και ισχύει L ( f ( b) ) = F, Re > b b b Απόδ Από τον τύπο (5) µε αλλαγή µεταβλητής b L y b f b f b e d f y e dy b + + / ( ) = = = y έχουµε + Re y b = f ye dy F, b = > b b b Ε Momen Θεώρηµα 56 Εστω ότι µια συνάρτηση f :, [ ) έχει 53

11 µετασχηµατισµό Lplce L ( f ) = F, Re >, ( ) Τότε n oρίζεται ο µετασχηµατισµός Lplce της συνάρτησης f() ( n ) και ισχύει Aπόδ Για n = έχουµε n n ( n) L f() = ( ) F (), Re() > F = f e d = f e d = F + ( () ) + (), (λόγω οµοιόµορφης σύγκλισης του ολοκληρώµατος ως προς ) Αρα η πρόταση ισχύει για n = Στη συνέχεια εργαζόµαστε επαγωγικά Παράδειγµα Υπολογίστε το µετασχηµατισµό Lplce της f () = συν για, συνάρτησης Λαµβάνοντας υπόψη το θεώρηµα 56 και το γεγονός ότι L + ( συν ( ) ) = F =,Re() > όπως είδαµε σε προηγούµενο παράδειγµα, παίρνουµε ( συν ( ) ) ( ) F L = =, Re = > + + Παράδειγµα Υπολογίστε το µετασχηµατισµό Lplce της συνάρτησης f () = e για, Λαµβάνοντας υπόψη το θεώρηµα 56 και το γεγονός ότι L e = F =,Re() > Re() όπως είδαµε σε προηγούµενο παράδειγµα, παίρνουµε 54

12 L( e ) = ( ) F = =, Re > Re( ) 3 ΣΤ ΑΝΤΙΠΑΡΑΓΩΓΟΣ στο πεδίο του χρόνου Τότε ορίζεται ο µετασχηµα- Θεώρηµα 57 Εστω ότι µια συνάρτηση f :, [ ) ολοκληρώσιµη στο [,+ ) και έχει µετασχηµατισµό L ( f ) = F, Re >, ( ) τισµός Lplce της συνάρτησης g() f ( u) du F ( ) είναι Lplce = και ισχύει { } L f udu =, > mx, Απόδ Αµεση απ τον τύπο (5) Ζ ΑΝΤΙΠΑΡΑΓΩΓΟΣ στο πεδίο των συχνοτήτων Θεώρηµα 58 Εστω ότι µια συνάρτηση f :, [ ) ολοκληρώσιµη στο [,+ ) και έχει µετασχηµατισµό L ( f ) = F, Re >, ( ) Αν υπάρχει το όριο τότε ορίζεται ο µετασχηµατισµός Lplce της συνάρτησης ισχύει f L = F( ω) dω,re() > είναι Lplce lim + f () f Απόδ Ξεκινούµε απ το δεξιό µέλος της παραπάνω χρησιµοποιώντας τον τύπο (5) Η ΠΑΡΑΓΩΓΟΙ Θεώρηµα 59 Εστω ότι µια συνάρτηση f :, [ ), και είναι n φορές παραγωγίσιµη µε εκθετικής τάξης παραγώγους ( n) ( n) f,, f για κάθε και τµηµατικά συνεχή παράγωγο f Αν F = L f > είναι ο µετασχηµατισµός Lplce της, Re 55

13 f, τότε ορίζεται ο µετασχηµατισµός Lplce των παραγώγων ( k συναρτήσεων f ), k =,, n και ισχύει L ( k) k k ( k) ( k) L f = f f f f, Re > Απόδ Χρησιµοποιούµε παραγοντική ολοκλήρωση n φορές στον τύπο (5) Παράδειγµα Εστω παραγωγίσιµη συνάρτηση y :, [ ) ικανοποιεί το πρόβληµα αρχικών τιµών y + y= e y = 3 Υπολογίστε το µετασχηµατισµό Lplce της y + που Παίρνουµε το µετασχηµατισµό Lplce και στα δυο µέλη της δε και έχουµε 3 3 ( ) ( y + y = e ) ( y ) + ( y) = ( e ) L L L L L Επειδή ( y ) = ( y) y L L και ( e ) 3 L =, Re( ) > 3 έχουµε + 3 L( y) y + L ( y) =, Re >3 + 3 ( + ) L ( y) =, Re > L =, Re >3 ( y) ( + )( + 3) Παράδειγµα Εστω συνάρτηση y :, [ ) πρόβληµα αρχικών τιµών + που ικανοποιεί το 56

14 y + y 3y= y = y = Υπολογίστε το µετασχηµατισµό Lplce της y Παίρνουµε το µετασχηµατισµό Lplce και στα δυο µέλη της δε και έχουµε ( y + y 3y) = ( y ) + ( y ) 3 ( y) = L L L L L L Επειδή L( y ) = L ( y) y y και ( y ) = ( y) y L () =, Re >, έχουµε ( ) L L και L y y y + L y y 3 L y =, Re > ( ) L y + L y 3 L y =, Re > L + y = + + > ( y) 3 5, Re + 5+ L =, Re( ) > ( )( + 3) Θ ΣΥΝΕΛΙΞΗ Ορισµός 54 Εστω f, g :[, + ) είναι τµηµατικά συνεχείς σε κάθε διάστηµα [, ], > Καλούµε συνέλιξη των f, g, συµβολικά f g να είναι η συνάρτηση () f g = f ω g ω dω Η παραπάνω συνάρτηση είναι καλά ορισµένη Με χρήση του ορισµού είναι εύκολο να δούµε ότι η συνέλιξη ικανοποιεί τις ακόλουθες ιδιότητες: 57

15 f g = g f (αντιµεταθετική) ( f g) h( ) = f ( g h)( ) (προσεταιριστική) f ( g + h) = f g + f h (επιµεριστική) Θεώρηµα 5 Εστω f, g :[, ) εκθετικής τάξης και L ( f ), ( g ) + είναι τµηµατικά συνεχείς και L είναι οι µετασχηµατισµοί Lplce των f και g αντιστοίχως Τότε ορίζεται ο µετασχη- µατισµός Lplce της f g και ισχύει, Re L f g = L f L g > Απόδ Ξεκινούµε απ το δεύτερο µέλος και θυµόµαστε ότι g u = u< Εχουµε, + + u ( ) L f L g f e d g u e du = u ( ) () () u ( + ) g u e du f e d f g u e dud = = Θέτουµε (για το εσωτερικό ολοκλήρωµα) u+ = w και έχουµε () () u ( + ) w f g u e dud = f g w e dwd Επειδή όµως g( w ) =, w< µπορούµε να γράψουµε w () ( ) = () ( ) w f g w e dwd f g w e dwd w Λόγω απόλυτης σύγκλισης του διπλού ολοκληρώµατος µπορούµε να εναλλάξουµε την ολοκλήρωση και έχουµε w ( ) = ( ) w f g w e dwd f g w e ddw w w w + w + w f g w e ddw f g w d e dw = = 58

16 ( f g) = L Παράδειγµα Υπολογίστε το µετασχηµατισµό Lplce της συνέλιξης ( b e e )( ) για,, b Εχουµε L b b e e = L e L e =, Re( ) mx { Re( ),Re( b ) } b > Παράδειγµα Για y :, [ ) Lplce της ολοκληρωτικής εξίσωσης +, υπολογίστε το µετασχηµατισµό Εχουµε () = + ( ) y e yω ηµ ω dω ( ω ηµ ω ω) ( ηµ ) L y = L e + L y d = L e + L y L + L( y) = + L( y) L ( y) =, Re( ) > Ι ΠΕΡΙΟ ΙΚΟΤΗΤΑ Θεώρηµα 5 Εστω f :, [ + ) R είναι περιοδική συνάρτηση µε περίοδο T, έτσι ώστε η f να είναι τµηµατικά συνεχής και εκθετικής τάξης στο [,T ] Τότε ο µετασχηµατισµός Lplce της f ικανοποιεί τη σχέση T L ( f ) = f () e d, Re > T e Απόδ Χρησιµοποιούµε τον ορισµό και την περιοδικότητα της f Ασκήσεις Με χρήση ιδιοτήτων υπολογίστε το µετασχηµατισµό Lplce των παρακάτω συναρτήσεων για : 59

17 f () = + Απ F () =, Re() + > 3 f () = + 3ηµ Απ F () = +, Re() > 3 + () = + Απ F () = +, Re() > f ηµ συν( ) f () = + Απ F () = +, Re() > 3 f () = e Απ F () =, Re() > ( ) f () e ηµ ( 5) = Απ 5 F () =, Re() > ( ) 5 f () = e ηµ ( 5) Απ F () =, Re() + 5+ > 3 3 f () = e συν Απ F () =, Re() > 3 + ( 3) e e f () =, f περιοδική Απ F () =, Re() > e, < < f() =,, < < f περιοδική Απ e e + F () =, Re() > ( e ) Υπολογίστε το µετασχηµατισµό Lplce των ακολούθων προβληµάτων αρχικών τιµών y + y= y = Απ F = ( + ) 6

18 y + y=συν y = 3 y + 4y= = = y y y + y + y= e y = y = Απ F Απ F = F ( + ) = + 4 Απ = ( + ) ( ) 3 Υπολογίστε το µετασχηµατισµό Lplce των ολοκληρωτικών εξισώσεων y () = + y( ω) συν ( ω) dω Απ F = + ( + ) e = y( ω) y( ω) dω Απ F =±, Re > Re( ) ( ) 6

19 54 Ο αντίστροφος µετασχηµατισµός Lplce Ορισµός 5 Εστω F: A : F = F Αν υπάρχει συνάρτηση f :, [ + ) : f = f() τέτοια ώστε L ( f ) = F, τότε η f καλείται αντίστροφος µετασχηµατισµός Lplce της F και γράφουµε f = L F Άρα L f = F L F = f Παρατηρήσεις (α) εν ορίζεται πάντοτε ο αντίστροφος µετασχηµατισµός Lplce συνάρτησης F (β) Αν µια συνάρτηση f έχει µετασχηµατισµό Lplce F = F(), τότε ο αντίστροφος µετασχηµατισµός Lplce της F ορίζεται µέσω του τύπου ir f () = γ lim e F d π i +, R γ ir όπου γ οποιοσδήποτε πραγµατικός αριθµός που εκλέγεται έτσι ώστε η κατακόρυφος Re = γ να περιέχει όλους τους πόλους της F στο αριστερό της µέρος Ο τύπος αυτός είναι ο τύπος αντιστροφής του µετασχηµατισµού Lplce και η χρήση του απαιτεί γνώσεις µιγαδικής ανάλυσης που ξεφεύγουν από το στόχο αυτών των σηµειώσεων Στο εξής για την εύρεση του αντιστρόφου µετασχηµατισµού Lplce θα χρησιµοποιούµε στοιχειώδους µεθόδους που θα αναπτύξουµε παρακάτω (γ) Οσον αφορά στο ερώτηµα αν υπάρχουν δυο διαφορετικοί αντίστροφοι µετασχηµατισµοί Lplce που αντιστοιχούν στην ίδια συνάρτηση f, η απάντηση είναι πως όχι αν η αρχική συνάρτηση f είναι συνεχής Πράγµατι ισχύει το Θεώρηµα (Lerch): Aν f, g είναι συνεχείς συναρτήσεις τέτοιες ώστε να υπάρχουν οι µετασχηµατισµοί Lplce αυτών, τότε L f = L g f = g Με άλλα λόγια αν υπάρχει µια συνεχής συνάρτηση f µε 6

20 µετασχηµατισµό Lplce F, τότε αυτή (η f ) είναι η µοναδική συνεχής συνάρτηση µ αυτό το µετασχηµατισµό Προφανώς αν ορίσουµε µια τµηµατικά συνεχή συνάρτηση () f, g =, f = τότε και αυτή η συνάρτηση έχει µετασχηµατισµό Lplce F Αυτό οφείλεται στον ορισµό του µετασχηµατισµού Lplce, διότι το ολοκλήρωµα έχει µηδενική µάζα σε σηµεία Εστω ότι ορίζονται οι µετασχηµατισµοί Lplce FG, δυο συνεχών συναρτήσεων f, g :[, + ) Με τη βοήθεια των ιδιοτήτων του µετασχηµατισµού Lplce αποδεικνύονται άµεσα οι ακόλουθες ιδιότητες του αντίστροφου µετασχηµατισµού Lplce: Α Γραµµικότητα Πράγµατι: ( F ± bg) = ( F ) ± b ( G) L L L ( F ± bg) = ( ( f ) ± b ( g )) = ( ( f ± bg ) ) L L L L L L Β Μετάθεση στο πεδίο συχνοτήτων ( ( f bg )) f bg ( F ) b ( G) = ± = ± = ± L L L L ( ) b L F b = f() e, Πράγµατι: ( ) ( ( b ) ) b L F b = L L f() e = f() e Γ Μετάθεση στο πεδίο χρόνου 4 ιαστολή L ( b e F ) = u f( b), (, b> ) b 63

21 5 Momen ( ) L F b = f,, b> b b L ( ) n F n = n f( ), 6 Αντιπαράγωγος 7 Συνέλιξη f ( ) ( ω) L F dω =, ( ( ω) ( ω) ) L F G = f g Παράδειγµα Να βρεθεί ο αντίστροφος µετασχηµατισµός Lplce της συνάρτησης F = + 9 Χρησιµοποιώντας τις ιδιότητες του αντίστροφου µετασχηµατισµού Lplce και λαµβάνοντας υπόψη το µετασχηµατισµό Lplce των ηµ έχουµε στοιχειωδών συναρτήσεων συν και L = συν = ( 3) ηµ ( 3 ), + 9 L + 9 L + 9 Παράδειγµα Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce της συνάρτησης F () = 3+ Χρησιµοποιούµε τη µέθοδο ανάλυσης σε απλά κλάσµατα Εχουµε A B = = ( )( ) 64

22 = A( ) + B( ) (5) A+ B= A= A B= B= Σηµείωση Στην παραπάνω σχέση = A( ) + B( ) (βλέπε (5)) µπορούµε να θέσουµε κατευθείαν =, οπότε = A( ) + B() A=, =, οπότε = A( ) + B() B= Μ αυτόν τον τρόπο υπολογίζουµε πιο γρήγορα και εύκολα τους συντελεστές A και B Τελικά F () = = + L = L L e e, L = + = + Παράδειγµα Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce της συνάρτησης Εφόσον έχουµε F () =, Re() > F () = = L ( F) = L e, = ( 3), Παράδειγµα Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce της συνάρτησης 65

23 Εχουµε Αρα F () =, Re() > ( + ) 3 + F () = = = ( + ) ( + ) ( + ) ( + ) e L ( F) = L e, L 3 = ( + ) ( + ) Παράδειγµα Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce της συνάρτησης ος τρόπος: F () = + 5 Το τριώνυµο του παρονοµαστή έχει αρνητική διακρίνουσα Με συµπλήρωση τετραγώνων παίρνουµε Αρα = + 5 ( ) + 4 L ( F) = L = = eηµ ( ), ( ) + 4 ( ) + 4 L ος τρόπος: Eργαζόµαστε µε τη µέθοδο των απλών κλασµάτων Ετσι έχουµε A B = = + 5 ( ) + + i i + i i ( ) = A i + B + i, AB,, Στην παραπάνω ισότητα θέτουµε όπου καθεµιά από τις ρίζες του τριωνύµου: 66

24 Τότε =, οπότε ( ) ( ) i i i = B( i + i ) B= =, 4i 4 i = A( + i i ) A= = 4i 4 = +, οπότε ( ) ( ) L ( F ) i i = 4 L + ( + i) 4 L ( i) i i i i ( i ) ( i ) ie ( e e + ) i i iee iee = e + e = + = Aπό τον τύπο Euler έχουµε Άρα i i e e iηµ = L ie iηµ i eηµ eηµ, = = = Παράδειγµα Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce της συνάρτησης F () =, Re() > ( ) Με ανάλυση σε µερικά κλάσµατα έχουµε A B F () = = + + Στην (53) θέτουµε Γ ( ) ( ) = A + B +Γ (53) 67

25 = (απλή ρίζα παρονοµαστή), οπότε A = = (διπλή ρίζα παρονοµαστή), οπότε Γ = Πως θα βρούµε όµως τη σταθερά B ; Παραγωγίζουµε την (53) και αντικαθιστούµε τις τιµές των A και Γ που βρήκαµε Ετσι έχουµε A=, Γ= = A + B + B+Γ = + B + B+ Ετσι Στη συνέχεια για πχ = βρίσκουµε άµεσα B = ( ) L F = L + L + L = + e + e, Ασκήσεις Υπολογίστε τον αντίστροφο µετασχηµατισµό Lplce των ακολούθων συναρτήσεων F () =, Re() >6 + 6 F () = + 5 Απ L ( F) Απ L ( F ) = e 6 ηµ = ( 5 ) F () = Απ L ( F ) συν = 3 F () = + + Απ L / 3 F = e ηµ 3 68

26 55 Εφαρµογή του µετασχηµατισµού Lplce στην επίλυση διαφορικών και ολοκληρωτικών εξισώσεων Μια σηµαντική εφαρµογή του µετασχηµατισµού Lplce είναι στην επίλυση διαφορικών εξισώσεων και ολοκληρωτικών εξισώσεων Η διαδικασία είναι η εξής: υπολογίζουµε το µετασχηµατισµό Lplce της άγνωστης συνάρτησης y και στη συνέχεια υπολογίζουµε την y µέσω του αντιστρόφου µετασχηµατισµού Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών y y=, y = Εφαρµόζουµε το µετασχηµατισµό Lplce και στα δυο µέλη της δε και έχουµε ( y y) ( y ) ( y) L = L() L L = L () L( y) y() L( y) = L () ( ) L( y) = y() + L () Αρα + ( y) = ( ) Re > L, + y () = L ( ) Αναλύουµε το µετασχηµατισµό Lplce σε απλά κλάσµατα και έχουµε Ετσι + A B = + A( ) + B= + ( ) Για = στην παραπάνω ισότητα βρίσκουµε B = 3/ Για = στην παραπάνω ισότητα βρίσκουµε A = / 69

27 + 3 3 = + = + e ( ) L L L, Παράδειγµα Να λυθεί η διαφορική εξίσωση y 5y + 6y= e Εστω y = A και y = B Εχουµε L( y 5y + 6 y) = L( e ) L( y ) 5 L( y ) + 6 L( y) = L ( e ) ( ( y) y() y ()) L ( ( y) A B) L 5 L( y) y() + 6 L( y) = L ( e ) 5 L( y) A + 6 L ( y) = ( 6 ) ( 5 ) ( 5+ 6)( ) A + B A + A+ B L ( y) = Αρα = ( 6 ) ( 5 ) ( )( )( 3) A + B A + A+ B ( )( )( 3) A B 6A 5A B y () = L Εστω bc,, έτσι ώστε ( 6 ) ( 5 ) = A B A A B b c ( 6 ) ( 5 ) ( 3) A + B A + A+ B = Στην τελευταία ισότητα θέτουµε διαδοχικά =, οπότε παίρνουµε = /, ( 3) + b + c 7

28 Ετσι =, οπότε παίρνουµε = 3, οπότε παίρνουµε 3A+ B+ b =, 4A+ B+ c = ( )( )( 3) A B 6A 5A B y () = L 3A+ B+ 4A+ B+ y = L + + L L 3 3A+ B+ 4A+ B+ 3 3 y= e + e + e = e + ce + ce Αν και κανονικά θα πρέπει να θεωρήσουµε, εν τούτοις παρατηρούµε µε επαλήθευση ότι η λύση ισχύει Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών y + x= x =, x y= y = Εφαρµόζουµε το µετασχηµατισµό Lplce ταυτόχρονα και στις δυο παραπάνω ισότητες και έχουµε L( y ) + L( x) = L( ) L( x ) L( y) = L() L( y) y() + L( x) = L( ) L( x) x() L( y) = L() L( y) + L( x) = L( ) + L( x) L( y) = L() + L( x) + L( y) = + L( x) L( y) = + 7

29 + + L( x) = ( + ) L( y) = + Αλλά: 3 L y = y= = + L + L + L + y= ηµ συν Για τη x εργαζόµαστε τη µέθοδο απλών κλασµάτων (βλέπε παραπάνω) και βρίσκουµε Τελικά: x = + συν+ ηµ x= + συν+ ηµ, y= ηµ συν Παράδειγµα Να λυθεί η ολοκληροδιαφορική εξίσωση Εστω y () ( ω) ω y = e + y e dω, = c Τότε έχουµε ( ω) ω ( ω) L y = L e + L y e d = L e + L y L e ( c+ + )( ) L( y) y = + L( y) L ( y) = + + ( y) ( c+ + )( ) ( )( + ) L =, > Με ανάλυση σε απλά κλάσµατα παίρνουµε: 7

30 ( c+ + )( ) A B Γ = + + ( )( + ) + ( + ) ( c )( ) A( ) B( )( ) ( ) + + = Γ Αρα: L Για = παίρνουµε A ( c ) = + 3/9 Για = παίρνουµε Γ = c /3 Παραγωγίζουµε την (54) και έχουµε ( y) ( c ) ( ) A( ) B ( ) ( ) = Γ, οπότε για πχ = παίρνουµε B ( c) c+ 3 6c c = = 6 /9 c+ 3 6c c L L L ( + ) y = + + c+ 3 6c c y= e + e + ηµ Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών y + y y= 4 y =, y = Εφαρµόζουµε το µετασχηµατισµό Lplce και στα δυο µέλη της δε και έχουµε ( y y y) ( y ) ( y ) ( y) L + = L(4) L + L L = L (4) 73

31 ( ) F y y F + F F =, >, 4 διότι d y =( ) = ( + ) Αρα: d L y F y F F 3 4 F + F = H τλευταία είναι µια γραµµική δε ης τάξης µε γενική λύση Eπειδή όµως F F / Ce = lim = θα πρέπει C =, συνεπώς F = y= L 3 3 = Ασκήσεις Να λυθούν οι κάτωθι δε µε χρήση του µετασχηµατισµoύ Lplce y + y= y = y + y=συν y = 3 y + y=συν y = 3 + = + = = y y y y Απ y= 3e + Απ y= e + συν+ ηµ Απ y= e + συν+ ηµ Απ y= + + συν ηµ 74

32 + + = = = y y y ( ) e y y e 8 Απ y= ( 7+ e + 4e + e ) Με χρήση του µετασχηµατισµoύ Lplce να λυθούν τα ακόλουθα συστήµατα δε y + x= x =, x y= y = Απ () = x = y x + y= x =, x y = y = x = 3 x + y =, x = x y= e y = x = 3ηµ Απ y () = + 3συν 6+ e + συν3ηµ x () = 6 Απ e + συν+ 3ηµ y () = 75

33 56 O τελεστής Dirc Ο τελεστής (ή «γενικευµένη συνάρτηση» Dirc µοντελοποιεί µε µαθηµατικό τρόπο ξαφνικές και στιγµιαίες φυσικές µεταβολές όπως πχ το στιγµιαίο χτύπηµα µε σφυρί σε σύστηµα µάζαςελατηρίου ή την ξαφνική αλλαγή τάσης λόγω κεραυνού Ο τελεστής Dirc ορίζεται «φορµαλιστικά» από τη σχέση () δ (), + f x d = f x x Τότε: L ( δ ) + δ b b = e d = e, b> b Ειδικά για b = ορίζουµε Ισχύει επίσης L ( δ ) δ = e d = δ + δ = b b Σηµειώνουµε ότι αν ub, b είναι η µοναδιαία συνάρτηση βήµατος Ηeviide, τότε b e L ( ub ) =, Re > Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών: δ y =, y = Παίρνουµε το µετασχηµατισµό Lplce και στα δυο µέλη και έχουµε L y = L δ Επειδή στο αριστερό µέλος ισχύει τελικά παίρνουµε ( y ) = ( y ) = ( y) y = ( y) L L L L, 76

34 L( y) = L ( y) = y=, ( > ) Για να ικανοποιείται και η αρχική συνθήκη έχουµε Η συνάρτηση Γάµµα Ας θυµηθούµε ότι > y = n n! + n n! L ( ) = e d = n+ n+ Για να επεκτείνουµε το παραπάνω αποτέλεσµα και για µη ακεραίους εκθέτες ας θεωρήσουµε ότι + x x L = e d, x> Θεωρούµε x >, διότι για x το µεταβλητής y=, > παίρονυµε lim + x e d + = Με αλλαγή x L + x y y + x y ( ) = e dy y e dy x+ = Η συνάρτηση + x y Γ x = y e dy, x> καλείται Γάµµα συνάρτηση Τότε: ( x ) + x x y Γ + L ( ) = y e dy=, x>, > x+ x+ H συνάρτηση γάµµα επεκτείνεται και σε όλους τους µιγαδικούς αριθµούς αρκεί να µην είναι αρνητικοί ακέραιοι,, 3, Ικανοποιεί δε την 77

35 ( x ) x ( x) Γ + = Γ δηλαδή είναι µια γενίκευση του παραγοντικού Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών: Εχουµε: y + y= u, y =, y =, > ( ) ( ) L y + y = L u L y y y + L y = ή ισοδύναµα e e ( + ) L( y) = + L ( y) = L ( y) = + e + + ηµ συν y = + u,, () y e ηµ < = ηµ + ( συν ( ) ) Παράδειγµα Να λυθεί το πρόβληµα αρχικών τιµών:, π y + y=, y = y = > π Μπορούµε να γράψουµε: συνεπώς:, π u () uπ () =, > π ( π ) L L ( π ) y + y= ηµ u u y + y = u u 78

36 ( ) e L y y y + L y = π e π L ( y) = = ( e ) + + ( ) L = π π ( y) e e ( συν ) συν ( π ) π y= u + u, π Aσκήσεις Να λυθούν τα προβλήµατα αρχικών τιµών π y ( ) + y + y= δ π ( ), y = y = Απ ( π y= u e ) ( ) y ( ) y y e δ ( ) y y + + = +, = = Να λυθεί το πρόβληµα αρχικών τιµών y y y y e π ηµ π y u u e Απ = () + 3 ()( ) ( ), π + =, = = > π y= συν u u + u συν π, Απ π π 79

37 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ LAPLACE ΣΤΟΙΧΕΙΩ ΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ Ι ΙΟΤΗΤΕΣ Αρχική συνάρτηση f (), Μετασχηµατισµός Lplce F () = L f () f, Re > e, Re > Re( ) ηµ ( ), Re( ) > + inh( ), Re( ) > συν ( ), Re( ) > + coh( ), Re( ) > n n n!,re( ) > + x, x> ( b ) δ, b ( x ) Γ + x, Re( ) > + e b u, b b b e / n f() n ( n) ( ) F f + bg F() + bg() ub f ( b), b> b e F() e f() F ( ) f ( u) du F / + f ( ) F( ω) dω ( n f ) () n n F () f() ( n) ( n) f () f () f g L( f ) L ( g ) ειναι T περιοδικη T f T () e d e 8

38 ΑΝΤΙΣΤΡΟΦΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ LAPLACE ΣΤΟΙΧΕΙΩ ΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ Ι ΙΟΤΗΤΕΣ Μετασχηµατισµός Lplce L ( f ) = F Αντίστροφος Μετασχηµατισµός Lplce L F = f,, Re > e, Re > Re( ), Re( ) > + ηµ ( ), Re( ) > inh( ), Re( ) > + συν ( ), Re coh( ) > n n!,re( ) > + n Γ ( x + ) x, Re( ) > x, x> + b e, b δ b b e /, b u b F() + bg() f + bg b e F(), b ub f b F ( ) e f() n ( n) F > n f() F( ω ) dω f ( ) / F () f u du F G f g 8

Kεφάλαιο 5. µετασχηµατισµού Laplace.

Kεφάλαιο 5. µετασχηµατισµού Laplace. 5 Εισαγωγή Kεφάλαιο 5 Ο µετασχηµατισµός Lplce Τόσο οι συνήθεις όσο και οι µερικές διαφορικές εξισώσεις περιγράφουν νόµους µε τους οποίους κάποιες ποσότητες µεταβάλλονται σε σχέση µε το χρόνο, όπως το ρεύµα

Διαβάστε περισσότερα

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας Σηµειώσεις Eφαρµοσµένα Μαθηµατικά Ι ικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 207 Περιεχόµενα Κεφάλαιο. Επισκόπηση γνωστών εννοιών. -8. Σειρές πραγµατικών αριθµών..2 Σειρές συναρτήσεων..3 Γενικευµένα ολοκληρώµατα. Κεφάλαιο

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας Σηµειώσεις ιαφορικές Εξισώσεις- Μετασχηµατισµός Lplce- Σειρές Fourier Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 4 Περιεχόµενα Κεφάλαιο Επισκόπηση γνωστών εννοιών Σειρές πραγµατικών αριθµών Σειρές συναρτήσεων 3 Γενικευµένα

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 4. Ορισµοί KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Ορισµός 4.. Μία συνάρτηση : µε πεδίο ορισµού το σύνολο των φυσικών αριθµών και τιµές στην πραγµατική ευθεία καλείται ακολουθία πραγµατικών αριθµών.

Διαβάστε περισσότερα

5. Σειρές Taylor και Laurent. Ολοκληρωτικά υπόλοιπα και εφαρµογές.

5. Σειρές Taylor και Laurent. Ολοκληρωτικά υπόλοιπα και εφαρµογές. 5 Σειρές Taylor και Lauret Ολοκληρωτικά υπόλοιπα και εφαρµογές Σειρές Taylor και Lauret Θεωρούµε µια δυναµοσειρά ( ) a a µε κέντρο δοθέν σηµείο Υπενθυµίζουµε ότι για µια τέτοια δυναµοσειρά υπάρχει πάντα

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2. H εξίσωση θερµότητας.

KΕΦΑΛΑΙΟ 2. H εξίσωση θερµότητας. Εισαγωγή KΕΦΑΛΑΙΟ H εξίσωση θερµότητας Εστω Ω είναι ανοικτό σύνολο του µε γνωστή θερµοκρασία στο σύνορό του Ω κάθε χρονική στιγµή και γνωστή αρχική θερµοκρασία σε κάθε σηµείο του Ω Τότε οι φυσικοί νόµοι

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγµατικό µέρος φανταστικό µέρος u( x, y) x y = και v( x, y) = ( x + y xy), όπου = x+

Διαβάστε περισσότερα

6. Αρµονικές συναρτήσεις και συνοριακά προβλήµατα (Dirichlet).

6. Αρµονικές συναρτήσεις και συνοριακά προβλήµατα (Dirichlet). 6 Αρµονικές συναρτήσεις και συνοριακά προβλήµατα (Diichlet) Aρµονικές συναρτήσεις Ορισµός 61 Εστω E είναι ανοικτό σύνολο και f : E είναι µια πραγµατική συνάρτηση δύο πραγµατικών µεταβλητών και y Θα λέµε

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας.

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας. 1 Εισαγωγή KΕΦΑΛΑΙΟ H εξίσωση θερμότητας Εστω είναι ανοικτό σύνολο του με γνωστή θερμοκρασία στο σύνορό του κάθε χρονική στιγμή και γνωστή αρχική θερμοκρασία σε κάθε σημείο του Τότε οι φυσικοί νόμοι μας

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 3. H κυµατική εξίσωση.

KΕΦΑΛΑΙΟ 3. H κυµατική εξίσωση. 3 Εισαγωγή KΕΦΑΛΑΙΟ 3 H κυµατική εξίσωση Θα αναζητήσουµε το µαθηµατικό νόµο που διέπει την ταλάντωση ελαστικού νήµατος/χορδής για µικρές κατακόρυφες µετατοπίσεις Yποθέτουµε ότι η χορδή έχει οµοιόµορφη

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

3. Oρια-Συνέχεια-Παράγωγος. Ολόµορφες συναρτήσεις. . Το z ( )

3. Oρια-Συνέχεια-Παράγωγος. Ολόµορφες συναρτήσεις. . Το z ( ) 3 Oρια-Συνέχεια-Παράγωγος Ολόµορφες συναρτήσεις Τοπολογικοί ορισµοί Ορισµός 3 Εστω και ε > Καλούµε ε-ανοικτή περιοχή ή ανοικτό δίσκο κέντρου και ακτίνας ε το σύνολο { ε} D ( ) = : < ε Ορισµός 3 Έστω Το

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L p Σύγκλιση Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creaive Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Συνοπτικές Ενδεικτικές Λύσεις

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Συνοπτικές Ενδεικτικές Λύσεις ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 6 ΙΟΥΝΙΟΥ 00 Συνοπτικές Ενδεικτικές Λύσεις Άσκηση. ( µον.) ίνεται το σύστηµα y +

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 5 Ορισµοί Εστω α δοθείσα πραγµατική ακολουθία Ορίζουµε µία νέα ακολουθία ως εξής: 3 3 = + + + = = + = + + Ορισµός 5 Εάν υπάρχει το lim + = τότε η ακολουθία καλείται

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση µιας αντιστρέψιµης συνάρτησης είναι

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

εύτερο παράδειγµα ΓΧΑ συστήµατος. Κύκλωµα RLC.

εύτερο παράδειγµα ΓΧΑ συστήµατος. Κύκλωµα RLC. εύτερο παράδειγµα ΓΧΑ συστήµατος. Κύκλωµα RLC. 1. Πρώτη µέθοδος περιγραφής του συστήµατος, µέσω ολοκληρωτικοδιαφορικών εξισώσεων. Έστω ένα κύκλωµα L,C,R εν σειρά µε πηγή τάσης. Το κύκλωµα αυτό το θεωρούµε

Διαβάστε περισσότερα

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a 7 Έστω Το θεώρηµα του Tylor στη µια µεταβλητή Ι ανοικτό διάστηµα Ι και : Ι φορές διαφορίσιµη συνάρτηση στο Ι, (. Γράφουµε, ( = + +... + +,, Ι, όπου!, είναι το υπόλοιπο Tylor ( κέντρου και τάξης και ( Ρ

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001 Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου Ζήτηµα ο A.. ίνονται οι µιγαδικοί αριθµοί z, z. Να αποδείξετε ότι: z z z z. Μονάδες 7,5 Α.. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων.5. Ορισµός. Έστω, f : Α συνάρτηση συσσώρευσης του Α και b σηµείο. Λέµε ότι η f έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li = ή f b f b αν και µόνο αν, για κάθε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du.

2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 8: Τεχνικές ολοκλήρωσης Α Οµάδα. Υπολογίστε τα ακόλουθα ολοκληρώµατα : + + d, + + ( + 3)( ) d, 3 + 3 + 3 + + + d. Υπόδειξη. (α) Γράφουµε + + d

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα

KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα KΕΦΑΛΑΙΟ 3 Πλεγµένες συναρτήσεις- Ανάπτυγµα Talor-Aκρότατα 3 Πλεγµένες συναρτήσεις Σε πολλές περιπτώσεις συναντούµε µία (ή και περισσότερες) εξισώσεις µεταξύ διαφόρων µεταβλητών πχ της µορφής e + συν (

Διαβάστε περισσότερα

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

Κριτήριο Παρεμβολής. και. άρα από το παραπάνω κριτήριο παρεµβολής το l im f ( x) (x 1) 2 f (x) 2x (x 1) 2 2x (x 1) 2 f (x) 2x + (x 1) 2

Κριτήριο Παρεμβολής. και. άρα από το παραπάνω κριτήριο παρεµβολής το l im f ( x) (x 1) 2 f (x) 2x (x 1) 2 2x (x 1) 2 f (x) 2x + (x 1) 2 Κριτήριο Παρεμβολής Υποθέτουµε ότι κοντά στο µια συνάρτηση f εγκλωβίζεται ανάµεσα σε δύο συναρτήσεις h και g. Αν, καθώς το τείνει στο, οι g και h έχουν κοινό όριο l, τότε όπως φαίνεται και στο σχήµα, η

Διαβάστε περισσότερα

Μερικές ιαφορικές Εξισώσεις

Μερικές ιαφορικές Εξισώσεις Νικόλαος. Ατρέας Μερικές ιαφορικές Εξισώσεις Α.Π.Θ. Θεσσαλονίκη 6/7 Περιεχόµενα A. Ορολογία. 4 B. Χρήσιµα στοιχεία θεωρίας. 6 B. Πολλαπλά ολοκληρώµατα Riema. 6 B. Mη γνήσια ολοκληρώµατα Riema σε µη φραγµένα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x) ΟΛΟΚΛΗΡΩΣΗ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στην παράγραφο αυτή θα εξετάσουµε την ολοκλήρωση ρητών συναρτήσεων, δηλαδή συναρτήσεων της µορφής p f ( ( q(, όπου p( και q ( είναι πολυώνυµα µιας µεταβλητής του µε συντελεστές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

1 Το ϑεώρηµα του Rademacher

1 Το ϑεώρηµα του Rademacher Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Παρουσίαση 1 ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Παρουσίαση ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Παρουσίαση α Στους µιγαδικούς δεν υφίστανται ανισοτικές σχέσεις Το σύνολο C διατηρεί ισοτικά όλες τις ιδιότητες του R εν υφίστανται ανισοτικές σχέσεις, υφίστανται µόνο στο

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το κεφάλαιο αυτό θα µπορούµε να: υπολογίσουµε το µετασχηµατισµό aplace στοιχειωδών σηµάτων. αναφέρουµε τις ιδιότητες του µετασχηµατισµού aplace. Σεραφείµ Καραµπογιάς 6. ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα Κεφάλαιο 8 Το αόριστο ολοκλήρωµα 8 Θεµελίωση έννοιας αορίστου ολοκληρώµατος Στο 7 0 Κεφάλαιο ορίσαµε την έννοια της αντιπαραγώγου µιας συνάρτησης f σ ένα κλειστό και φραγµένο διάστηµα Γενικότερα Ορισµός

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 Θέµα ο ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ B. α) Λάθος διότι η f είναι «-» που σηµαίνει δεν είναι πάντα γνησίως µονότονη. β) Σωστό διότι

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ειδικές Συναρτήσεις

Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Ενότητα: Στοιχειώδεις ειδικές συναρτήσεις Όνομα Καθηγήτριας: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 3 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνεχής συνάρτηση σε ένα διάστηµα [α, β] Αν G είναι µια παράγουσα της f στο [α, β], τότε να αποδείξετε ότι: β f () t dt = G ( β) G ( α) a Μονάδες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

2. Στοιχειώδεις µιγαδικές συναρτήσεις.

2. Στοιχειώδεις µιγαδικές συναρτήσεις. Στοιχειώδεις µιγαδικές συναρτήσεις Γενικά Εστω A, B και f : A B είναι µια απεικόνιση τέτοια ώστε σε κάθε µιγαδικό αριθµό A να αντιστοιχεί µοναδικός µιγαδικός αριθµός w= f Λέµε τότε ότι η f είναι µια µιγαδική

Διαβάστε περισσότερα

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0 Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Mαίου 8 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων

Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων Ε Κάππος 4 εκεµβρίου 7 Περιεχόµενα Ασκήσεις στο µετασχηµατισµό Laplace Ασκήσεις στα Συστήµατα Εξισώσεων 5 3 Ασκήσεις Fourier

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 -6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου.

Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Ανδρέας Ζούπας 22 Ιανουαρίου 203 Οι λύσεις απλώς προτείνονται και σαφώς οποιαδήποτε σωστή λύση είναι αποδεκτή! Θέµα-

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ

ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ Συµπλήρωµα στα παραδείγµατα που υπάρχουν στο Εγχειρίδιο του Μαθήµατος ρ. Α. Μαγουλάς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1]

4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1] ΜΑΘΗΜΑ 48 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 η ΕΚΑ Α 3. Έστω f συνεχής και γνησίως αύξουσα συνάρτηση στο [, ], µε f() >. ίνεται επίσης συνάρτηση g συνεχής στο [, ], για την οποία ισχύει g() > για κάθε [, ] Ορίζουµε τις

Διαβάστε περισσότερα