Θεωρι α Γραφημα των 3η Δια λεξη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρι α Γραφημα των 3η Δια λεξη"

Transcript

1 Θεωρι α Γραφημα των 3η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

2 Μονοπα τια-κυ κλοι και Αποστα σεις Έστω ε να γρα φημα G(V, E) το οποι ο μπορει να ε χει παρα λληλες ακμε ς η βρο γχους. Περίπατος: Ένας περίπατος μήκους k ει ναι μια ακολουθι α π =< v 0 e 1 v 1... v k 1 e k v k > απο εναλλασσο μενες κορυφε ς και ακμε ς του γραφη ματος G ε τσι ω στε e i = (v i 1, v i ), 1 i k (v 0, v k )-περι πατος, v 0, v k : τερματικε ς κορυφε ς η α κρα του περιπα του v 1 e 1 e 2 e4 v 3 e 7 v 4 e 5 e 9 e 3 e 6 v 2 v 6 e 8 v 5 e 10 e 11 v 1 e 1 v 2 e 2 v 1 e 5 v 4 e 9 v 4 e 8 v 5 Περιήγηση: Ένας περι πατος με ταυτο σημες τερματικε ς κορυφε ς v 6 e 11 v 5 e 10 v 6 e 7 v 3 e 6 v 4 e 8 v 5 e 10 v 6 Μονοκονδυλιά (Trail): Ένας περι πατος χωρι ς επαναλαμβανο μενες ακμε ς Μονοπάτι: Ένας περι πατος χωρι ς επαναλαμβανο μενες κορυφε ς v 1 e 2 v 2 e 4 v 3 e 7 v 6 Κύκλος: Ένα μονοπα τι με ταυτο σημες τερματικε ς κορυφε ς v 1 e 1 v 2 e 2 v 1 e 5 v 4 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

3 Για Απλα Γραφη ματα Περίπατος: Μι α ακολουθι α κορυφω ν π =< v 0 v 1... v k > τε τοια ω στε (v i 1, v i ) E, 1 i k P k το γρα φημα-μονοπα τι με k κορυφε ς P k = ({v 1, v 2,..., v k }, {e i = (v i, v i+1 ) : 1 i < k}) C k το γρα φημα-κυ κλος με k κορυφε ς C k = ({v 1, v 2,..., v k }, {e i = (v i, v i+1 ) : 1 i < k} (v k, v 1 )) Χορδή: Μια ακμη e = (v i, v j ) που ενω νει δυο κορυφε ς ενο ς κυ κλου/μονοπατιου π =< v 0 v 1 v 2... v i... v j... v k >, ο που e / π, η ισοδυ ναμα i / {j 1, j + 1} Άχορδο μονοπα τι/α χορδος κυ κλος Οπή: Ένα επαγο μενο υπογρα φημα ενο ς γραφη ματος το οποι ο [επαγο μενο υπογρα φημα] ει ναι α χορδος κυ κλος Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

4 Ερώτηση 3.1: Έστω ε να γρα φημα G και ε νας κυ κλος του C μη κους k. Ει ναι το επαγο μενο υπογρα φημα απο τις κορυφε ς του C ισομορφικο με το C k? Ερώτηση 3.2: Έστω γρα φημα G με δ(g) 2. Να δειχθει ο τι το G περιε χει κυ κλο. Ερώτηση 3.3: Έστω απλο γρα φημα G με δ(g) 2. Να δειχθει ο τι το G περιε χει κυ κλο μη κους δ(g) + 1. Ισχυ ει για γραφη ματα με βρο γχους/παρα λληλες ακμε ς? Ερώτηση 3.4: Έστω απλο γρα φημα G με δ(g) k. Να δειχθει ο τι το G ε χει ε να μονοπα τι μη κους k. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

5 Λήμμα 3.1: Έστω γρα φημα G και u, v V(G). Το G περιε χει ε ναν (u, v)-περι πατο ανν περιε χει ε να (u, v)-μονοπα τι Απόδειξη : Προφανε ς. Απο τον ορισμο του μονοπατιου Θα δει ξουμε ο τι: Αν το G περιε χει ε να (u, v)-περι πατο W το τε το G περιε χει ε να (u, v)-μονοπα τι το οποι ο αποτελει ται απο κορυφε ς του W Έστω ε νας περι πατος W = [u = v 1,..., v k = v] ελα χιστου μη κους στο G για τον οποι ο η προ ταση δεν ισχυ ει. Η κορυφη v εμφανι ζεται μο νο μι α φορα στο W Εξετα ζουμε τον περι πατο W = [u = v 1,..., v k 1 ] που προκυ πτει απο την αφαι ρεση της κορυφη ς v k απο το W Το W ε χει μη κος < k (u, v k 1 )-μονοπα τι P με κορυφε ς του W και δεν περιλαμβα νει την κορυφη v Το μονοπα τι P ακολουθου μενο απο την ακμη (v k 1, v) ει ναι ε να (u, v)-μονοπα τι αποτελου μενο απο κορυφε ς του W άτοπο Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

6 Θεώρημα 3.2: Έστω γρα φημα G και ε στω A ο πι νακας γειτνι ασης του. Το τε η τιμη A l [i, j] ει ναι ο αριθμο ς των διαφορετικω ν (v i, v j )-περιπα των μη κους l στο G Απόδειξη [Με επαγωγή στο l]: βα ση: Ισχυ ει για l = 1. A[i, j] = 1 (v i, v j ) E Ε.Υ. (v i, v j )-μονοπα τι μη κους 1 Έστω ο τι ισχυ ει για k = l 1, δηλαδη A l 1 [i, j] ει ναι ο αριθμο ς των διαφορετικω ν (v i, v j )-περιπα των μη κους l 1 Ε.Β. A l = A l 1 A V(G) A l [i, j] = A l 1 [i, k]a[k, j] k=1 Κα θε ε νας απο τους A l 1 [i, k] (v i, v k )-περιπα τους που ακολουθει ται απο την ακμη (v k, v j ) ει ναι ε νας (v i, v j )-περι πατος Ερώτηση 3.5: Ισχυ ει για γραφη ματα με βρο γχους και παρα λληλες ακμε ς? Για πολυγραφη ματα: A[i, j] = { e : e = (v i, v j ) E } Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

7 Απόσταση: Έστω γρα φημα G και u, v V(G). Η απόσταση dist(u, v) ει ναι το μη κος του ελαχι στου (u, v)-μονοπατιου στο G. dist(u, v) = + εα ν δεν υπα ρχει (u, v)-μονοπα τι. Πρόταση 3.3 (Τριγωνική ανισότητα): Έστω γρα φημα G και u, v, w V(G) τρεις κορυφε ς του G. Το τε ισχυ ει: dist(u, v) + dist(v, w) dist(u, w) Απόδειξη : Έστω ο τι dist(u, v) + dist(v, w) +, αλλιω ς ισχυ ει τετριμμε να. dist(u, v) το μη κος του ελα χιστου (u, v)-μονοπατιου P uv dist(v, w) το μη κος του ελα χιστου (v, w)-μονοπατιου P vw Η παρα θεση P uw = P uv P vw δημιουργει (u, w)-μονοπα τι με μη κος απο το ελα χιστο (u, w)-μονοπα τι. dist(u, v) + dist(v, w) dist(u, w) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

8 Λήμμα 3.4: Έστω γρα φημα G. Κα θε περιη γηση περιττου μη κους στο G περιε χει ε ναν περιττο κυ κλο στο G Απόδειξη [με επαγωγή στο μήκος l της περιήγησης]: Έστω W μια περιη γηση περιττου μη κους l. Βα ση: l = 1 Η περιη γηση ει ναι βρο γχος, δηλαδη κυ κλος μη κους 1 Ε.Υ. Έστω ο τι κα θε περιη γηση περιττου μη κους < l περιε χει ε ναν περιττο κυ κλο Ε.Β. Έστω W μια περιη γηση περιττου μη κους l Περίπτωση 1: Η W δεν περιε χει επαναλαμβανο μενες κορυφε ς Το τε η W ει ναι εξ ορισμου [περιττο ς] κυ κλος Περίπτωση 2: Η W περιε χει επαναλαμβανο μενη κορυφη, ε στω u [εκτο ς της κοινη ς τερματικη ς κορυφη ς] Η W μπορει να διαμελιστει σε δυ ο μικρο τερες περιηγη σεις W 1, W 2 Μιας και η W ει ναι περιττου μη κους, μια εκ των W 1, W 2 ει ναι επι σης περιττου μη κους, ε στω η W 1 Απο Ε.Υ. η W 1 περιε χει περιττο κυ κλος, α ρα και η W Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

9 Θεώρημα 3.5: Ένα γρα φημα ει ναι διμερε ς ανν δεν περιε χει κυ κλους περιττου μη κους. Απόδειξη : Έστω διμερε ς γρα φημα G = (A, B, E) Έστω κυ κλος C = [v 1 v 2... v k = v 1 ] και ε στω v 1 A v 2 B, v 3 A, v 4 B,... v 2i 1 A και v 2i B i 1 v k = v 1 A k = 2i 1 για i 1 Ο κυ κλος C ε χει α ρτιο μη κος Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

10 Έστω γρα φημα G που δεν περιε χει περιττου ς κυ κλους. Θα βρου με διαμε ριση A, B του V(G) και θα δει ξουμε ο τι δεν υπα ρχει ακμη e = (u, v) : u, v A η u, v B Έστω κορυφη u και A, B τα συ νολα κορυφω ν που βρι σκονται σε α ρτια και περιττη απο σταση απο την u αντι στοιχα A B = και u A [dist(u, u) = 0] Έστω ακμη e = (x, y) : x, y A [ο μοια εα ν x, y B] Η περιη γηση W = {u... x y... u} άρτιο άρτιο{ 1 { { στο G ει ναι περιττου μη κους Η W περιε χει ε ναν περιττο κυ κλο [απο λη μμα 3.1 σελ. 51] Άτοπο γιατι το G δεν περιε χει περιττου ς κυ κλους. Κα θε ακμη e = (u, v) ε χει u A, v B η u B, v A Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

11 Εκκεντρότητα κορυφής του G [eccentricity]: ecc(v) = max dist(v, u) v V(G) Διάμετρος του G: diam(g) = max ecc(v) v V(G) Ακτίνα του G: rad(g) = min ecc(v) v V(G) Κεντρική κορυφή: Κα θε κορυφη v V(G) : ecc(v) = rad(g) Κέντρο του G: center(g) = {v : v V(G) και ecc(v) = rad(g)} Απόκεντρη κορυφή: Κα θε κορυφη v V(G) : ecc(v) = diam(g) Αντιδιαμετρικές κορυφές x, y V(G): dist(x, y) = diam(g) diam(g) = 6 rad(g) = 3 center(g) = { } far(g) = { } Κέντρο του G: far(g) = {v : v V(G) και ecc(v) = diam(g)} Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

12 Θεώρημα 3.6: Για κα θε γρα φημα G ισχυ ει rad(g) diam(g) 2rad(G) Απόδειξη : i. rad(g) diam(g) α μεσα, απο τους ορισμου ς ii. diam(g) 2rad(G) Έστω 2 αυθαι ρετες κορυφε ς x, y V(G) : dist(x, y) = diam(g) Έστω v V(G) μια κεντρικη κορυφη dist(v, x) ecc(v) = rad(g) dist(v, y) ecc(v) = rad(g) Απο τριγωνικη ανισο τητα: dist(x, y) dist(x, v) + dist(v, y) diam(g) 2rad(G) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

13 Θεώρημα 3.7: Για κα θε γρα φημα G, ει τε center(g) = far(g) η center(g) far(g) = Απόδειξη : Έστω { v center(g) far(g) v center(g) ecc(v) = rad(g) v far(g) ecc(v) = diam(g) } diam(g) = rad(g) (1) u V(G) ισχυ ει: rad(g) ecc(u) diam(g) (2) (1),(2) Όλες οι κορυφε ς ε χουν ι δια εκκεντρο τητα center(g) = far(g) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

14 Ερώτηση 3.6: Να δειχθει ο τι για κα θε δε νδρο T ισχυ ει ο τι center(t) {1, 2}. Ερώτηση 3.7: Να σχεδιαστει αλγο ριθμο ς που υπολογι ζει το κε ντρο center(t) ενο ς δε νδρου T. Ερώτηση 3.8: Έστω ε να συνδεδεμε νο γρα φημα G. Ει ναι το center(g) πα ντα συνδεδεμε νο? Ερώτηση 3.9: Να υπολογιστου ν τα rad(g), diam(g), center(g), far(g) ο που G το γρα φημα i. M a,b : το πλε γμα διαστα σεων a b ii. Q r : ο υπερκυ βος δια στασης r πο σα ζευ γη αντιδιαμετρικω ν κορυφω ν ε χει ο Q r? Ερώτηση 3.10: Να δειχθει ο τι για κα θε γρα φημα G ισχυ ει diam(g) δ(g). Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

15 Αποσυνθε σεις Απο στασης Αποσύνθεση απόστασης: Έστω γρα φημα G και κορυφη u V(G). Η αποσύνθεση απόστασης του G ως προς την u ει ναι η ακολουθι α συνο λων A(u) = [ X 0, X 1,..., X ecc(u) ] ο που X i = {v : v V(G) και dist(u, v) = i} X 1 X 2 1 X X 4 X 3 A(1) = { {1}, {2, 3, 4}, {5, 6, 7, 8}, {10}, {9, 11} } Εναλλακτικός ορισμός: Έστω γρα φημα G και κορυφη u V(G). Η αποσύνθεση απόστασης του G ως προς την u ει ναι η ακολουθι α συνο λων A(u) = [ X 0, X 1,..., X ecc(u) ] ο που X 0 = {u} i 1 X i = N G (X i 1 )\ X j, j=0 1 i ecc(u) Σημείωση: X i X j = 0 i < j ecc(u) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

16 Λήμμα 3.8: Έστω A(u) = [ X 0, X 1,..., X ecc(u) ] η αποσυ νθεση απο στασης του G ως προς την u. Το τε 0 i j ecc(u) και x, y V(G) : x X i, y X j, κα θε μονοπα τι P που συνδε ει τις κορυφε ς x και y τε μνει ο λα τα συ νολα X i... X j Απόδειξη : Έστω x = u 0, u 1,..., u q 1, u q = y ε να (x, y)-μονοπα τι. Το μονοπα τι αντιστοιχει στην ακολουθι α a = [a 0, a 1,..., a q] ο που u l X al, 0 l q a 0 = 1, a q = j [ χρη ση κορυφη v X k, 0 k ecc(u) ισχυ ει: εναλλακτικου ορισμου N G (v) X k 1 X k X k+1 [εφο σον ορι ζονται] Στην ακολουθι α a ισχυ ει a k 1 a k 1, 0 < k < q [διαδοχικοι ο ροι απε χουν το πολυ κατα 1] Η a περιλαμβα νει ο λους τους αριθμου ς στο δια στημα i... j Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

17 Λήμμα 3.9: Έστω γρα φημα G και ε στω κορυφη u V(G). Το τε ο αριθμο ς των μονοπατιω ν μη κους l που ε χουν την u ως α κρο τους ει ναι το πολυ d(u)( (G) 1) l 1 Απόδειξη : Έστω P i u, 1 i l το συ νολο των μονοπατιω ν που ε χουν την u ως το ε να α κρο τους και ε χουν μη κος P 1 u = d(u) (3) Κα θε μονοπα τι του Pu i+1, 1 i < l αποτελει επε κταση ενο ς μονοπατιου του P i u Έστω o(p) το α λλο α κρο κα θε μονοπατιου που ξεκινα ει απο την u. P i+1 u d(o(p)) 1 (G) 1 P i u ( (G) 1) P P i u P P i u P i+1 u P i u ( (G) 1) (4) (3),(4) P l u d(u)( (G) 1)l 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

18 Λήμμα 3.10: Έστω γρα φημα G με (G) d. Το τε για κα θε κορυφη u V(G) υπα ρχουν το πολυ 1 + d d 2 ((d 1)l 1) κορυφε ς του G σε απο σταση l απο την u Απόδειξη : Έστω A(u) = [X 0, X 1,..., X l ] η αποσυ νθεση απο στασης του G ως προς την u Εξ ορισμου X i, 0 i l ει ναι το πλη θος των κορυφω ν σε απο σταση i απο την u X i μονοπα τια απο την u προς το X i μη κους i l l l X i 1 + d(u)( (G) 1) i d(d 1) i 1 i=0 i=1 i=1 l 1 = 1 + d (d 1) i = 1 + d d 2 ((d 1)l 1) i=0 [ Άθροισμα S n n ο ρων γεωματρικη ς προο δου S n = 1 + λ + λ λ n 1 = λn 1 λ 1 ] Θεώρημα 3.11: Έστω γρα φημα G με rad(g) r και (G) d. Το τε V(G) 1 + d d 2 ((d 1)r 1) Απόδειξη : Με εφαρμογη του προηγου μενου λη μματος για κα ποια κορυφη u center(g) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

19 Πλάτος απόστασης του G ως προς την u: πα(u) = max { X i }, X i A G (u) = [ X 0, X 1,..., X ecc(u) ] Πλάτος απόστασης γραφήματος: πα(g) = min u V(G) {πα(u)} Θεώρημα 3.12: Έστω γρα φημα G. Το τε ισχυ ει ο τι πα(g) V(G) 1 diam(g) Απόδειξη : [ ] Έστω u V(G) : πα(u) = πα(g) και ε στω A(u) = X 0, X 1,..., X ecc(u) ecc(u) V(G) 1 + X i 1 + ecc(u)πα(u) 1 + diam(g)πα(g) i=1 πα(g) V(G) 1 diam(g) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

20 2 6 Περίμετρος γραφήματος G [που περιέχει κύκλο(υς)]: crm(g): μη κος ενο ς με γιστου [μη κους] κυ κλου του G Περιφέρεια γραφήματος G [που περιέχει κύκλο(υς)]: girth(g): μη κος ενο ς ελα χιστου [μη κους] κυ κλου του G crm(g) = 7 κυ κλος: (1, 4, 3, 5, 7, 6, 2, 1) girth(g) = 3 κυ κλος: (5, 6, 7) Θεώρημα 3.13: Έστω απλο γρα φημα G που περιε χει κυ κλο(υς). Το τε δ(g) crm(g) 1 Απόδειξη : Έστω P = (u 0, u 1,..., u k ) ε να με γιστο μονοπα τι του G Όλες οι κορυφε ς του N G (u) ανη κουν στο μονοπα τι N G (u) δ(g) γει τονες της u ανη κουν στο μονοπα τι κυ κλος μη κους δ(g) + 1 στο G δ(g) crm(g) 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

21 Θεώρημα 3.14: Κα θε γρα φημα G με πυκνο τητα ϵ(g) 1 περιε χει κυ κλο. Απόδειξη [Με επαγωγή στο V(G), ( ϵ(g) = E(G) V(G) ) ]: Ισχυ ει εξ ορισμου για κα θε γρα φημα με βρο γχους η παρα λληλες ακμε ς. Άρα θα το δει ξουμε για απλα γραφη ματα. Βα ση: n = 3 m 3 μοναδικο γρα φημα Ε.Υ. Έστω ο τι κα θε γρα φημα H με ϵ(h) 1 και 3 V(H) < n ε χει κυ κλο Ε.Β. Έστω γρα φημα G με ϵ(g) 1 και 3 < V(G) = n Περίπτωση 1: δ(g) 2 Δημιουργου με τον περι πατο ο που ξεκινω ντας απο μια κορυφη, βγαι νουμε απο αυτη απο διαφορετικη ακμη απο αυτη ν που μπη καμε. Ο περι πατος μπορει να συνεχι ζεται συνε χεια γιατι δ(g) 2. Μετα απο V(G) βη ματα θα επαναληφθει ακμη κυ κλος Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

22 Περίπτωση 2: δ(g) 1 Υπα ρχει κορυφη u με d(u) = 1 G\u ε χει ϵ(g\u) = E(G\u) V(G\u) = E(G) 1 V(G) 1 E(G) V(G) 1 Ε.Υ. = G\u ε χει κυ κλο G ε χει κυ κλο Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

23 Θεώρημα 3.15: Έστω γρα φημα G με κυ κλο(υς) και δ(g) d. Το τε ισχυ ει r d (d 1) i girth(g) = 2r + 1 i=0 V(G) r 1 2 (d 1) i girth(g) = 2r i=0 Απόδειξη : Περίπτωση 1: girth(g) = 2r + 1 Έστω X 0, X 1,..., X r τα πρω τα r + 1 συ νολα μιας αποσυ νθεσης απο στασης A(u) ως προς κα ποια κορυφη u V(G) η οποι α ανη κει σε ε ναν κυ κλο μη κους girth(g) v X i, 1 i r η v ε χει ακριβω ς 1 γει τονα στο X i 1 [Διαφορετικα, ε στω ο τι ει χε 2 γει τονες w 1 και w 2 X i 1 μονοπα τια u w 1 και u w 2 ι διου μη κους (i 1) κυ κλος μη κους το πολυ 2i < 2r < girth(g) άτοπο (ορισμο ς girth(g))] X i (d 1) X i 1, 2 i r X 0 = 1, X 1 d r V(G) X i 1 + d + d(d 1) + + d(d 1) r 1 i=0 r 1 = 1 + d (d 1) i i=0 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

24 Περίπτωση 2: girth(g) = 2r Έστω (u, v) μια αυθαι ρετη ακμη του G που ανη κει σε κυ κλο μη κους girth(g) G = G\(u, v) {(u, w), (w, v)} Έστω X 0, X 1,..., X r τα πρω τα r + 1 συ νολα μιας αποσυ νθεσης απο στασης A(w) y X i, 2 i r η y ε χει ε ναν ακριβω ς γει τονα στο X i 1 [Εα ν y X i, 2 i r με 2 γει τονες στο X i 1 Το τε ε χω στο G κυ κλο μεγε θους 2i Το τε ε χω στο G κυ κλο μεγε θους 2i 1 2r 1 < girth(g) άτοπο] X 0 = 1 X 1 = 2 X i (d 1) X i 1, 2 < i r r 1 r V(G ) X i (d 1) + + 2(d 1) r 1 = (d 1) i (5) i=0 V(G) = V(G ) 1 (6) r 1 (5),(6) V(G) 2 (d 1) i i=0 w X0 u v X1 G Xi 1 Xi y i=0 Xr 1 Xr y Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71

Θεωρι α Γραφημα των 2η Δια λεξη

Θεωρι α Γραφημα των 2η Δια λεξη Θεωρι α Γραφημα των 2η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος 2015 23 / 47 Βαθμοι Κορυφω ν Βαθμός κορυφής: d G (v) =

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 10η Δια λεξη

Θεωρι α Γραφημα των 10η Δια λεξη Θεωρι α Γραφημα των 0η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 05 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 0η Δια λεξη Φεβρουα ριος 05 99 / 0 Χρωματισμο ς Ακμω ν k-χρωματισμός ακμών: Η ανα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 5η Δια λεξη

Θεωρι α Γραφημα των 5η Δια λεξη Θεωρι α Γραφημα των 5η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος 2015 107 / 122 Δε νδρα Δένδρο: Ένα γρα φημα το οποι ο

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 9η Δια λεξη

Θεωρι α Γραφημα των 9η Δια λεξη Θεωρι α Γραφημα των 9η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 183 / 198 Ταιρια σματα (Matchings) Ταίριασμα: Ένα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 7η Δια λεξη

Θεωρι α Γραφημα των 7η Δια λεξη Θεωρι α Γραφημα των 7η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος 2015 143 / 167 Hamiltonian γραφη ματα κύκλος Hamilton:

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 11η Δια λεξη

Θεωρι α Γραφημα των 11η Δια λεξη Θεωρι α Γραφημα των 11η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος 2015 211 / 228 απεικόνιση γραφήματος στο επίπεδο (Embedding):

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 1η Δια λεξη

Θεωρι α Γραφημα των 1η Δια λεξη Θεωρι α Γραφημα των η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 205 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των η Δια λεξη Φεβρουα ριος 205 / 22 Εισαγωγη Διδα σκων: Αντω νιος Συμβω νης ΣΕΜΦΕ, κτι

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη

Διαβάστε περισσότερα

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Β. Μεταφτση ς 15 Δεκεμβρι ου 2016 1 Παραστάσεις Ομάδων Έστω a, b, c,... ε να συ νολο απο διακριτα συ μβολα και a 1, b 1, c 1,... νε α συ μβολα. Μια λέξη W στα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 4η Διάλεξη

Θεωρία Γραφημάτων 4η Διάλεξη Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη

Διαβάστε περισσότερα

d u d dt u e u d dt e u d u 1 u dt e 0 2 e

d u d dt u e u d dt e u d u 1 u dt e 0 2 e Ρ ΤΟ Θ ΜΑ Μ. Α ΑΠΟ ε ΞεΤε ΤΙ ΑΝΑΓΚΑ Α ΚΑΙ ΙΚΑΝ ΣΥΝΘ ΚΗ ΣΤε ΝΑ Ι ΝΥΣΜΑ u t 0 ΝΑ ΠΑΡΑΜ ΝεΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ΜΙΑ ε ΟΜ ΝΗ ευθε Α ε ΝΑΙ u t u 0 Π ειξη Α ΑΠΟ ε ΞΟΥΜε ΤΟ ΙΚΑΝ ΗΛΑ ΑΝ ε ΝΑΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ε ΟΜ ΝΗ ευθε

Διαβάστε περισσότερα

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains The Probabilistic Method - Probabilistic Techniques Lecture 8: Markov Chains Sotiris Nikoletseas Chistoforos Raptopoulos Computer Engineering and Informatics Department 205-206 Chistoforos Raptopoulos

Διαβάστε περισσότερα

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Η εταιρεία Kiefer ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Πηγε ς Ενε ργειας στην Ελλα δα. Αναλαμβα νει ε ργα ως EPC

Διαβάστε περισσότερα

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων ΚΕΦΑΛΑΙΟ 3 Βασικά Χαρακτηριστικά Αριθμητικών εδομένων Α ντι κείμε νο του κε φα λαί ου εί ναι: Να κα τα νο ή σου με τα βα σι κά χαρα κτη ρι στι κά των α ριθ μη τι κών δεδο μέ νων (τά ση, δια σπο ρά, α συμ

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 10η Διάλεξη

Θεωρία Γραφημάτων 10η Διάλεξη Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑ ΤO ΤΕ ΧΝΙ ΤΩΩΝ ΕΡ ΓO ΣΤΑ ΣΙ ΩΩΝ ΤΣΙ ΜΕ ΝΤO ΛΙ ΘΩΩΝ, ΤΣΙ

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

Αποτελεσματικός Προπονητής

Αποτελεσματικός Προπονητής ÐÝñêïò Ι. ÓôÝ öá íïò & Χριστόπουλος Β. Γιάννης Αποτελεσματικός Προπονητής Ένας οδηγός για προπονητές όλων των ομαδικών αθλημάτων Θεσσαλονίκη 2011 Ðå ñéå ü ìå íá Ðñü ëï ãïò...6 Åé óá ãù ãþ...11 Êå öü ëáéï

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ Γιάννης Θεοδωράκης Πανεπιστήμιο Θεσσαλίας ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ Πρό λο γος...6 1. Ά σκη ση και ψυ χική υ γεί α Ει σα γω γή...9 Η ψυ χο λο γί α της ά σκη σης...11

Διαβάστε περισσότερα

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A δ ` 3kς 3qz 3{9 ` ]l 3 # ~-?1 [ve 3 3*~ /[ [ ` ο `` ο ~ ο ```` ξα ~ ``` Πα```` α ` τρι ```ι ``` ι ` ι ~ και ``αι [D # ` 4K / [ [D`3k δδ 13` 4K[ \v~-?3[ve

Διαβάστε περισσότερα

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρία Γραφημάτων 9η Διάλεξη Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη

Διαβάστε περισσότερα

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα.

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΔΣ6. Δίνονταί οί πίνακες Σ1(Κ, Κ) καί Π1(Κ, Κ) που περίέχουν τα αποτελέσματα των

Διαβάστε περισσότερα

Δομές Ελέγχου και Επανάληψης

Δομές Ελέγχου και Επανάληψης Εργαστήριο 3 ο Δομές Ελέγχου και Επανάληψης Εισαγωγή Σκοπο ς του εργαστηρι ου αυτου ει ναι η εισαγωγη στην εκτε λεση εντολω ν υπο συνθη κη και στις δομές επανάληψης. Δομές Ελέγχου Η ικανότητα να μπορεί

Διαβάστε περισσότερα

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ. σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

Lecture 8: Random Walks

Lecture 8: Random Walks Randomized Algorithms Lecture 8: Random Walks Sotiris Nikoletseas Associate Professor CEID - ETY Course 2016-2017 Sotiris Nikoletseas, Associate Professor Randomized Algorithms - Lecture 8 1 / 33 Overview

Διαβάστε περισσότερα

ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ

ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ 12 Το γε γο νός ό τι δια βά ζεις αυ τό το βι βλί ο ση μαί νει ό τι έ χεις μολυν θεί α πό έ να μι κρόβιο το μι κρό βιο του πο δο σφαί ρου και σίγου

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 11η Διάλεξη

Θεωρία Γραφημάτων 11η Διάλεξη Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη

Διαβάστε περισσότερα

F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0

F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0 ΜΑ 1 Μ.2 Ν ΟΙ ΠΑΡ ΓΩΓΟΙ fx ΚΑΙ fy ΥΠ ΡΧΟΥΝ ΚΑΙ ε ΝΑΙ ΙΑφΟΡ ΣΙΜε Σε Κ ΠΟΙΑ ΠεΡΙΟΧ ΤΟΥ a, b Τ Τε ΝΑ ΑΠΟ ειχθε ΤΙ fxy fyx. Α εξετ ΣεΤε ΑΝ fxy fyx ΣΤΟ 0, 0 ΓΙΑ ΤΗΝ ΣΥΝ ΡΤΗΣΗ f x, y xy x2 y 2 ΓΙΑ x, y 0, 0

Διαβάστε περισσότερα

ε πι λο γές & σχέ σεις στην οι κο γέ νεια

ε πι λο γές & σχέ σεις στην οι κο γέ νεια ε πι λο γές & σχέ σεις στην οι κο γέ νεια ΚΕΙΜΕΝΟ: Υπτγος ε.α Άρης Διαμαντόπουλος, Διδάκτορας Φιλοσοφίας - Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Α ξί α Οι κο γέ νειας Ό,τι εί ναι το κύτ τα ρο

Διαβάστε περισσότερα

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ, Ν.Π.Δ.Δ. ΚΑΙ O.Τ.Α. Α. ΓΙΑ ΤΗΝ ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ Ε ΛΗ ΦΘΗ ΣΑΝ Υ ΠO ΨΗ 1. H 15/1981

Διαβάστε περισσότερα

Ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης

Ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης Ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Γα υ ρι ι ε ε κε ε κρα ξα προ ος σε ε ε ει σα κου ου σο ο ο ο ον μου ου ει σα κου σο ον μου Κυ ρι ε ε Κυ ρι ε ε κε κρα ξα προς σε ε ει σα κου σο ο ο ον μου ου προ

Διαβάστε περισσότερα

ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ

ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ ΤΗ ΑΓΙΑ ΚΑΙ ªΕΓΑΛΗ ΔΕΥΤΕΡΑ. Eις τους Αίνους. Ε ρ χο με νος ο Κυ ρι ος προς το ε κου ου σι ο ον πα α α θος τοις Α πο στο λοις ε λε γε εν εν τη η η η ο ο ο ο

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

E(G) 2(k 1) = 2k 3.

E(G) 2(k 1) = 2k 3. Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από

Διαβάστε περισσότερα

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ ΤΥΙΚΑ & ΜΑΚΑΡΙΣΜΟΙ Ἦχος Νη Μ Α Ν µην Ευ λο γει η ψυ χη µου τον Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ λο γει η ψυ χη µου τον Κυ ρι ον και πα αν τα τα εν τος µου το ο νο µα το α γι ον αυ του Ευ λο γει η ψυ

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,

Διαβάστε περισσότερα

Πρός τούς ἀδελφούς μου

Πρός τούς ἀδελφούς μου Πρός τούς ἀδελφούς μου Συμεων μητροπολιτου νεασ ΣμυρνηΣ Πρός τούς ἀδελφούς μου EOρτια ΠοιμαντικA μηνyματα Ἐπιμέλεια ἔκδοσης: Βασίλης Ἀργυριάδης Ἐκδόσεις κολοκοτρώνη 49, Ἀθήνα 105 60 τηλ.: 210 3226343

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Πολύ ενθαρρυντική εικόνα. Σαφώς καλύτερη

Διαβάστε περισσότερα

σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι

σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι Φ Λ Ι Ι ι αγωγτ ρι μ Π λλι πρα τν πρ βλτ ματα χαι χαταστι αει τη αθημ ριν ζω μπ ρ ι ν να περιγραφ ν με τη β θεια ν διαγρι μματ ζ απ τελ μεν υ απ να ι ν λ ημε ων αι να ν λ γραμμι ν π υ να ενι ν υν υγ ε

Διαβάστε περισσότερα

των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09

των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09 των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΦOΡ ΤO ΕΚ ΦOΡ ΤΩΩ ΤΩΩΝ ΠΡΑ ΚΤO ΡΕΙ ΩΩΝ ΜΕ ΤΑ ΦO ΡΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α.

Διαβάστε περισσότερα

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Εισαγωγή Η επι λο γή ενό ς co m p a ct συ στή µ α το ς β ι ολο γι κο ύ κα θ α ρι σµ ο ύ θ α πρέπει να πραγµ α τοπο ι είτα ι β ά σει τη ς α

Διαβάστε περισσότερα

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ Ο Ό μη ρος και ο Η σί ο δος έ χουν δη μιουρ γή σει κα τά τον Η ρό δο το 1, τους ελ λη νι κούς θε ούς. Ο Ό μη ρος στη θε ο γο νί α του έ χει ιε ραρ

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,

Διαβάστε περισσότερα

Αρ χές Ηγε σί ας κα τά Πλά τω να

Αρ χές Ηγε σί ας κα τά Πλά τω να . Αρ χές Ηγε σί ας κα τά Πλά τω να ΚΕΙΜΕΝΟ: Υπτγος ε.α. Ά ρης Δια μα ντό που λος, Ψυχο λό γος, Δι δά κτω ρ Φι λο σο φί ας χή, στο σώ μα και στο πνεύ μα, 84 ΣΤΡΑΤΙΩΤΙΚΗ ΕΠΙΘΕΩΡΗΣΗ ΝΟΕΜΒΡΙΟΣ - ΔΕΚΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

ΔΙΑΚΟΣ ΑΛΕΞΑΝΡΟΣ ΥΠΛΓΟΣ (ΠΖ)

ΔΙΑΚΟΣ ΑΛΕΞΑΝΡΟΣ ΥΠΛΓΟΣ (ΠΖ) ΥΠΛΓΟΣ (ΠΖ) ΔΙΑΚΟΣ ΑΛΕΞΑΝΡΟΣ ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ: ΛΕΙV Πα να γιώ της Πα σπά της Mα θη τής Γυ μνα σί ου α ντι δρού σε στις ι τα λι κές διατα γές και α πα γο ρεύ σεις. Σε μια ε πέ τειο της 25 ης Μαρ τί ου

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 11ς (Π, (-ά) ) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 11ς (Π, (-ά) ) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA Α. Γενικά Η VOLTERRA, ως Προμηθευτη ς Ηλεκτρικη ς Ενε ργειας και ε χοντας ως αντικειμενικο στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Γραφέας: Βασίλης Λίβανος Διδάσκων: Σταύρος Κολλιόπουλος 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (Edge-eparator) ενός γραφήματος G = (V, E)

Διαβάστε περισσότερα

Joseph A. Luxbacher. Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας. ΠοΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία

Joseph A. Luxbacher. Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας. ΠοΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία Joseph A. Luxbacher Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας ΠοΔΟΣΦΑΙΡΟ Βήματα για την επιτυχία ΘΕΣΣΑΛΟΝΙΚΗ 2008 ΠΟΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία. Joseph A. Luxbacher Μετάφραση - Επιμέλεια:

Διαβάστε περισσότερα

Κα θη γη τών Ι δι ω τι κών εκ παι δευ τη ρίων σχολικών µονάδων τεχνικής & επαγγελµατικής εκπαίδευσης O17R10

Κα θη γη τών Ι δι ω τι κών εκ παι δευ τη ρίων σχολικών µονάδων τεχνικής & επαγγελµατικής εκπαίδευσης O17R10 Κα θη γη τών Ι δι ω τι κών εκ παι δευ τη ρίων σχολικών µονάδων τεχνικής & επαγγελµατικής εκπαίδευσης O17R10 KΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚΑ ΘΗ ΓΗ ΤΩΩΝ Ι Δ Ι ΩΩ ΤΙ ΚΩΩΝ

Διαβάστε περισσότερα

ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ

ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΚΕΙ ΜΕ ΝΟ-ΦΩ ΤΟΓΡΑ ΦΙΕΣ: Υ πτγος ε.α. Ορ θό δο ξος Ζω τιά δης ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ Το Με τάλ λιο Ε ξαι

Διαβάστε περισσότερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Ιο νιο Πανεπιστη μιο, Κε ρκυρα 17-5-2012 Παύλος Σταμπουλι δης, Με λος ΔΣ Hellenic Startup

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ (ΠΕΡΙΕΧΕΙ ΑΚΗΕΙ ΚΑΙ ΑΠΟ ΣΗΝ ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ ΣΗ Ε.Μ.Ε) ΑΚΗΗ 1 Έςτω ςυνεήσ ςυνάρτηςη :RR, με (0)=2 η οποία ικανοποιεί τη ςέςη ( ) 4 = 6 ια κά ε R α) Να βρείτε τισ τιμέσ (2) και (-2) β) Να απο είξετε τι υπάρει

Διαβάστε περισσότερα

Χαιρετισμοί. Περιεχόμενα Ενότητας

Χαιρετισμοί. Περιεχόμενα Ενότητας Χαιρετισμοί Περιεχόμενα Ενότητας Χαιρετισμός του Διευθυντή Μέσης Τεχνικής και Επαγγελματικής Εκπαίδευσης, κ. Ηλία Μαρκάτζιη Χαιρετισμός από τον Πρόεδρο του Συνδέσμου Γονέων και Κηδεμόνων της Σχολής, κ.

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΤΥΠΟΥ. Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras

ΔΕΛΤΙΟ ΤΥΠΟΥ. Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras ΔΕΛΤΙΟ ΤΥΠΟΥ Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras Στο πλαι룱綟σιο της Παγκο룱綟 σμιας Εβδομα룱綟 δας Επιχειρηματικο룱綟 τητας*, o ΕΣΥΝΕΔΕ και η Ομοσπονδι룱綟α ΕΣΥΝΕ, σε συνεργασι룱綟α

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ - ΞΕΝΕΣ ΓΛΩΣΣΕΣ - ΓΥΜΝΑΣΙΟ

ΑΞΙΟΛΟΓΗΣΗ - ΞΕΝΕΣ ΓΛΩΣΣΕΣ - ΓΥΜΝΑΣΙΟ ΑΞΙΟΛΟΓΗΣΗ - ΞΕΝΕΣ ΓΛΩΣΣΕΣ - ΓΥΜΝΑΣΙΟ Σύμφωνα με το ΠΔ 126 (ΦΕΚ 211/11-11-2016 ) για την αξιολο γηση της επι δοσης στις ξε νες γλω σσες κατα τη δια ρκεια των τετραμη νων ελε γχεται η ικανο τητα των μαθητω

Διαβάστε περισσότερα

S A : N G (S) N G (S) + d S d + d = S

S A : N G (S) N G (S) + d S d + d = S Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Εάν σε διμερές γράφημα

Διαβάστε περισσότερα

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά Πρώϊος Μιλτιάδης Αθαναηλίδης Γιάννης Ηθική στα Σπορ Θεωρία και οδηγίες για ηθική συμπεριφορά ΘΕΣΣΑΛΟΝΙΚΗ 2004 1 ΗΘΙΚΗ ΣΤΑ ΣΠΟΡ ΘΕΩΡΙΑ ΚΑΙ ΟΔΗΓΙΕΣ ΓΙΑ ΗΘΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ : Εκδόσεις Χριστοδουλίδη Α. & Π.

Διαβάστε περισσότερα

Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ

Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ ΓΚΛΗ ΜΑ ΤΑ ΔΗ Ω ΣΕΙΣ 1941-1944 Ε ΓΚΛΗ ΜΑ ΤΑ ΔΗ Ω ΣΕΙΣ 19 Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ 1941-1944 ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ:

Διαβάστε περισσότερα

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29 ΠΕΡΙEΧΟΜΕΝΑ Οδηγός χρησιμοποίησης του βιβλίου και των τριών ψηφιακών δίσκων (DVD)...11 Σκο πός του βι βλί ου και των 3 ψηφιακών δί σκων...15 Λί γα λό για α πό το Σχο λι κό Σύμ βου λο Φυ σι κής Α γω γής...17

Διαβάστε περισσότερα

Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ

Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ ΚΕΙΜΕΝΟ: Ευ γέ νιος Αρ. Για ρέ νης, Α ντει σαγ γε λέ ας Στρα το δι κεί ου Ιω αν νί νων, Δι δά κτο ρας στο Πά ντειο Πα νε πι στή μιο Α πό την κλα σι κή φά λαγ γα

Διαβάστε περισσότερα

Μάνατζμεντ και Μάνατζερς

Μάνατζμεντ και Μάνατζερς Κ Ε ΦΑ ΛΑΙΟ 1 Μάνατζμεντ και Μάνατζερς Κά θε μέ ρα ε πι σκε πτό μα στε διά φο ρους ορ γα νισμούς με γά λους ή μι κρούς και ερ χό μα στε σε επα φή με τους υ παλ λή λους και τους μά να τζερ ς. Α νά λο γα

Διαβάστε περισσότερα

Λειτουργία Μ. Βασιλείου Ἦχος υ5 Δι. Κς πι ε ε ε λε η ζον Κς ς πι ε ε ε λε η ζον. Κς πι ε ε λε ε ε η η ζον Κς πι ε ε ε λε η ζον

Λειτουργία Μ. Βασιλείου Ἦχος υ5 Δι. Κς πι ε ε ε λε η ζον Κς ς πι ε ε ε λε η ζον. Κς πι ε ε λε ε ε η η ζον Κς πι ε ε ε λε η ζον d Ἀρχιμ. Ἀριστοβούλου Κυριαζῆ, Μαθήματα Ἐκκλ. Μουσικῆς 1 Μέρος 6 ο, Λειτουργικά, Θ. Λειτουργία Μ. Βασιλείου Λειτουργία Μ. Βασιλείου Ἦχος υ5 Δι msdja0dagixad Dad.zaQdd]d0agIxaqd Daz.' Κς πι ε ε ε λε η ζον

Διαβάστε περισσότερα

ΘΑ ΛΗΣ Ο ΜΙ ΛΗ ΣΙΟΣ. του, εί ναι ση μα ντι κό να ει πω θούν εν συ ντομί α με ρι κά στοι χεί α για το πο λι τι σμι κό πε ριβάλ

ΘΑ ΛΗΣ Ο ΜΙ ΛΗ ΣΙΟΣ. του, εί ναι ση μα ντι κό να ει πω θούν εν συ ντομί α με ρι κά στοι χεί α για το πο λι τι σμι κό πε ριβάλ ΘΑ ΛΗΣ Ο ΜΙ ΛΗ ΣΙΟΣ ΟΙ ΒΑ ΣΙ ΚΕΣ ΑΡ ΧΕΣ ΤΗΣ ΦΙ ΛΟ ΣΟ ΦΙΑΣ ΤΟΥ, Ο ΡΟ ΛΟΣ ΤΟΥ Α ΡΙ ΣΤΟ- ΤΕ ΛΗ ΣΤΗ ΔΙΑ ΔΟ ΣΗ ΤΩΝ ΘΕ ΣΕ ΩΝ ΤΟΥ ΚΑΙ Η Υ ΠΟ ΔΟ ΧΗ ΤΩΝ ΦΙ- ΛΟ ΣΟ ΦΙ ΚΩΝ ΤΟΥ ΘΕ ΣΕ- ΩΝ ΣΤΗΝ Ε ΠΟ ΧΗ ΤΟΥ ΚΙΚΕ ΡΩ ΝΑ

Διαβάστε περισσότερα

Στις α ντιπα λό τη τες με τα ξύ των

Στις α ντιπα λό τη τες με τα ξύ των Υ ΠΟ ΣΤΗ ΡΙ ΞΗ ΤΩΝ ΨΕ ΓΙΑ ΕΠΙΤΥΧΗ ΣΧΕΔΙΑΣΗ ΚΑΙ ΔΙΕΞΑΓΩΓΗ ΣΤΟ ΣΥΓ ΧΡΟ ΝΟ Ε ΠΙ ΧΕΙ ΡΗ ΣΙΑ ΚΟ ΠΕ ΡΙ ΒΑΛ ΛΟΝ ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ: Αν χης (ΠΖ) Ιω άν νης Ιω άν νου Στις α ντιπα λό τη τες με τα ξύ των αν θρώπων,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες

ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες Ο ΡΟ ΛΟΣ ΤΩΝ ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες ΚΕΙΜΕΝΟ: Α να στά σιος Γ. Ρούσ σης Κοι νω νιο λό γος - Ε γκλη μα το λό

Διαβάστε περισσότερα

ΠΡΟ ΛΟ ΓΟΣ ΤΗΣ ΕΛ ΛΗ ΝΙ ΚΗΣ ΕΚ ΔΟ ΣΗΣ

ΠΡΟ ΛΟ ΓΟΣ ΤΗΣ ΕΛ ΛΗ ΝΙ ΚΗΣ ΕΚ ΔΟ ΣΗΣ ΠΡΟ ΛΟ ΓΟΣ ΤΗΣ ΕΛ ΛΗ ΝΙ ΚΗΣ ΕΚ ΔΟ ΣΗΣ Η ε πο χή μας χα ρα κτη ρί ζε ται, ή του λά χι στον έ τσι θα έ πρε πε, α πό πλη θώ ρα ε πιλο γών ε λεύ θερου χρό νου. Η δια θε σι μό τη τα πα ράλ λη λα κα τάλ λη λης

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10

των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10 των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10 2 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΕΡ ΓΑΖO ΜΕ ΝΩΩΝ ΣΕ

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Αλγόριθμοι Γραφημάτων Τοπολογική Διάταξη

Διαβάστε περισσότερα

εξειδίκευση στη γνώση

εξειδίκευση στη γνώση εξειδίκευση στη γνώση Εκηβόλος Ετήσια έκδοση της Ελληνικής Ακαδημίας Φυσικής Αγωγής Τεύχος 7, Φεβρουάριος 2010 Το πε ριο δι κό διευ θύ νε ται α πό συ ντα κτι κή ε πι τρο πή Υ πεύ θυ νος σύ ντα ξης: Ευάγγελος

Διαβάστε περισσότερα