Θεωρι α Γραφημα των 3η Δια λεξη
|
|
- Ζηναις Αριάδνη Αποστόλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Θεωρι α Γραφημα των 3η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
2 Μονοπα τια-κυ κλοι και Αποστα σεις Έστω ε να γρα φημα G(V, E) το οποι ο μπορει να ε χει παρα λληλες ακμε ς η βρο γχους. Περίπατος: Ένας περίπατος μήκους k ει ναι μια ακολουθι α π =< v 0 e 1 v 1... v k 1 e k v k > απο εναλλασσο μενες κορυφε ς και ακμε ς του γραφη ματος G ε τσι ω στε e i = (v i 1, v i ), 1 i k (v 0, v k )-περι πατος, v 0, v k : τερματικε ς κορυφε ς η α κρα του περιπα του v 1 e 1 e 2 e4 v 3 e 7 v 4 e 5 e 9 e 3 e 6 v 2 v 6 e 8 v 5 e 10 e 11 v 1 e 1 v 2 e 2 v 1 e 5 v 4 e 9 v 4 e 8 v 5 Περιήγηση: Ένας περι πατος με ταυτο σημες τερματικε ς κορυφε ς v 6 e 11 v 5 e 10 v 6 e 7 v 3 e 6 v 4 e 8 v 5 e 10 v 6 Μονοκονδυλιά (Trail): Ένας περι πατος χωρι ς επαναλαμβανο μενες ακμε ς Μονοπάτι: Ένας περι πατος χωρι ς επαναλαμβανο μενες κορυφε ς v 1 e 2 v 2 e 4 v 3 e 7 v 6 Κύκλος: Ένα μονοπα τι με ταυτο σημες τερματικε ς κορυφε ς v 1 e 1 v 2 e 2 v 1 e 5 v 4 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
3 Για Απλα Γραφη ματα Περίπατος: Μι α ακολουθι α κορυφω ν π =< v 0 v 1... v k > τε τοια ω στε (v i 1, v i ) E, 1 i k P k το γρα φημα-μονοπα τι με k κορυφε ς P k = ({v 1, v 2,..., v k }, {e i = (v i, v i+1 ) : 1 i < k}) C k το γρα φημα-κυ κλος με k κορυφε ς C k = ({v 1, v 2,..., v k }, {e i = (v i, v i+1 ) : 1 i < k} (v k, v 1 )) Χορδή: Μια ακμη e = (v i, v j ) που ενω νει δυο κορυφε ς ενο ς κυ κλου/μονοπατιου π =< v 0 v 1 v 2... v i... v j... v k >, ο που e / π, η ισοδυ ναμα i / {j 1, j + 1} Άχορδο μονοπα τι/α χορδος κυ κλος Οπή: Ένα επαγο μενο υπογρα φημα ενο ς γραφη ματος το οποι ο [επαγο μενο υπογρα φημα] ει ναι α χορδος κυ κλος Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
4 Ερώτηση 3.1: Έστω ε να γρα φημα G και ε νας κυ κλος του C μη κους k. Ει ναι το επαγο μενο υπογρα φημα απο τις κορυφε ς του C ισομορφικο με το C k? Ερώτηση 3.2: Έστω γρα φημα G με δ(g) 2. Να δειχθει ο τι το G περιε χει κυ κλο. Ερώτηση 3.3: Έστω απλο γρα φημα G με δ(g) 2. Να δειχθει ο τι το G περιε χει κυ κλο μη κους δ(g) + 1. Ισχυ ει για γραφη ματα με βρο γχους/παρα λληλες ακμε ς? Ερώτηση 3.4: Έστω απλο γρα φημα G με δ(g) k. Να δειχθει ο τι το G ε χει ε να μονοπα τι μη κους k. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
5 Λήμμα 3.1: Έστω γρα φημα G και u, v V(G). Το G περιε χει ε ναν (u, v)-περι πατο ανν περιε χει ε να (u, v)-μονοπα τι Απόδειξη : Προφανε ς. Απο τον ορισμο του μονοπατιου Θα δει ξουμε ο τι: Αν το G περιε χει ε να (u, v)-περι πατο W το τε το G περιε χει ε να (u, v)-μονοπα τι το οποι ο αποτελει ται απο κορυφε ς του W Έστω ε νας περι πατος W = [u = v 1,..., v k = v] ελα χιστου μη κους στο G για τον οποι ο η προ ταση δεν ισχυ ει. Η κορυφη v εμφανι ζεται μο νο μι α φορα στο W Εξετα ζουμε τον περι πατο W = [u = v 1,..., v k 1 ] που προκυ πτει απο την αφαι ρεση της κορυφη ς v k απο το W Το W ε χει μη κος < k (u, v k 1 )-μονοπα τι P με κορυφε ς του W και δεν περιλαμβα νει την κορυφη v Το μονοπα τι P ακολουθου μενο απο την ακμη (v k 1, v) ει ναι ε να (u, v)-μονοπα τι αποτελου μενο απο κορυφε ς του W άτοπο Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
6 Θεώρημα 3.2: Έστω γρα φημα G και ε στω A ο πι νακας γειτνι ασης του. Το τε η τιμη A l [i, j] ει ναι ο αριθμο ς των διαφορετικω ν (v i, v j )-περιπα των μη κους l στο G Απόδειξη [Με επαγωγή στο l]: βα ση: Ισχυ ει για l = 1. A[i, j] = 1 (v i, v j ) E Ε.Υ. (v i, v j )-μονοπα τι μη κους 1 Έστω ο τι ισχυ ει για k = l 1, δηλαδη A l 1 [i, j] ει ναι ο αριθμο ς των διαφορετικω ν (v i, v j )-περιπα των μη κους l 1 Ε.Β. A l = A l 1 A V(G) A l [i, j] = A l 1 [i, k]a[k, j] k=1 Κα θε ε νας απο τους A l 1 [i, k] (v i, v k )-περιπα τους που ακολουθει ται απο την ακμη (v k, v j ) ει ναι ε νας (v i, v j )-περι πατος Ερώτηση 3.5: Ισχυ ει για γραφη ματα με βρο γχους και παρα λληλες ακμε ς? Για πολυγραφη ματα: A[i, j] = { e : e = (v i, v j ) E } Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
7 Απόσταση: Έστω γρα φημα G και u, v V(G). Η απόσταση dist(u, v) ει ναι το μη κος του ελαχι στου (u, v)-μονοπατιου στο G. dist(u, v) = + εα ν δεν υπα ρχει (u, v)-μονοπα τι. Πρόταση 3.3 (Τριγωνική ανισότητα): Έστω γρα φημα G και u, v, w V(G) τρεις κορυφε ς του G. Το τε ισχυ ει: dist(u, v) + dist(v, w) dist(u, w) Απόδειξη : Έστω ο τι dist(u, v) + dist(v, w) +, αλλιω ς ισχυ ει τετριμμε να. dist(u, v) το μη κος του ελα χιστου (u, v)-μονοπατιου P uv dist(v, w) το μη κος του ελα χιστου (v, w)-μονοπατιου P vw Η παρα θεση P uw = P uv P vw δημιουργει (u, w)-μονοπα τι με μη κος απο το ελα χιστο (u, w)-μονοπα τι. dist(u, v) + dist(v, w) dist(u, w) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
8 Λήμμα 3.4: Έστω γρα φημα G. Κα θε περιη γηση περιττου μη κους στο G περιε χει ε ναν περιττο κυ κλο στο G Απόδειξη [με επαγωγή στο μήκος l της περιήγησης]: Έστω W μια περιη γηση περιττου μη κους l. Βα ση: l = 1 Η περιη γηση ει ναι βρο γχος, δηλαδη κυ κλος μη κους 1 Ε.Υ. Έστω ο τι κα θε περιη γηση περιττου μη κους < l περιε χει ε ναν περιττο κυ κλο Ε.Β. Έστω W μια περιη γηση περιττου μη κους l Περίπτωση 1: Η W δεν περιε χει επαναλαμβανο μενες κορυφε ς Το τε η W ει ναι εξ ορισμου [περιττο ς] κυ κλος Περίπτωση 2: Η W περιε χει επαναλαμβανο μενη κορυφη, ε στω u [εκτο ς της κοινη ς τερματικη ς κορυφη ς] Η W μπορει να διαμελιστει σε δυ ο μικρο τερες περιηγη σεις W 1, W 2 Μιας και η W ει ναι περιττου μη κους, μια εκ των W 1, W 2 ει ναι επι σης περιττου μη κους, ε στω η W 1 Απο Ε.Υ. η W 1 περιε χει περιττο κυ κλος, α ρα και η W Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
9 Θεώρημα 3.5: Ένα γρα φημα ει ναι διμερε ς ανν δεν περιε χει κυ κλους περιττου μη κους. Απόδειξη : Έστω διμερε ς γρα φημα G = (A, B, E) Έστω κυ κλος C = [v 1 v 2... v k = v 1 ] και ε στω v 1 A v 2 B, v 3 A, v 4 B,... v 2i 1 A και v 2i B i 1 v k = v 1 A k = 2i 1 για i 1 Ο κυ κλος C ε χει α ρτιο μη κος Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
10 Έστω γρα φημα G που δεν περιε χει περιττου ς κυ κλους. Θα βρου με διαμε ριση A, B του V(G) και θα δει ξουμε ο τι δεν υπα ρχει ακμη e = (u, v) : u, v A η u, v B Έστω κορυφη u και A, B τα συ νολα κορυφω ν που βρι σκονται σε α ρτια και περιττη απο σταση απο την u αντι στοιχα A B = και u A [dist(u, u) = 0] Έστω ακμη e = (x, y) : x, y A [ο μοια εα ν x, y B] Η περιη γηση W = {u... x y... u} άρτιο άρτιο{ 1 { { στο G ει ναι περιττου μη κους Η W περιε χει ε ναν περιττο κυ κλο [απο λη μμα 3.1 σελ. 51] Άτοπο γιατι το G δεν περιε χει περιττου ς κυ κλους. Κα θε ακμη e = (u, v) ε χει u A, v B η u B, v A Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
11 Εκκεντρότητα κορυφής του G [eccentricity]: ecc(v) = max dist(v, u) v V(G) Διάμετρος του G: diam(g) = max ecc(v) v V(G) Ακτίνα του G: rad(g) = min ecc(v) v V(G) Κεντρική κορυφή: Κα θε κορυφη v V(G) : ecc(v) = rad(g) Κέντρο του G: center(g) = {v : v V(G) και ecc(v) = rad(g)} Απόκεντρη κορυφή: Κα θε κορυφη v V(G) : ecc(v) = diam(g) Αντιδιαμετρικές κορυφές x, y V(G): dist(x, y) = diam(g) diam(g) = 6 rad(g) = 3 center(g) = { } far(g) = { } Κέντρο του G: far(g) = {v : v V(G) και ecc(v) = diam(g)} Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
12 Θεώρημα 3.6: Για κα θε γρα φημα G ισχυ ει rad(g) diam(g) 2rad(G) Απόδειξη : i. rad(g) diam(g) α μεσα, απο τους ορισμου ς ii. diam(g) 2rad(G) Έστω 2 αυθαι ρετες κορυφε ς x, y V(G) : dist(x, y) = diam(g) Έστω v V(G) μια κεντρικη κορυφη dist(v, x) ecc(v) = rad(g) dist(v, y) ecc(v) = rad(g) Απο τριγωνικη ανισο τητα: dist(x, y) dist(x, v) + dist(v, y) diam(g) 2rad(G) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
13 Θεώρημα 3.7: Για κα θε γρα φημα G, ει τε center(g) = far(g) η center(g) far(g) = Απόδειξη : Έστω { v center(g) far(g) v center(g) ecc(v) = rad(g) v far(g) ecc(v) = diam(g) } diam(g) = rad(g) (1) u V(G) ισχυ ει: rad(g) ecc(u) diam(g) (2) (1),(2) Όλες οι κορυφε ς ε χουν ι δια εκκεντρο τητα center(g) = far(g) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
14 Ερώτηση 3.6: Να δειχθει ο τι για κα θε δε νδρο T ισχυ ει ο τι center(t) {1, 2}. Ερώτηση 3.7: Να σχεδιαστει αλγο ριθμο ς που υπολογι ζει το κε ντρο center(t) ενο ς δε νδρου T. Ερώτηση 3.8: Έστω ε να συνδεδεμε νο γρα φημα G. Ει ναι το center(g) πα ντα συνδεδεμε νο? Ερώτηση 3.9: Να υπολογιστου ν τα rad(g), diam(g), center(g), far(g) ο που G το γρα φημα i. M a,b : το πλε γμα διαστα σεων a b ii. Q r : ο υπερκυ βος δια στασης r πο σα ζευ γη αντιδιαμετρικω ν κορυφω ν ε χει ο Q r? Ερώτηση 3.10: Να δειχθει ο τι για κα θε γρα φημα G ισχυ ει diam(g) δ(g). Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
15 Αποσυνθε σεις Απο στασης Αποσύνθεση απόστασης: Έστω γρα φημα G και κορυφη u V(G). Η αποσύνθεση απόστασης του G ως προς την u ει ναι η ακολουθι α συνο λων A(u) = [ X 0, X 1,..., X ecc(u) ] ο που X i = {v : v V(G) και dist(u, v) = i} X 1 X 2 1 X X 4 X 3 A(1) = { {1}, {2, 3, 4}, {5, 6, 7, 8}, {10}, {9, 11} } Εναλλακτικός ορισμός: Έστω γρα φημα G και κορυφη u V(G). Η αποσύνθεση απόστασης του G ως προς την u ει ναι η ακολουθι α συνο λων A(u) = [ X 0, X 1,..., X ecc(u) ] ο που X 0 = {u} i 1 X i = N G (X i 1 )\ X j, j=0 1 i ecc(u) Σημείωση: X i X j = 0 i < j ecc(u) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
16 Λήμμα 3.8: Έστω A(u) = [ X 0, X 1,..., X ecc(u) ] η αποσυ νθεση απο στασης του G ως προς την u. Το τε 0 i j ecc(u) και x, y V(G) : x X i, y X j, κα θε μονοπα τι P που συνδε ει τις κορυφε ς x και y τε μνει ο λα τα συ νολα X i... X j Απόδειξη : Έστω x = u 0, u 1,..., u q 1, u q = y ε να (x, y)-μονοπα τι. Το μονοπα τι αντιστοιχει στην ακολουθι α a = [a 0, a 1,..., a q] ο που u l X al, 0 l q a 0 = 1, a q = j [ χρη ση κορυφη v X k, 0 k ecc(u) ισχυ ει: εναλλακτικου ορισμου N G (v) X k 1 X k X k+1 [εφο σον ορι ζονται] Στην ακολουθι α a ισχυ ει a k 1 a k 1, 0 < k < q [διαδοχικοι ο ροι απε χουν το πολυ κατα 1] Η a περιλαμβα νει ο λους τους αριθμου ς στο δια στημα i... j Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
17 Λήμμα 3.9: Έστω γρα φημα G και ε στω κορυφη u V(G). Το τε ο αριθμο ς των μονοπατιω ν μη κους l που ε χουν την u ως α κρο τους ει ναι το πολυ d(u)( (G) 1) l 1 Απόδειξη : Έστω P i u, 1 i l το συ νολο των μονοπατιω ν που ε χουν την u ως το ε να α κρο τους και ε χουν μη κος P 1 u = d(u) (3) Κα θε μονοπα τι του Pu i+1, 1 i < l αποτελει επε κταση ενο ς μονοπατιου του P i u Έστω o(p) το α λλο α κρο κα θε μονοπατιου που ξεκινα ει απο την u. P i+1 u d(o(p)) 1 (G) 1 P i u ( (G) 1) P P i u P P i u P i+1 u P i u ( (G) 1) (4) (3),(4) P l u d(u)( (G) 1)l 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
18 Λήμμα 3.10: Έστω γρα φημα G με (G) d. Το τε για κα θε κορυφη u V(G) υπα ρχουν το πολυ 1 + d d 2 ((d 1)l 1) κορυφε ς του G σε απο σταση l απο την u Απόδειξη : Έστω A(u) = [X 0, X 1,..., X l ] η αποσυ νθεση απο στασης του G ως προς την u Εξ ορισμου X i, 0 i l ει ναι το πλη θος των κορυφω ν σε απο σταση i απο την u X i μονοπα τια απο την u προς το X i μη κους i l l l X i 1 + d(u)( (G) 1) i d(d 1) i 1 i=0 i=1 i=1 l 1 = 1 + d (d 1) i = 1 + d d 2 ((d 1)l 1) i=0 [ Άθροισμα S n n ο ρων γεωματρικη ς προο δου S n = 1 + λ + λ λ n 1 = λn 1 λ 1 ] Θεώρημα 3.11: Έστω γρα φημα G με rad(g) r και (G) d. Το τε V(G) 1 + d d 2 ((d 1)r 1) Απόδειξη : Με εφαρμογη του προηγου μενου λη μματος για κα ποια κορυφη u center(g) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
19 Πλάτος απόστασης του G ως προς την u: πα(u) = max { X i }, X i A G (u) = [ X 0, X 1,..., X ecc(u) ] Πλάτος απόστασης γραφήματος: πα(g) = min u V(G) {πα(u)} Θεώρημα 3.12: Έστω γρα φημα G. Το τε ισχυ ει ο τι πα(g) V(G) 1 diam(g) Απόδειξη : [ ] Έστω u V(G) : πα(u) = πα(g) και ε στω A(u) = X 0, X 1,..., X ecc(u) ecc(u) V(G) 1 + X i 1 + ecc(u)πα(u) 1 + diam(g)πα(g) i=1 πα(g) V(G) 1 diam(g) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
20 2 6 Περίμετρος γραφήματος G [που περιέχει κύκλο(υς)]: crm(g): μη κος ενο ς με γιστου [μη κους] κυ κλου του G Περιφέρεια γραφήματος G [που περιέχει κύκλο(υς)]: girth(g): μη κος ενο ς ελα χιστου [μη κους] κυ κλου του G crm(g) = 7 κυ κλος: (1, 4, 3, 5, 7, 6, 2, 1) girth(g) = 3 κυ κλος: (5, 6, 7) Θεώρημα 3.13: Έστω απλο γρα φημα G που περιε χει κυ κλο(υς). Το τε δ(g) crm(g) 1 Απόδειξη : Έστω P = (u 0, u 1,..., u k ) ε να με γιστο μονοπα τι του G Όλες οι κορυφε ς του N G (u) ανη κουν στο μονοπα τι N G (u) δ(g) γει τονες της u ανη κουν στο μονοπα τι κυ κλος μη κους δ(g) + 1 στο G δ(g) crm(g) 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
21 Θεώρημα 3.14: Κα θε γρα φημα G με πυκνο τητα ϵ(g) 1 περιε χει κυ κλο. Απόδειξη [Με επαγωγή στο V(G), ( ϵ(g) = E(G) V(G) ) ]: Ισχυ ει εξ ορισμου για κα θε γρα φημα με βρο γχους η παρα λληλες ακμε ς. Άρα θα το δει ξουμε για απλα γραφη ματα. Βα ση: n = 3 m 3 μοναδικο γρα φημα Ε.Υ. Έστω ο τι κα θε γρα φημα H με ϵ(h) 1 και 3 V(H) < n ε χει κυ κλο Ε.Β. Έστω γρα φημα G με ϵ(g) 1 και 3 < V(G) = n Περίπτωση 1: δ(g) 2 Δημιουργου με τον περι πατο ο που ξεκινω ντας απο μια κορυφη, βγαι νουμε απο αυτη απο διαφορετικη ακμη απο αυτη ν που μπη καμε. Ο περι πατος μπορει να συνεχι ζεται συνε χεια γιατι δ(g) 2. Μετα απο V(G) βη ματα θα επαναληφθει ακμη κυ κλος Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
22 Περίπτωση 2: δ(g) 1 Υπα ρχει κορυφη u με d(u) = 1 G\u ε χει ϵ(g\u) = E(G\u) V(G\u) = E(G) 1 V(G) 1 E(G) V(G) 1 Ε.Υ. = G\u ε χει κυ κλο G ε χει κυ κλο Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
23 Θεώρημα 3.15: Έστω γρα φημα G με κυ κλο(υς) και δ(g) d. Το τε ισχυ ει r d (d 1) i girth(g) = 2r + 1 i=0 V(G) r 1 2 (d 1) i girth(g) = 2r i=0 Απόδειξη : Περίπτωση 1: girth(g) = 2r + 1 Έστω X 0, X 1,..., X r τα πρω τα r + 1 συ νολα μιας αποσυ νθεσης απο στασης A(u) ως προς κα ποια κορυφη u V(G) η οποι α ανη κει σε ε ναν κυ κλο μη κους girth(g) v X i, 1 i r η v ε χει ακριβω ς 1 γει τονα στο X i 1 [Διαφορετικα, ε στω ο τι ει χε 2 γει τονες w 1 και w 2 X i 1 μονοπα τια u w 1 και u w 2 ι διου μη κους (i 1) κυ κλος μη κους το πολυ 2i < 2r < girth(g) άτοπο (ορισμο ς girth(g))] X i (d 1) X i 1, 2 i r X 0 = 1, X 1 d r V(G) X i 1 + d + d(d 1) + + d(d 1) r 1 i=0 r 1 = 1 + d (d 1) i i=0 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
24 Περίπτωση 2: girth(g) = 2r Έστω (u, v) μια αυθαι ρετη ακμη του G που ανη κει σε κυ κλο μη κους girth(g) G = G\(u, v) {(u, w), (w, v)} Έστω X 0, X 1,..., X r τα πρω τα r + 1 συ νολα μιας αποσυ νθεσης απο στασης A(w) y X i, 2 i r η y ε χει ε ναν ακριβω ς γει τονα στο X i 1 [Εα ν y X i, 2 i r με 2 γει τονες στο X i 1 Το τε ε χω στο G κυ κλο μεγε θους 2i Το τε ε χω στο G κυ κλο μεγε θους 2i 1 2r 1 < girth(g) άτοπο] X 0 = 1 X 1 = 2 X i (d 1) X i 1, 2 < i r r 1 r V(G ) X i (d 1) + + 2(d 1) r 1 = (d 1) i (5) i=0 V(G) = V(G ) 1 (6) r 1 (5),(6) V(G) 2 (d 1) i i=0 w X0 u v X1 G Xi 1 Xi y i=0 Xr 1 Xr y Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος / 71
Θεωρία Γραφημάτων 3η Διάλεξη
Θεωρία Γραφημάτων 3η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 3η Διάλεξη
Θεωρι α Γραφημα των 2η Δια λεξη
Θεωρι α Γραφημα των 2η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος 2015 23 / 47 Βαθμοι Κορυφω ν Βαθμός κορυφής: d G (v) =
Θεωρι α Γραφημα των 10η Δια λεξη
Θεωρι α Γραφημα των 0η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 05 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 0η Δια λεξη Φεβρουα ριος 05 99 / 0 Χρωματισμο ς Ακμω ν k-χρωματισμός ακμών: Η ανα
Θεωρι α Γραφημα των 5η Δια λεξη
Θεωρι α Γραφημα των 5η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος 2015 107 / 122 Δε νδρα Δένδρο: Ένα γρα φημα το οποι ο
Θεωρι α Γραφημα των 8η Δια λεξη
Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω
Θεωρι α Γραφημα των 9η Δια λεξη
Θεωρι α Γραφημα των 9η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 183 / 198 Ταιρια σματα (Matchings) Ταίριασμα: Ένα
Θεωρι α Γραφημα των 7η Δια λεξη
Θεωρι α Γραφημα των 7η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος 2015 143 / 167 Hamiltonian γραφη ματα κύκλος Hamilton:
Θεωρι α Γραφημα των 11η Δια λεξη
Θεωρι α Γραφημα των 11η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος 2015 211 / 228 απεικόνιση γραφήματος στο επίπεδο (Embedding):
Θεωρι α Γραφημα των 1η Δια λεξη
Θεωρι α Γραφημα των η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 205 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των η Δια λεξη Φεβρουα ριος 205 / 22 Εισαγωγη Διδα σκων: Αντω νιος Συμβω νης ΣΕΜΦΕ, κτι
Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα
ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ
ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη
2ο Μάθημα Πιθανότητες
2ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαι κο Έτος 2014-2015 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 2ο Μάθημα
Τι μπορεί να δει κάποιος στο μουσείο της Ι.Μ. Μεγάλου Μετεώρου
18/05/2019 Τι μπορεί να δει κάποιος στο μουσείο της Ι.Μ. Μεγάλου Μετεώρου / Ιερές Μονές Η μο νή του Με γά λου Με τε ώ ρου δι α μόρ φω σε μί α σει ρά α πό πε ρι κα λείς μου σεια κούς χώ ρους, για την α
Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων
Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Β. Μεταφτση ς 15 Δεκεμβρι ου 2016 1 Παραστάσεις Ομάδων Έστω a, b, c,... ε να συ νολο απο διακριτα συ μβολα και a 1, b 1, c 1,... νε α συ μβολα. Μια λέξη W στα
Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ
α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε
Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε
Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
ΠΡΑΣΙΝΟ ΤΑΜΕΙΟ - ΕΝΕΡΓΕΙΑΚΟ ΓΡΑΦΕΙΟ ΑΙΓΑΙΟΥ ΧΩΡΟΘΕΤΗΣΗ ΑΠΕ ΣΕ ΝΗΣΙΩΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
POWERPOINT 2011 ΡΥΘΜΙΣΤΙΚΟ ΣΧΕ ΙΟ ΓΙΑ ΤΟΝ ΠΡΟΣ ΙΟΡΙΣΜΟ ΤΩΝ ΒΕΛΤΙΣΤΩΝ ΧΩΡΙΚΩΝ ΚΑΤΑΝΟΜΩΝ ΚΑΙ ΣΥΓΚΕΝΤΡΩΣΕΩΝ ΑΙΟΛΙΚΩΝ ΠΑΡΚΩΝ ΚΑΙ ΤΗΝ ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΤΟΠΙΟΥ ΣΕ ΝΗΣΙΑ ΤΟΥ ΑΙΓΑΙΟΥ Για την υποστη ριξη του ε ργου
6ο Μάθημα Πιθανότητες
6ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαι κο Έτος 2014-2015 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα
The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains
The Probabilistic Method - Probabilistic Techniques Lecture 8: Markov Chains Sotiris Nikoletseas Chistoforos Raptopoulos Computer Engineering and Informatics Department 205-206 Chistoforos Raptopoulos
Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες
Η εταιρεία Kiefer ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Πηγε ς Ενε ργειας στην Ελλα δα. Αναλαμβα νει ε ργα ως EPC
Θεωρία Γραφημάτων 4η Διάλεξη
Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτη σεις Α1 Α4 να γρα ψετε στο τετρα διο σας τον αριθμο της ερω τησης και
d u d dt u e u d dt e u d u 1 u dt e 0 2 e
Ρ ΤΟ Θ ΜΑ Μ. Α ΑΠΟ ε ΞεΤε ΤΙ ΑΝΑΓΚΑ Α ΚΑΙ ΙΚΑΝ ΣΥΝΘ ΚΗ ΣΤε ΝΑ Ι ΝΥΣΜΑ u t 0 ΝΑ ΠΑΡΑΜ ΝεΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ΜΙΑ ε ΟΜ ΝΗ ευθε Α ε ΝΑΙ u t u 0 Π ειξη Α ΑΠΟ ε ΞΟΥΜε ΤΟ ΙΚΑΝ ΗΛΑ ΑΝ ε ΝΑΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ε ΟΜ ΝΗ ευθε
Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
Π α σα πνο η αι νε σα τω τον Κυ ρι. Π α σα πνο η αι νε σα α τω τον. Ἕτερον. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη.
Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη. Κυ ρι ε ε λε η σον Ἦχος Πα Α µην Π α σα πνο η αι νε σα τω τον Κυ ρι ον Ἕτερον. Π α σα πνο η αι νε σα α τω τον Κυ υ ρι ι ον 1 ΙΩΑΝΝΟΥ Α. ΝΕΓΡΗ
Βασικά Χαρακτηριστικά Αριθμητικών εδομένων
ΚΕΦΑΛΑΙΟ 3 Βασικά Χαρακτηριστικά Αριθμητικών εδομένων Α ντι κείμε νο του κε φα λαί ου εί ναι: Να κα τα νο ή σου με τα βα σι κά χαρα κτη ρι στι κά των α ριθ μη τι κών δεδο μέ νων (τά ση, δια σπο ρά, α συμ
Θεωρία Γραφημάτων 1η Διάλεξη
Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη
ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο
Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο
u v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37
ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28
Π Ε Ρ Ι E Χ Ο Μ Ε Ν Α
ΠΕΡΙEΧΟΜΕΝΑ Εισαγωγικό μέρος Πρόλο γος της Ελ λη νι κής Έκ δο σης...11 Κλιμάκωση των Βημάτων για Επιτυχία στο Ποδόσφαιρο...12 Ôï Ü èëç ìá του Ποδοσφαίρου...13 Το Γήπε δο του Πο δο σφαίρου...15 Εξοπλισμός...16
Κα λόν ύπ νο και όνειρ α γλυκά
Κα λόν ύπ νο και όνειρ α γλυκά Οδηγίες ανάγνωσης Προσοχή! Μη διαβάσετε ποτέ μεγαλόφωνα το βιβλίο αυτό σε κάποιον που οδηγεί αυτοκίνητο ή άλλο όχημα, διότι το παραμύθι έχει ως σκοπό να αποκοιμίσει αυτόν
Θεωρία Γραφημάτων 6η Διάλεξη
Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη
Θεωρία Γραφημάτων 8η Διάλεξη
Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη
Περιεχόμενα ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ
Περιεχόμενα ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ 1 ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΙΑΚΩΝ ΛΕΙΤΟΥΡΓΙΩΝ: ΜΙΑ ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ 1 1.1 Επιχειρησιακε ς Λειτουργι ες και Παραγωγικο τητα 4 1.1.1 Διοι κηση Επιχειρησιακω ν Λειτουργιω
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
0a1qqW+1a1`qÁlw n εν σοί Κύ ρι ε τρο πού μαι τού τον.
n 00211000Aqq11j1w Εκ νε ό τη τός μου ο εχ θρό ός με πει ρά ζει, 00qaj-1`q`qq+0)q11l1 ταίς η δο ναίς φλέ γει με ε γώ δέ πε ποι θώς, 0a1qqW+1a1`qÁlw n εν σοί Κύ ρι ε τρο πού μαι τού τον. 211`w1l1+000 0wl1
Θεωρία Γραφημάτων 1η Διάλεξη
Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη
ΠΑΡΑΣΚΕΥΗ ΣΤ ΕΒ ΟΜΑ ΟΣ ΤΩΝ ΝΗΣΤΕΙΩΝ. ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης
ΠΑΡΑΣΚΕΥΗ ΣΤ ΕΒ ΟΜΑ ΟΣ ΤΩΝ ΝΗΣΤΕΙΩΝ ΠΡΟ ΤΩΝ ΒΑΪΩΝ ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ψάλλεται ἡ ἀκολουθία τοῦ Ἁγίου Λαζάρου ὡς ἐν τῷ Τριωδίῳ Ἦχος Νη Ἰωάννου Πρωτοψάλτου υ υ υ υ ρι ι ι ι ε ε κε κρα α ξα προ
Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.
σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει
των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09
των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑ ΤO ΤΕ ΧΝΙ ΤΩΩΝ ΕΡ ΓO ΣΤΑ ΣΙ ΩΩΝ ΤΣΙ ΜΕ ΝΤO ΛΙ ΘΩΩΝ, ΤΣΙ
των Ξε να γών Ρόδου Ot04R14
των Ξε να γών Ρόδου Ot04R14 να γούς που εργάζονται στη Ρόδο, οι οποίοι πα ρέ χουν τις υπηρεσίες τους στους εργοδότες τους τουριστικούς πράκτορες πραγµατικά µε σχέση εξηρτηµένης εργασίας Δ. ΚΑ ΘO ΡΙ ΣΜOΣ
των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03
των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚOΙ ΝΩΩ ΝΙ ΚΩΩΝ
ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ
Γιάννης Θεοδωράκης Πανεπιστήμιο Θεσσαλίας ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ Πρό λο γος...6 1. Ά σκη ση και ψυ χική υ γεί α Ει σα γω γή...9 Η ψυ χο λο γί α της ά σκη σης...11
VAGONETTO. Ωρες: 09:00 17:00. t: (+30) e: w: Kρατήσεις: Fokis Mining Park Μεταλλευτικό Πάρκο Φωκίδας
VAGONETTO Fokis Mining Park Μεταλλευτικό Πάρκο Φωκίδας Ωρες: 09:00 17:00 Kρατήσεις: t: (+30) 2265 078819 e: info@vagonetto.gr w: www.vagonetto.gr 5 1 o χ λ μ Ε. Ο. Λ α μ ί α ς Ά μ φ ι σ σ α ς Τ. Κ. 3 3
ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ
ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.
Αποτελεσματικός Προπονητής
ÐÝñêïò Ι. ÓôÝ öá íïò & Χριστόπουλος Β. Γιάννης Αποτελεσματικός Προπονητής Ένας οδηγός για προπονητές όλων των ομαδικών αθλημάτων Θεσσαλονίκη 2011 Ðå ñéå ü ìå íá Ðñü ëï ãïò...6 Åé óá ãù ãþ...11 Êå öü ëáéï
Πολυμεταβλητή Στατιστική Ανάλυση. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Πολυμεταβλητή Στατιστική Ανάλυση Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Στην πρα ξη τα δεδομένα ενο ς ερευνητη ει ναι απο τη φυ ση τους
Lecture 8: Random Walks
Randomized Algorithms Lecture 8: Random Walks Sotiris Nikoletseas Associate Professor CEID - ETY Course 2016-2017 Sotiris Nikoletseas, Associate Professor Randomized Algorithms - Lecture 8 1 / 33 Overview
ΧΑΙ ΡΕ ΤΙ ΣΜΟΣ ΤΟΥ ΠΡΟ Ε ΔΡΟΥ ΤΗΣ Ο ΤΟ Ε
ÊËÁÄÉÊÅÓ ÓÕËËÏÃÉÊÅÓ ÓÕÌÂÁÓÅÉÓ ΧΑΙ ΡΕ ΤΙ ΣΜΟΣ ΤΟΥ ΠΡΟ Ε ΔΡΟΥ ΤΗΣ Ο ΤΟ Ε σ. Σταύ ρου Κού κου. Κυ ρί ες και κύ ριοι, Συ να δέλ φισ σες και συ νά δελ φοι, Η σημερινή εκδήλωση του Ινστιτούτου Εργασίας της ΟΤΟΕ
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα
ΜΕΡΟΣ ΠΡΩΤΟ: ΒΑΜΒΑΚΙ - ΚΛΩΣΤΙΚΑ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1. ΒΑΜΒΑΚΙ Ε ΞΑ ΠΛΩ ΣΗ ΚΑΙ ΟΙ ΚΟ ΝΟ ΜΙ ΚΗ ΣΗ ΜΑ ΣΙΑ Γε νι κά
Περιεχόμενα ΜΕΡΟΣ ΠΡΩΤΟ: ΒΑΜΒΑΚΙ - ΚΛΩΣΤΙΚΑ ΕΙΣΑΓΩΓΗ... 17 ΚΕΦΑΛΑΙΟ 1. ΒΑΜΒΑΚΙ... 19 1. Ε ΞΑ ΠΛΩ ΣΗ ΚΑΙ ΟΙ ΚΟ ΝΟ ΜΙ ΚΗ ΣΗ ΜΑ ΣΙΑ... 19 1.1. Γε νι κά... 19 1.2. Η καλ λιέρ γεια του βαμ βα κιού στην Ελ λά
Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης
Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Νη υ υ υ υ ρι ι ι ι ε ε κε κρα α ξα προ ος σε ε ε ει σα κου ου ου σο ο ον μου ου ει σα κου σον μου Κυ υ υ υ ρι ι ι ι ε Κυ ρι ι ε ε κε κρα α ξα α προ ο ος σε ε ε ει
ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ, ΣΤΑΤΙΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΔΙΚΑΣΙΑΣ ΚΑΙ ΙΚΑΝΟΤΗΤΑ ΔΙΑΔΙΚΑΣΙΑΣ
Κεφάλαιο 2 ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ, ΣΤΑΤΙΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΔΙΚΑΣΙΑΣ ΚΑΙ ΙΚΑΝΟΤΗΤΑ ΔΙΑΔΙΚΑΣΙΑΣ Τι ει ναι ποιο τητα και γιατι ει ναι σημαντικη για κα θε επιχει ρηση; Τι ει ναι διοι κηση ολικη ς ποιο τητας;
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Η ΑΜΟΤΟΕ προκηρυ σσει για το 2019, Πανελλη νιο Πρωτα θλημα Dragster αποτελου μενο απο 6 αγω νες, με το παρακα τω προ γραμμα:
Προκη ρυξη Πανελληνιόυ Πρωταθλη ματος Dragster 2019 Η ΑΜΟΤΟΕ προκηρυ σσει για το 2019, Πανελλη νιο Πρωτα θλημα Dragster αποτελου μενο απο 6 αγω νες, με το παρακα τω προ γραμμα: 1ος ΑΓΩΝΑΣ 13-14/04/2019
ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ
ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17
Δομές Ελέγχου και Επανάληψης
Εργαστήριο 3 ο Δομές Ελέγχου και Επανάληψης Εισαγωγή Σκοπο ς του εργαστηρι ου αυτου ει ναι η εισαγωγη στην εκτε λεση εντολω ν υπο συνθη κη και στις δομές επανάληψης. Δομές Ελέγχου Η ικανότητα να μπορεί
Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο
ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο
του προσωπικού Κινηµατογράφων όλης της χώρας K22R11
του προσωπικού Κινηµατογράφων όλης της χώρας K22R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤOY ΠΡO ΣΩΩ ΠΙ ΚOY ΚΙ ΝΗ ΜΑ ΤO ΓΡΑ ΦΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α. ΓΙΑ ΤΗΝ ΚΩΩ Δ Ι ΚOΠOΙ Η ΣΗ
οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A
οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A δ ` 3kς 3qz 3{9 ` ]l 3 # ~-?1 [ve 3 3*~ /[ [ ` ο `` ο ~ ο ```` ξα ~ ``` Πα```` α ` τρι ```ι ``` ι ` ι ~ και ``αι [D # ` 4K / [ [D`3k δδ 13` 4K[ \v~-?3[ve
Α ΡΙΘ ΜΟΣ ΟΙ ΚΗ ΜΑ- ΤΩΝ ΚΑΙ Υ ΝΑ ΜΕΝΟ ΝΑ Ε ΞΥ ΠΗ ΡΕ ΤΗ ΘΕΙ ΠΡΟΣΩΠΙΚΟ. 3 ξε νώ νες Α ΣΣ ΠΡΟΣΩΠΙΚΟ. Ξε νώ νες Α ΣΣ Κοζάνη. Κ.
ΞΕ ΝΩ ΝΕΣ Οι ξε νώ νες λει τουρ γούν µε σκο πό την προ σω ρι νή διαµονή, κυ ρί ως των νε ο το ποθε τη µέ νων Μον. Αξ κών - Αν θστών και των µε λών των οικο γε νειών τους που τυ χόν τους συ νο δεύ ουν µέ
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα
Θεωρία Γραφημάτων 10η Διάλεξη
Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη
Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11
Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ, Ν.Π.Δ.Δ. ΚΑΙ O.Τ.Α. Α. ΓΙΑ ΤΗΝ ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ Ε ΛΗ ΦΘΗ ΣΑΝ Υ ΠO ΨΗ 1. H 15/1981
των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09
των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚOΙ ΝΩΩ ΝΙ ΚΩΩΝ ΛΕΙ
ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα.
ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΔΣ6. Δίνονταί οί πίνακες Σ1(Κ, Κ) καί Π1(Κ, Κ) που περίέχουν τα αποτελέσματα των
ε πι λο γές & σχέ σεις στην οι κο γέ νεια
ε πι λο γές & σχέ σεις στην οι κο γέ νεια ΚΕΙΜΕΝΟ: Υπτγος ε.α Άρης Διαμαντόπουλος, Διδάκτορας Φιλοσοφίας - Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Α ξί α Οι κο γέ νειας Ό,τι εί ναι το κύτ τα ρο
ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ
ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ ΤΗ ΑΓΙΑ ΚΑΙ ªΕΓΑΛΗ ΔΕΥΤΕΡΑ. Eις τους Αίνους. Ε ρ χο με νος ο Κυ ρι ος προς το ε κου ου σι ο ον πα α α θος τοις Α πο στο λοις ε λε γε εν εν τη η η η ο ο ο ο
Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.
σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει
καλύψουν τα έξοδα µετάβασης-µετακίνησης στον τόπο άσκησης των καθηκόντων τούς.
καλύψουν τα έξοδα µετάβασης-µετακίνησης στον τόπο άσκησης των καθηκόντων τούς. Επιπλέον, σε συνεργασία µε το συναρµόδιο Υπουργείο Οικονοµικών Θα πρέπει να εξευρεθεί λύση στη διαδικασία ως προς την άµεση
ΔΙΑΚΗΡΥΞΗ ΔΗΜΟΣΙΟΥ ΜΕΙΟΔΟΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΥ
Λάρισα, 5/9/2018 Αρ. πρωτ.: 2223 ΔΙΑΚΗΡΥΞΗ ΔΗΜΟΣΙΟΥ ΜΕΙΟΔΟΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΥ Η Διοικουb σα Επιτροπηb του ΤΕΕ Τμηb ματος Κεντρικής & Δυτικής Θεσσαλίας, εbχοντας υπ οb ψιν τις διαταb ξεις του Π.Δ. 715/1979
Ευγενία Κατσιγιάννη* & Σπύρος Κρίβας**
ÅðéóôçìïíéêÞ Åðåôçñßäá Ðáéäáãùãéêïý ÔìÞìáôïò Ä.Å. Πανεπιστημίου Ιωαννίνων, 20 (2007), 41-55 Ευγενία Κατσιγιάννη* & Σπύρος Κρίβας** Αντιλήψεις γονέων και δασκάλων απέναντι στην κοινωνική ένταξη των ατόμων
F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0
ΜΑ 1 Μ.2 Ν ΟΙ ΠΑΡ ΓΩΓΟΙ fx ΚΑΙ fy ΥΠ ΡΧΟΥΝ ΚΑΙ ε ΝΑΙ ΙΑφΟΡ ΣΙΜε Σε Κ ΠΟΙΑ ΠεΡΙΟΧ ΤΟΥ a, b Τ Τε ΝΑ ΑΠΟ ειχθε ΤΙ fxy fyx. Α εξετ ΣεΤε ΑΝ fxy fyx ΣΤΟ 0, 0 ΓΙΑ ΤΗΝ ΣΥΝ ΡΤΗΣΗ f x, y xy x2 y 2 ΓΙΑ x, y 0, 0
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα, αντίστοιχη
των Κα θη γη τών Φρο ντι στη ρί ων Μέ σης Εκ παί δευ σης Ν. Ατ τι κής Ot01R12
των Κα θη γη τών Φρο ντι στη ρί ων Μέ σης Εκ παί δευ σης Ν. Ατ τι κής Ot01R12 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚΑ ΘΗ ΓΗ ΤΩΩΝ ΦΡO ΝΤΙ ΣΤΗ ΡΙ ΩΩΝ ΜΕ ΣΗΣ ΕΚ ΠΑΙ Δ ΕY ΣΗΣ Ν.
ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA
ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA Α. Γενικά Η VOLTERRA, ως Προμηθευτη ς Ηλεκτρικη ς Ενε ργειας και ε χοντας ως αντικειμενικο στο
Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ
ΤΥΙΚΑ & ΜΑΚΑΡΙΣΜΟΙ Ἦχος Νη Μ Α Ν µην Ευ λο γει η ψυ χη µου τον Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ λο γει η ψυ χη µου τον Κυ ρι ον και πα αν τα τα εν τος µου το ο νο µα το α γι ον αυ του Ευ λο γει η ψυ
Επίπεδα Γραφήματα (planar graphs)
Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν
Joseph A. Luxbacher. Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας. ΠοΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία
Joseph A. Luxbacher Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας ΠοΔΟΣΦΑΙΡΟ Βήματα για την επιτυχία ΘΕΣΣΑΛΟΝΙΚΗ 2008 ΠΟΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία. Joseph A. Luxbacher Μετάφραση - Επιμέλεια:
Θεωρία Γραφημάτων 7η Διάλεξη
Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη
ΕΛΕΓΚΤΙΚΗ ΥΠΗΡΕΣΙΑ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΕΚΘΕΣΗ ΓΙΑ ΤΗΝ ΤΟΠΙΚΗ ΑΥΤΟΔΙΟΙΚΗΣΗ 2015
1.5 ΔΗΜΟΣ ΠΑΦΟΥ 1. Διαγωνισμο ς για την Ανα πλαση του Παραδοσιακου Εμπορικου Κε ντρου και της Πλατειάς Κε ννεντυ στην Πα φο. - Αρ. Διαγωνισμου 23/2015. Τον Σεπτε μβριο 2015, με επιστολη μας προς τον Δη
των Δ εν δρο αν θοκηπουρών Ξενοδοχειακών επιχειρήσεων O08R12
των Δ εν δρο αν θοκηπουρών Ξενοδοχειακών επιχειρήσεων O08R12 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ Δ ΕΝΔ ΡΟΑΝΘΟΚΗΠΟΥΡΩΩΝ ΞΕ ΝO Δ O ΧΕΙ Α ΚΩΩΝ Ε ΠΙ ΧΕΙ ΡΗ ΣΕ ΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ
των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09
των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΦOΡ ΤO ΕΚ ΦOΡ ΤΩΩ ΤΩΩΝ ΠΡΑ ΚΤO ΡΕΙ ΩΩΝ ΜΕ ΤΑ ΦO ΡΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α.
Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης
Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Νη υ υ υ υ ρι ι ι ι ε ε κε κρα α ξα προ ος σε ε ε ει σα κου ου ου σο ο ον μου ου ει σα κου σον μου Κυ υ υ υ ρι ι ι ι ε Κυ ρι ι ε ε κε κρα α ξα α προ ο ος σε ε ε ει
Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση
Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Εισαγωγή Η επι λο γή ενό ς co m p a ct συ στή µ α το ς β ι ολο γι κο ύ κα θ α ρι σµ ο ύ θ α πρέπει να πραγµ α τοπο ι είτα ι β ά σει τη ς α
Ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης
Ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Γα υ ρι ι ε ε κε ε κρα ξα προ ος σε ε ε ει σα κου ου σο ο ο ο ον μου ου ει σα κου σο ον μου Κυ ρι ε ε Κυ ρι ε ε κε κρα ξα προς σε ε ει σα κου σο ο ο ον μου ου προ
ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ
ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ 12 Το γε γο νός ό τι δια βά ζεις αυ τό το βι βλί ο ση μαί νει ό τι έ χεις μολυν θεί α πό έ να μι κρόβιο το μι κρό βιο του πο δο σφαί ρου και σίγου
σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι
Φ Λ Ι Ι ι αγωγτ ρι μ Π λλι πρα τν πρ βλτ ματα χαι χαταστι αει τη αθημ ριν ζω μπ ρ ι ν να περιγραφ ν με τη β θεια ν διαγρι μματ ζ απ τελ μεν υ απ να ι ν λ ημε ων αι να ν λ γραμμι ν π υ να ενι ν υν υγ ε
H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ
H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ Ο Ό μη ρος και ο Η σί ο δος έ χουν δη μιουρ γή σει κα τά τον Η ρό δο το 1, τους ελ λη νι κούς θε ούς. Ο Ό μη ρος στη θε ο γο νί α του έ χει ιε ραρ
ΠΑΡΑΣΚΕΥΗ Ε ΕΒ ΟΜΑ ΟΣ ΤΩΝ ΝΗΣΤΕΙΩΝ ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης
ΠΑΡΑΣΚΕΥΗ Ε ΕΒ ΟΜΑ ΟΣ ΤΩΝ ΝΗΣΤΕΙΩΝ ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Πα Ἰωάννου Πρωτοψάλτου ε ε υ ρι ι ε ε κε κρα α ξα α προ ος σε ει σα α α κου ου σο ον μου ει σα κου σο ο ον μου Κυ υ ρι ι ι ε Κυ
των Καθηγητών Φροντιστηρίων Ξένων γλωσσών όλης της χώρας O18R11
των Καθηγητών Φροντιστηρίων Ξένων γλωσσών όλης της χώρας O18R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚΑ ΘΗ ΓΗ ΤΩΩΝ ΦΡO ΝΤΙ ΣΤΗ ΡΙ ΩΩΝ ΞΕ ΝΩΩΝ ΓΛΩΩΣ ΣΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α.
ΠΑΡΑΣΚΕΥΗ ΕΒ ΟΜΑ ΟΣ ΝΗΣΤΕΙΩΝ ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης. Ἦχος
ΠΑΡΑΣΚΕΥΗ ΕΒ ΟΜΑ ΟΣ ΝΗΣΤΕΙΩΝ ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Γα Ἰωάννου Πρωτοψάλτου υ ρι ι ε ε κε ε κρα ξα προ ος σε ε ε ει σα κου ου σο ο ο ο ον μου ου ει σα κου σο ον μου Κυ ρι ε ε Κυ ρι ε ε κε
Αρ χές Ηγε σί ας κα τά Πλά τω να
. Αρ χές Ηγε σί ας κα τά Πλά τω να ΚΕΙΜΕΝΟ: Υπτγος ε.α. Ά ρης Δια μα ντό που λος, Ψυχο λό γος, Δι δά κτω ρ Φι λο σο φί ας χή, στο σώ μα και στο πνεύ μα, 84 ΣΤΡΑΤΙΩΤΙΚΗ ΕΠΙΘΕΩΡΗΣΗ ΝΟΕΜΒΡΙΟΣ - ΔΕΚΕΜΒΡΙΟΣ
Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 1. Οι παραλληλες ευθειες ε, ε τεμνονται απ'την ευθεια ε υπο γωνια 40.
υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς υ θ ε ι ε ς ) Οι παραλληλες ευθειες ε, ε τεμνονται απ'την ευθεια ε υπο γωνια 4. π'το σημειο τομης των ε, ε φερνουμε ημιευθεια K που τεμνει την ε στο. ν ε
z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2
Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από