Εσωτερικός Προσανατολισμός 15/4/2014. Η μορφή της δέσμης των ακτίνων. Εσωτερική Γεωμετρία της φωτογραφικής μηχανής
|
|
- Άμωσις Βασιλικός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 5/4/04, Εστεριή Γεμετρία της τογραιής μηχανής Μηχανή σημειαής οπής (pinhle amera Ο Κεντριή Προβολή Θέση Ο σε σχέση με το επίπεδο προβολής (,, Ευθύγραμμες ατίνες (Δr ; Φτογραιή Μηχανή ; ; ; Η μορή της δέσμης τν ατίνν αθορίζεται από... την απόσταση ( του προβολιού έντρου (Ο από το εστιαό επίπεδο (αρνητιό τη θέση (, της προβολής (Η του προβολιού έντρου (Ο σε άποιο σύστημα αναοράς (ειονοσήματα το μέτρο της ατινιής διαστροής του αού (Δr τα οποία αλούνται στοιχεία του εστεριού προσανατολισμού της τογραιής μηχανής αι αθορίζουν το μοντέλο εείνο της Κεντριής Προβολής, που περιγράει αλύτερα τη συγεριμένη τογραιή μηχανή Εστεριός Προσανατολισμός Ενέργειες:. του Εστεριού Προσανατολισμού στόχος η ανάπλαση της δέσμης, δηλ. σστό σχήμα δέσμης οι ατίνες πράγματι ΓΤ όλν τν απειονιζόμενν σημείν πραγματοποιείται αναλυτιά (δηλ. υπολογιστιά σε όλα τα τογραμμετριά συστήματα. Προσδιορισμός τν παραμέτρν του με στόχο την αριβέστερη γνώση του γίνεται με την διαδιασία της βαθμονόμησης Εστεριού Προσανατολισμού λίμαες (ατά αι στροές αξόνν μεταθέσεις Διόρθση ατινιής διαστροής a ' a ' a a ' a ' a 4 Αινιός Μετασχηματισμός Ο αινιός μετασχηματισμός ουσιαστιά αποαθιστά την σχέση μεταξύ δύο επίπεδν συστημάτν: ( της ειόνας (,, παραμορμένο αι ( της μηχανής (,, πρότυπο 5 3 6
2 5/4/04 Εστεριού Προσανατολισμού Σόπευση στον τογραμμετριό σταθμό τριών -τουλάχιστον- ειονοσημάτν για προσδιορισμό τν 6 παραμέτρν, σε άθε ειόνα Με την σόπευση περισσότερν ειονοσημάτν η συνόρθση δίνει εναπομένοντα σάλματα Η διόρθση από ατινιή διαστροή γίνεται αναλυτιά (υπολογιστιά από το λογισμιό αμέσς μετά την σόπευση άθε σημείου Η τιμή της σταθεράς χρησιμοποιείται με την εαρμογή της ΣΣ Εστεριού Προσανατολισμού Εστεριού Προσανατολισμού ΠΡΟΣΟΧΗ!! Η αποατάσταση του Εστεριού Προσανατολισμού (που ουσιαστιά είναι η ανάπλαση του 3D σχήματος της δέσμης ΔΕΝ τελειώνει με την εαρμογή του D αινιού, αλλά περιλαμβάνει ΚΑΙ την χρήση της σταθεράς με την εαρμογή της συνθήης συγγραμμιότητας Εστεριού Προσανατολισμού Στις ψηιαές ειόνες η αποατάσταση του εστεριού προσανατολισμού είναι απλούστερη διαδιασία. Δεν απαιτούνται ειονοσήματα λόγ δομής της ψηιαής ειόνας (γραμμές στήλες Διόρθση ατινιής διαστροής ατά τα γνστά Χρήση της με την εαρμογή της ΣΣ
3 5/4/04 Ατινιή Διαστροή Λήψη με αό Cann f = 4 mm αρνητιή ή μηνοειδής θετιή ή πιθοειδής Λήψη με αό Cann f = 85 mm Ατινιή Διαστροή... αλλά αι εαπτομενιή ή έεντρη 3
4 5/4/04 Διαστροή τογραιών Φαών Ατινιή συμμετριή Ασύμμετρη διαστροή διαστροή εεντρότητας οι επιάνειες τν αών αντί μη αριβής έντρση τν αών για παραβολοειδή ε περιστροής μέσα στο σύστημα τν αών είναι σχεδόν σαιριές Δr = r+ r 3 + r 5 + Ασύμμετρη Εγάρσια οι ευθείες του χώρου δεν απειονίζονται ς ευθείες αλλά αμπυλμένες Ατινιή Διαστροή Συμμετριή ς προς το πρτεύον σημείο Εξ ορισμού μηδενιή στο πρτεύον σημείο Τοπιή διαοροποίηση της λίμαας απειόνισης!! Μεταβολή λίμαας (τοπιή διαοριή Ατινιή Διαστροή Βασιές Έννοιες 3 5 dri 0 ri ri ri... Βαθμονόμηση τογραιών μηχανών: Ο προσδιορισμός τν στοιχείν του εστεριού προσανατολισμού τους, δηλαδή της εστεριής γεμετρίας τους εστεριού προσανατολισμού: Οι αναλυτιές διαδιασίες που διασαλίζουν την ισχύ της Κεντριής Προβολής για μια ειόνα στους τογραμμετριούς υπολογισμούς 3 5 Δr 0 r r r... 4
5 5/4/04 Πεδία Ελέγχου Πεδία Ελέγχου Κέντρου Μετρολογίας ΣΑΤΜ ΕΜΠ Αλγόριθμος Βαθμονόμησης Εύρεση παραμέτρν εστεριού προσανατολισμού για την αλύτερη προσέγγιση της πραγματιής απειόνισης με το γεμετριό μοντέλο της εντριής προβολής Βαθμονομημένες αμπύλες ατινιής διαστροής αι σταθεράς της μηχανής Κριτήρια: Απορρόηση του γραμμιού όρου από το Η λήψη ειόνν αι η μέτρηση ειονοσυντεταγμένν οδηγούν στον προσδιορισμό στοιχείν εστεριού προσανατολισμού - Βαθμονόμηση Μηδενισμός της διαστροής σε ατινιή απόσταση r Ελαχιστοποίηση του ΣΔr i για περιοχή γύρ από το πρτεύον σημείο ma Δr = min Δr Αυτοβαθμονόμηση με την ΣΣ Η Συνθήη Συγγραμμιότητας λ r( r( r3( r ( r ( r ( 3 r( r( r3( r ( r ( r ( Αυτοβαθμονόμηση με την ΣΣ (Μέθοδος της Δέσμης 0 0 A Δ A Δ, : οι συντεταγμένες Δr της προβολής του Προβολιού έντρου Δ r = ( πάν στο = εστιαό ( ( επίπεδο r + r r 6 + r Δ r, Δ r : διορθώσεις τν ειονοσυντεταγμένν λόγ ατινιής διαστροής Δr Δ r = ( r = ( ( r + r r 6 + Δ d, Δ d : διορθώσεις τν ειονοσυντεταγμένν λόγ εαπτομενιής διαστροής Δ Δ d = af (P, Δ (r af + : διορθώσεις ( + P τν ( ειονοσυντεταγμένν ( ( + P 3 r + λόγ αινιών παραμορώσεν Δ d = (P ( ( +P (r +( ( + P 3 r + r r Δ Δ d d Δ Δ af af 5
6 5/4/04 6 Αναλυτιή Αυτοβαθμονόμηση A Δ A Δ Οι παράμετροι Δ αι Δ είναι συναρτήσεις τν διορθώσεν τν ειονοσυντεταγμένν για ατινιή διαστροή εαπτομενιή διαστροή άλλες παραμορώσεις αι συνεπώς μπορούν να συμπεριληθούν στην επίλυση με την αναλυτιή έρασή τους, ς συναρτήσεις δηλαδή του πολυνύμου Δr = r 3 + r Αναλυτιή Αυτοβαθμονόμηση d d d d d d d d d d d d d d d d d d d d d d d d d d d d (0 (0 Η γραμμιοποίηση δίνει: Αναλυτιή Αυτοβαθμονόμηση ( n ( ( Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Οι εξισώσεις παρατήρησης υπό μορή πινάν διαμορώνονται ς εξής: Α ΔΧ Α ΔΧ Α 3 ΔΧ 3 L Αναλυτιή Αυτοβαθμονόμηση Ο πίναας σχεδιασμού:
7 5/4/04 Αμεσος Γραμμιός Μετασχηματισμός DLT r( r( r3( δ - r3( r3( r33( r ( r( r3( δ - ( r ( r ( λ λ r L L L3 L4 L L L 9 L5 L6 L7 L8 L L L Αμεσος Γραμμιός Μετασχηματισμός DLT Ανεξαρτησία από σύστημα αναοράς Προβολιή σχέση ειόνας (D Συστήματος αναοράς (3D Δεν απαιτείται η γνώση του εστεριού προσανατολισμού Μή αντιστρεπτές μονοσήμαντες σχέσεις Απαίτηση πολλών μη συνεπίπεδν τοσταθερών - m 6 Μαθηματιή αδυναμία συστήματος Δεν αντιμετπίζεται η διαστροή του αού Εξισώσεις Παρατήρησης +v = L +L +L 3 +L 4 -L 9 -L 0 -L +v = L 5 +L 6 +L 7 +L 8 -L 9 -L 0 -L 7
28/2/2010 ; ; καθορίζεται από...
8//00, Εστεριή Γεµετρία της τογραιής µηχανής Μηχανή σηµειαής οπής (pinhle amea Ο Κεντριή Προβολή Θέση Ο σε σχέση µε το επίπεδο προβολής (,, Ευθύγραµµες ατίνες ( ; Φτογραιή Μηχανή ; ; ; Η µορή της δέσµης
Φωτογραμμετρία II Ψηφιακή εικόνα. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
Φωτογραμμετρία II Ψηφιακή εικόνα Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@cental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Ceative Cmmns και δημιουργήθηκε στο πλαίσιο των Ανοιχτών
Φωτογραµµετρική Οπισθοτοµία
Φτογραµµετριή Οπισθοτοµία είναι εείνη η διαδιασία µε την οποία προσδιορίζονται τα στοιχεία του εξτεριού προσανατολισµού µιας λήψης (Χο, Υο, Ζο,, αι µε τη βοήθεια τν εξισώσεν της Συνθήης Συγγραµµιότητας
Εξαγωγή µετρητικής πληροφορίας
Εξαγωγή µετρητικής πληροφορίας Μια εικόνα είναι: Κεντρική Προβολή 2D προβολή του 3D χώρου Το επιθυµητό τελικό προϊόν πρέπει να είναι: Ορθή προβολή 2D προβολή του 3D χώρου Εξαγωγή µετρητικής πληροφορίας
για φωτογραµµετρικές εφαρµογές: Αρχές λειτουργίας Εσωτερική Γεωµετρία Ακρίβεια απεικόνισης
ΑΡΧΕΣ ΛΕΙΤΟΥΡΓΙΑΣ & ΙΑΚΡΙΒΩΣΗ ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΩΝ ΟΡΓΑΝΩΝ Φωτογραµµετρικά όργανα Φωτογραφικές Μηχανές Φωτογραµµετρικά Όργανα Απόδοσης Σαρωτές ΦΩΤΟΓΡΑΦΙΚΕΣ ΜΗΧΑΝΕΣ Όργανα καταγραφής διευθύνσεων για φωτογραµµετρικές
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Οδηγός Επιβίωσης 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ : Διαφοριός Λογισμός ΚΕΦΑΛΑΙΟ : Στατιστιή Οδηγός Επιβίωσης Περιλαμβάνει: Ερωτήσεις Θεωρίας Όλες τις Αποδείξεις Χρήσιμο Τυπολόγιο ΑΜΕΡΙΚΑΝΙΚΗ
Θρασύβουλος Κων. Μαχαίρας. Μικρές προσωπικές συνεντεύξεις
Κύµατα: Μιρές προσπιές συνεντεύξεις (β µέρος) 12η ερώτηση Θα θέλατε να γίνετε λίγο πιο σαφής σχετιά µε τη µαθηµατιή άρα αι διδατιή αξία τν αρµονιών (µονοχρµατιών) υµάτν ; Για να χειριστούµε µε µεγαλύτερη
Φωτογραμμετρία ΙΙ Προσανατολισμοί φωτογραμμετρικώνεικόνων (Υπενθύμιση βασικών εννοιών- Αλγοριθμική προσέγγιση)
Φωτογραμμετρία ΙΙ Προσανατολισμοί φωτογραμμετρικώνεικόνων (Υπενθύμιση βασικών εννοιών- Αλγοριθμική προσέγγιση) Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@ental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται
IV.12 OΜΟΓΕΝΕΙΑ. 1. Μερικές ελαστικότητες. 2. Σχετικά ή ποσοστιαία διαφορικά.
IV.1 OΜΟΓΕΝΕΙΑ 1.Μεριές ελαστιότητες.σχετιά ή ποσοστιαία διαφοριά 3.Ελαστιότητα λίμαας 4.Ομογενής μηδενιού βαθμού 5.Ομογενής βαθμού 6.Ιδιότητες ομογενών ΠΑΡΑΡΤΗΜΑ 7.Ισοσταθμιές ομογενών 8.Ελαστιότητα υποατάστασης
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ
- ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΕ ΕΡΩΤΗΣΕΙΣ -ΑΠΑΝΤΗΣΕΙΣ Tι ονομάζουμε συνάρτηση ; Tι ονομάζουμε πραγματιή συνάρτηση πραγματιής μεταβλητής; Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β είναι
ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Κ Ι ΚΟΥΤΣΟΠΟΥΛΟΣ ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ (ΠΕΡΙΛΗΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΩΝ ΠΑΡΑ ΟΣΕΩΝ ΚΑΙ ΑΣΚΗΣΕΙΣ) ΣΕΠΤΕΜΒΡΙΟΣ
Διαγώνισμα στην κυκλική κίνηση.
Διαγώνισμα στην λιή ίνηση. Θέμα. (ια τις ερωτήσεις. έως αι.4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης αι δίπλα το γράμμα πο αντιστοιχεί στη σωστή πρόταση.).) Στην ομαλή λιή ίνηση ενός ινητού
Ι ΑΣΚΟΝΤΑΣ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕ ΤΟ CABRI 3D
Ι ΑΣΚΟΝΤΑΣ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕ ΤΟ CABRI 3D Νίος Α. Φωτιάδης ρ. Μαθηµατιών Επιµορφωτής Β επιπέδου λάδου ΠΕ 03 E-mail: nikos.fotiades@gmail.com Website: http://users.sch.gr/nfotiades/ Περίληψη Οι µαθητές
Εξαγωγή µετρητικής πληροφορίας
Εξαγωγή µετρητικής πληροφορίας Μια εικόνα είναι: Κεντρική Προβολή 2D προβολή του 3D χώρου Το επιθυµητό τελικό προϊόν πρέπει να είναι: Ορθή προβολή 2D προβολή του 3D χώρου Εξαγωγή µετρητικής πληροφορίας
4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ ΣΧΟΛΙΑ ΜΕΘΟ ΟΙ
.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ 1. Αρχή της Μαθηµατιής Επαγωγής Έστω ισχυρισµός Ρ(ν), όπου ν θετιός αέραιος. Αν i) Ρ αληθής αι ii) Ρ(ν) Ρ(ν + 1) για άθε ν, τότε Ρ(ν) αληθής για άθε ν.. Ανισότητα Bernoulli
Εξαγωγή µετρητικής πληροφορίας
Εξαγωγή µετρητικής πληροφορίας Μια εικόνα είναι: Κεντρική Προβολή 2D προβολή του 3D χώρου Το επιθυµητό τελικό προϊόν πρέπει να είναι: Ορθή προβολή 2D προβολή του 3D χώρου Εξαγωγή µετρητικής πληροφορίας
3. Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών)
Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών) Μια «πολύπλοη» συνάρτηση f, δυό μεταβλητών, μπορεί να προσεγγιστεί (στην γειτονιά ενός σημείου (,y)) από μια πολυωνιμιή συνάρτηση με την βοήθεια του αναπτύγματος
ΜΕΛΕΤΗ ΚΕΝΤΡΟΜΟΛΟΥ ΥΝΑΜΗΣ
Ε.Κ.Φ.Ε. ΣΕΡΡΩΝ http://ekfe.ser.sch.gr/ Μανδηλιώτης Σωτήρης Πολυαρπούλου Μαρία ΜΕΛΕΤΗ ΚΕΝΤΡΟΜΟΛΟΥ ΥΝΑΜΗΣ ΣΤΟΧΟΙ Να επιβεβαιώσετε το δεύτερο νόµο του Νεύτωνα στην υλιή ίνηση. Να µελετήσετε τις µεταβολές
ÏÅÖÅ [ ) ) ) ) Οπότε το σηµείο τοµής της γραφικής παράστασης µε τον x x είναι το Μ(-2,0).
Θέµα ο Α.. Θεωρία από Σχ. Βιβλίο σελ. 9 Α.. Θεωρία από Σχ. Βιβλίο σελ. 9 Α.3. Απόδειξη από Σχ. Βιβλίο σελ. 8-9 Β. α Λάθος β Σωστό γ Σωστό δ Λάθος ε Λάθος Θέµα ο α) Πρέπει + 0 x αι x + 0 x αι έστω x + 0
Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΤΑΞΗ: Β ΓΕΝΙΟΥ ΛΥΕΙΟΥ ΠΡΟΑΝΑΤΟΛΙΜΟ: ΘΕΤΙΩΝ ΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΙΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 6 ιάρεια Εξέτασης: ώρες ΑΠΑΝΤΗΕΙ ΘΕΜΑ Α A. β A. δ A. α A. γ A5. α. Λάθος β. Λάθος γ. ωστό δ. Λάθος ε. ωστό
ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ ΙΙ ΕΠΑΝΑΛΗΨΗ. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ ΙΙ ΕΠΑΝΑΛΗΨΗ Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@cental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Ceative Commons και δημιουργήθηκε στο πλαίσιο των Ανοιχτών Ακαδημαϊκών
ΚΑΤΑΓΡΑΦΗ ΤΟΥ ΙΧΝΟΥΣ ΤΗΣ ΟΠΤΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ: ΜΙΑ ΜΕΘΟΔΟΣ ΔΙΕΡΕΥΝΗΣΗΣ ΤΗΣ ΕΠΙΛΕΚΤΙΚΟΤΗΤΑΣ ΤΗΣ ΟΠΗΣ ΩΣ ΒΑΣΙΚΟΥ ΧΑΡΑΚΤΗΡΙΣΤΙΚΟΥ ΤΟΥ ΣΧΗΜΑΤΟΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΧΑΡΤΟΓΡΑΦΙΑΣ ΚΑΤΑΓΡΑΦΗ ΤΟΥ ΙΧΝΟΥΣ ΤΗΣ ΟΠΤΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ: ΜΙΑ ΜΕΘΟΔΟΣ ΔΙΕΡΕΥΝΗΣΗΣ ΤΗΣ ΕΠΙΛΕΚΤΙΚΟΤΗΤΑΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΠΑΙΔΕΥΣΗ ΦΥΣΙΗ ΘΕΤΙΗΣ & ΤΕΧΝ/ΗΣ ΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη ράση η
Θεωρία Γράφων - Εισαγωγή
Θεωρία Γράφων - Εισαγωγή Τοπολογιές απειονίσεις Τοπολογία Κλάδος των μαθηματιών που μελετά ανάμεσα σε άλλα τις ιδιότητες εείνες των γεωμετριών σχημάτων οι οποίες παραμένουν αναλλοίωτες ατά τις τοπολογιές
Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν
Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν Επεξήγηση Μηχανισµού Προσοµοίωση της ανθρώπινης όρασης B A C Μαθηµατική γεωµετρική περιγραφή ενός φυσικού φαινοµένου ΗΦωτογραµµετρική
= 2. iii) Αν το Q(χ) είναι περιττού βαθµού, βρείτε το άθροισµα των συντελεστών των άρτιων δυνάµεων του χ.
Σύλλογος Θετιών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του αθηγητή: Βασίλη Ξανθόπουλου Μαθηµατιά : Τάξη: Β ράµα 3 Απριλίου 11 Θέµα 1 ο ίνονται τα πολυώνυµα P(x) αι Q(x) ώστε η εξίσωση P (x) + Q (x) = (1)
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Μηχανικών Παραγωγής και Διοίκησης
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Μηχανιών Παραγγής αι Διοίησης ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΝΑ ΥΠΟΛΟΓΙΣΤΙΚΟ ΕΡΓΑΛΕΙΟ ΑΝΑΛΥΣΗΣ ΟΥΡΩΝ ΑΝΑΜΟΝΗΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Επόνηση ΚΑΤΕΜΗΣ ΔΗΜΗΤΡΗΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ
ΟΜΟΠΟΝ ΙΑ ΕΠΑΙ ΕΥΤΙΩΝ ΦΡΟΝΤΙΤΩΝ ΕΛΛΑ Ο (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΑ ΘΕΜΑΤΑ 6 Α ΦΑΗ Ε_3.ΦλΘ(α) ΤΑΞΗ: Β ΓΕΝΙΟΥ ΛΥΕΙΟΥ ΠΡΟΑΝΑΤΟΛΙΜΟ: ΘΕΤΙΩΝ ΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΙΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου
A2. O λόγος των ενεργών ταχυτήτων των μορίων του οξυγόνου και των μορίων του υδρογόνου, α) 3/2 β) 4 γ) 1 δ) 1/4
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 15/4/015 ΦΥΣΙΚΗ Ο.Π ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό αθεμιάς από τις παραάτω ερωτήσεις Α1-Α4 αι δίπλα
Χ, Υ, Ζ σηµείων. Εικονιστικό προϊόν
Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν Επεξήγηση η Μηχανισµού µ Προσοµοίωση της ανθρώπινης όρασης B A C Μαθηµατική γεωµετρική περιγραφή ενός φυσικού φαινοµένου
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
= L 2 = L. x L. x c L = L c. = x = 0 = 6. dv dt = = = σχέση x
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΤΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΤΗΣ ΠΡΟΟΔΟΥ ΣΤΗ ΦΥΣΙΚΗ I (//4) ο ΘΕΜΑ: Μια υλινδριή ανομοιογενής ράδος μήους έχει πυνότητα που δίνεται από τη σχέση ρ ( ) ρ όπου c θετιή σταθερά αι η απόσταση από τη
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι ΘΕ ΠΛΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ µον Να βρεθούν οι τιµές της παραµέτρου έτσι ώστε το σύστηµα ² α Να έχει άπειρες ύσεις οι οποίες αι να
Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος
Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί με τρόπους το ολοκλήρωμα I d d 0 Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω στο ορθογώνιο χωρίο R 0,,
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΣΤΑΣΙΜΟΥ ΚΥΜΑΤΟΣ ΣΕ ΧΟΡΔΗ ΣΤΕΡΕΩΜΕΝΗ ΣΤΑ ΑΚΡΑ ΤΗΣ
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΣΤΑΣΙΜΟΥ ΚΥΜΑΤΟΣ ΣΕ ΧΟΡΔΗ ΣΤΕΡΕΩΜΕΝΗ ΣΤΑ ΑΚΡΑ ΤΗΣ ΒΑΡΗ 2010 Κωνσταντίνος Μπίιας
2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση
00-0 4 o Γενιό Λύειο Χανίων Γ τάξη Μαθηματιά Γενιής Παιδείας γ Ασήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράης http://users.sch.gr/mipapagr 4 ο Γενιό Λύειο Χανίων 00 0 ΣΥΝΔΙΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ
1 O ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΤΡΑΣ 2015 ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΨΩΜΑΘΙΑΝΟΣ ΕΜΜΑΝΟΥΗΛ
1 O ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΤΡΑΣ 2015 ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΨΩΜΑΘΙΑΝΟΣ ΕΜΜΑΝΟΥΗΛ ΔΥΝΑΜΗ Τις δυνάμεις τις διακρίνουμε βασικά με δύο τρόπους: Συντηρητικές Μη συντηρητικές
Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:
ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:
Φύλλο εργασίας ΟΝΟΜΑΤΕΠΩΝΥΜΟ...ΤΑΞΗ...ΤΜΗΜΑ...
Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΜΑΓΝΗΣΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (Ε.Κ.Φ.Ε) Φύλλο εργασίας ΟΝΟΜΑΤΕΠΩΝΥΜΟ...ΤΑΞΗ...ΤΜΗΜΑ... ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΚΥΛΙΝΔΡΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ KAI ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ
Θέματα. Α1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (9 μονάδες)
Θέματα Θέμα Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α αι Β ενός δειγματιού χώρου Ω, ισχύει P(A-B)P(A)-P( A B) (9 μονάδες) Α. Να διατυπώσετε το νόμο των μεγάλων αριθμών. (6 μονάδες) Α. Να χαρατηρίσετε
35 = (7+ 109) =
Άλγεβρα Α Λυείου Στεφανής Παναγιώτης Συνδυαστιές Ασήσεις Ασήσεις δηµοσιευµένες στο περιοδιό τεύχος 8 Άσηση α) Να δείξετε ότι: 7 + + + +... + 9 = β) Να λυθεί η ανίσωση: 7 7x + x + x +... +
14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες.
14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες. 13 η εβδομάδα (20/01/2017) Έγιναν οι ασκήσεις 31, 32, 33, 34, 36 και 37 11 η 12 η εβδομάδα
Η Αρχή του Ήρωνος και η Ανάκλαση του Φωτός
Σχεδιασμός Υλοποίηση: Αλκιβιάδης Γ. Τζελέπης, M.Sc Mathematics, Model High School Evangeliki of Smirni. Η Αρχή του Ήρωνος και η Ανάκλαση του Φωτός Το Πρόβλημα Να αποδειχθεί ο νόμος της ανάκλασης: Μία φωτεινή
A 20 =. (ii) Αν δ = 0,04, P( A 20. =. (Απάντηση : & e, βλέπουµε µια ακόµα φορά κ 0 για εκθετικές συναρτήσεις επιβίωσης. (iii) Να δειχθεί ότι γενικά 1
Αν A, 3 αι A, A 5 4 αι A 4, 5, να ειχθεί ότι, να ειχθεί ότι A A, 5 3 7 A Αν,4, A, 5 : 5 A 4 : ίονται 5,445, A,7, α 8,5, 4 αι 3, 375 Να 5 : 5 4 : 4 : A ειχθεί ότι 5, 9 αι 5 5 :, 336 5 : 5 5 5 : 5 ίονται
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΜΑΓΝΗΤΟΣΤΑΤΙΚΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μετασχηµατισµοί συντεταγµένων
Μετασχηµατισµοί συντεταγµένων Περιεχόµενα ενότητας: Έννοια και χρησιµότητα του µετασχηµατισµού συντεταγµένων Μητρώα µετασχηµατισµού Συντεταγµένες µοντέλου Μετασχηµατισµός µοντέλου Στοιχειώδεις µετασχηµατισµοί
Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά.
ΣΤΑΤΙΣΤΙΚΗ Στατιστιή λέγεται ο λάδος τω Μαθηματιώ ο οποίος συγετρώει στοιχεία που ααφέροται σε έα σύολο ατιειμέω, τα ταξιομεί, αι τα παρουσιάζει σε ατάλληλη μορφή ώστε α μπορού α ααλυθού αι α ερμηευθού.
Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 8: Μοντέλα προσομοίωσης σε πορώδεις υδροορείς Αναπληρωτής Καθηγητής Νικόλαος
Υδραυλική των Υπόγειων Ροών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Αριθμητικά μοντέλα υπόγειων υδροορέων Καθηγητής Κωνσταντίνος Λ. Κατσιαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου Καθηγητής
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Παραμετρική σχεδίαση Παραμετρικό αντικείμενο (2D σχήμα/3d στερεό) ονομάζουμε το αντικείμενο του οποίου η (γεωμετρική)
10. Πολυατομικά Μόρια
0. Πολυατομιά Μόρια Περίληψη Οι ιδιότητες των πολυατομιών μορίων μπορούν να υπολογισθούν μέσω των στατιστιών συνόλων με βάση τις διαμοριαές αλληλεπιδράσεις. Εδώ παρουσιάζεται ο υπολογισμός των θερμοδυναμιών
ΠΕΡΙΕΧΟΜΕΝΑ. 1. Γενικά... 2. 2. Γεωμετρία κάτοψης ορόφων... 2. 3. Ορισμός "ελαστικού" άξονα κτιρίου... 2. 4. Προσδιορισμός του κυρίου συστήματος...
ΠΕΡΙΕΧΟΜΕΝΑ 1. Γενικά... 2 2. Γεωμετρία κάτοψης ορόφων... 2 3. Ορισμός "ελαστικού" άξονα κτιρίου.... 2 4. Προσδιορισμός του κυρίου συστήματος.... 3 5. Στρεπτική ευαισθησία κτιρίου... 3 6. Εκκεντρότητες
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ, Υ ΡΑΥΛΙΚΩΝ ΚΑΙ ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ ΜΟΝΤΕΛΑ ΣΗΜΕΙΑΚΩΝ ΑΝΕΛΙΞΕΩΝ ΓΙΑ ΤΗ ΒΡΟΧΟΠΤΩΣΗ Η ΠΕΡΙΠΤΩΣΗ ΕΝΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΟΥ ΜΟΝΤΕΛΟΥ BARTLETT
Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η παραβολή C: y= 1 x. 2. * H ευθεία y = x είναι εφαπτόµενη της παραβολής C: x= 1 y
Β. ΠΑΡΑΒΟΛΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η παραβολή C: =, έχει εστία Ε (0, ) και 8 διευθετούσα = -. Σ Λ. * H ευθεία = είναι εφαπτόµενη της παραβολής C: =. Σ Λ 4 3. * Αν η διευθετούσα µιας παραβολής
3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ
3. 3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ 3. Εισαγγή Στην μελέτη τν συστημάτν, μία από τις μεθόδους που χρησιμοποιούνται είναι η απόκριση κατά συχνότητα ή η συχνοτική απόκριση. Η μέθοδος αυτή μελετά την συμπεριφορά
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΤΗΣ ΕΛΛΑΔΟΣ ΕΤΟΥΣ 007 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΚΑΤΗΓΟΡΙΑ: ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Απογευματιή εξέταση στα μαθήματα: «. Άλγεβρα» «.5
Φωτογραμμετρία II Το κυνήγι μιας ακτίνας. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
Φωτογραμμετρία II Το κυνήγι μιας ακτίνας Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. drag@central.ntua.gr Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο
6. Το Υπόδειγμα των Επικαλυπτόμενων Γενεών: Ανταλλαγή I
6. Το Υπόδειγμα τν Επικαλυπτόμενν Γενεών: Ανταλλαγή I 6.. Ερτήσεις Σχολιάστε την εγκυρότητα τν παρακάτ προτάσεν. Αν πιστεύετε ότι μια πρόταση είναι σστή κάτ από ορισμένες προϋποθέσεις τότε να αναφέρετε
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ. r 1 r 2 = N 2λ r 1 r 2 = Ν λ όπου Ν = 2Ν = 0, ±2, ±4, ακέραιο πολλαπλάσιο του λ, άρα ενισχυτική συμβολή
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 6 ΜΑÏΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ
METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν ΕΞΕΤΑΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΟΝΟΜΑTΕΠΩΝΥΜΟ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Χρησιμοποιώντας
Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
ΑΛΓΕΒΡΑ Β Λυκείου ( ) ΑΣΚΗΣΕΙΣ. 1. Να λύσετε τις παρακάτω εξισώσεις : 2 4y. x x 1. στ) 1 3y. = 0, είναι κάθετη στην ευθεία ε 2 : y =
ΑΛΓΕΒΡΑ Β Λυκείου ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Κ Ε Φ Α Λ Α Ι Ο ο - Φ Υ Λ Λ Ο Νο ΛΥΣΗ - ΔΙΕΡΕΥΝΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΔΥΟ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ ΑΣΚΗΣΕΙΣ. Να λύσετε τις παρακάτω εξισώσεις : α) 5 +
1ο τεταρτημόριο x>0,y>0 Ν Β
ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ. TA ΘΕΜΑΤΑ ΕΠΙΣΤΡΕΦΟΝΤΑΙ ΕΝΤΟΣ ΤΟΥ ΓΡΑΠΤΟΥ Διάρκεια εξέτασης 1:45 ακριβώς.
ΤΜΗΜ ΠΟΛΙΤΙΩΝ ΜΗΧΝΙΩΝ ΤΕ Ι ΜΗΧΝΙΩΝ ΤΟΠΟΓΡΦΙΣ Ι ΓΕΩΠΛΗΡΟΦΟΡΙΗΣ ΤΕ ΤΕΥΘΥΝΣΗ ΠΟΛΙΤΙΩΝ ΜΗΧΝΙΩΝ ΤΕ ΕΞΕΤΣΤΙΗ ΕΡΙΝΟΥ Δ. ΕΤΟΣ 0-04 Διδάσκων : Δρ. Χρ. οζίκης Τ. Ε. Ι. ΕΝΤΡΙΗΣ ΜΕΔΟΝΙΣ Σέρρες, Ιουνίου 04 ΘΕΜΤ ΕΞΕΤΣΕΩΝ
Η τριβή στην κύλιση τροχού
Η τριβή στην ύλιση τροχού Στο εφάλαιο της δυναμιής στην ίνηση στερεού σώματος αι συγεριμένα ατά την ύλιση τροχού, πρωτεύοντα ρόλο έχει η τριβή που εμφανίζεται στην επαφή μεταξύ τροχού αι δαπέδου ύλισης.
ÖÑÏÍÔÉÓÔÇÑÉÁ ÐÑÉÓÌÁ ÐÁÔÑÁ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 25 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β
ΘΕΜΑ Α ΦΥΣΙΗ ΑΤΕΥΘΥΝΣΗΣ Γ ΥΕΙΟΥ & ΕΠΑ.. Β 5 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. γ, Α. β, Α3. γ, Α4. γ Α5. α. Σ, β. Σ γ. δ. ε. Σ ΘΕΜΑ Β Β. Σωστό το γ. θα αέρας νερό Αρχικά Snell µεταξύ νερού αέρα n ηµ θ n ηµ90, Όµως
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν
Μαθηματική Εισαγωγή - Διανύσματα 25/7/2014
Κωνσταντίνος Χ. Παύλου Φυσικός Ραδιοηλεκτρολόγος (MSc) 2 ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορή Επίλυση βασικών μορών εξισώσεων Συναρτήσεις
ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ
ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ. Σώμα μάζας m = kg, είναι δεμένο στο άκρο οριζόντιου ελατηρίου με το άλλο άκρο του σε ακλόνητο τοίχο) και αό την άλλη άκρη είναι δεμένο με νήμα τεταμένο με
4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0
1. Η ΣΥΝΑΡΤΗΣΗ y = α + + γ µε α 0 ΘΕΩΡΙΑ 1. Τετραγωνική συνάρτηση : Ονοµάζεται κάθε συνάρτηση της µορφής y = α + + γ, α 0. Γραφική παράσταση της συνάρτησης y = α + + γ, α 0 Η γραφική παράσταση της συνάρτησης
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.
Προτεινόµενες Ασκήσεις στην Απόκριση Συχνότητας
Προτεινόµενες Ασκήσεις στην Απόκριση Συχνότητας από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλµάτν», Ν. Μάργαρη Πρόβληµα Το κύκλµα του Σχ. είναι ένα απλό χαµηλοπερατό φίλτρο. Να βρεθεί η συνάρτηση µεταφοράς τάσης.
ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Καθηγητής Δρ.Δ.Σαγρής ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης
1 Σκοπός ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1 ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την
Καθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Κα. Βλάσης Κουµούσης Μεµβρανική Παραµόρωση -Κυλινδρικά Κελύη, u z, w y, v C.C. w r - w d (r - w) d rd «Θεωρία Κελυών»
5/3/2010. A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ B. Στη συσχέτισή του µε το γεωδαιτικό σύστηµα
5/3/ Για να είναι δυνατή η επεξεργασία στα φωτογραµµετρικά όργανα χρειάζεται κάποιο στάδιο προετοιµασίας του ζεύγους των εικόνων. Η προετοιµασία αυτή αφορά: A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ.
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία 06-11-16 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; (4 μον.) ii. Πότε μία συνάρτηση f ονομάζεται
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ. r 1 r 2 = N 2λ r 1 r 2 = Ν λ όπου Ν = 2Ν = 0, ±2, ±4, ακέραιο πολλαπλάσιο του λ, άρα ενισχυτική συμβολή
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 6 ΜΑÏΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ
A2. O λόγος των ενεργών ταχυτήτων των μορίων του οξυγόνου και των μορίων του υδρογόνου, α) 3/2 β) 4 γ) 1 δ) 1/4
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5//05. ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στ τετράδιό σας τν αριθμό αθεμιάς από τις παραάτω ερωτήσεις
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Η έννοια και χρήση των εσωτερικών δεσμεύσεων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων
Είμαστε τυχεροί που είμαστε δάσκαλοι ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων 05-10-1 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; ( μον.) ii. Πότε
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ
ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο
Notes. Notes. Notes. Notes. C = p x x 1 + p y y 1. pxx + pyy = 160
Ελαχιστοποίηση κόστους Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Ελαχιστοποίηση κόστους 9 Οκτωβρίου 2012 1 / 36 Κόστος Το πρόβλημα εύρεσης ενός άριστου καλαθιού
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες Στο δωδέκατο μάθημα (24/10/2018)
( ) ( + 30 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Ζωδόχυ Πηγς 8 Σαλαμίνα Τηλ 07-7 /000 8. Να υλγιστύν ι τριγωνμετριί αριμί των γωνιών: α) 8 β) 90 γ) Σε τέτιυ είδυς ασσεις ετελύμε διαίρεση όταν έχυμε γωνία : σε μίρες διαίρεση με τ 0 αι μας ενδιαφέρει μόν
Η έννοια και χρήση των εσωτερικών δεσμεύσεων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Φύλλο Εργασίας για την y=αx 2
Πρόβλημα Σε ένα τετραγωνικό περιβόλι πλευράς 10m πρόκειται να χτιστεί μια αποθήκη σχήματος ορθογωνίου, όπως φαίνεται στο διπλανό σχήμα. Α) Να βρεθούν οι διαστάσεις της αποθήκης συναρτήσει του x, αν γνωρίζετε
iii. Ακόμα, αλλάζουμε πρόσημα (όλα!) όποτε θέλουμε : α α, α β β α
. ΤΑΥΤΟΤΗΤΕΣ Ετός από τις λασσιές, θυμηθείτε υρίως τις δύο παραάτω : α β α β α αβ β α β α β α αβ β, αλλά αι τη γειότητα: α β α β α α β α β... αβ β, α,β,.. ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ (ορισμοί σχέσεις συμπεράσματα)
Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας
Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Η πειραματική διάταξη φαίνεται στο ακόλουθο σχήμα: Θα χρησιμοποιήσουμε: Ένα φακό Laser κόκκινου χρώματος. Ένα φράγμα περίθλασης. Μια οθόνη που φέρει πάνω
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ
Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001
Τµήµα Π Ιωάννου & Θ Αποστολάτου 3/2001 Μηχανική ΙI Λαγκρανζιανή συνάρτηση Είδαµε στο προηγούµενο κεφάλαιο ότι ο δυναµικός νόµος του Νεύτωνα είναι ισοδύναµος µε την απαίτηση η δράση ως το ολοκλήρωµα της
ΤΡΙΓΩΝΟΜΕΤΡΙΑ. Ορίζω: Ορίζω: ηµω= y ρ. x x
1 ΤΡΙΓΩΝΜΕΤΡΙΑ [1].Τυολόγιο τριγνοµετρίας (Εαναλήψεις) α. Τριγνοµετρικοί αριθµοί σε ορθογώνιο τρίγνο αέναντι Γ Α β υοτείνουσα α γ ροσκείµενη ρίζ: β. Τριγνοµετρικοί αριθµοί σε σύστηµα συντεταγµένν ηµβ=
Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι:
Όριο συνάρτησης στο Στα παρακάτω θα προσεγγίσουμε την διαισθητικά με τη βοήθεια γραφικών παραστάσεων και πινάκων τιμών. 4 4 Έστω η συνάρτηση f με τύπο f ) = και πεδίο ορισμού το σύνολο ) ) η οποία μπορεί
τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:
κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ