ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος"

Transcript

1 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0. ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Άσκηση Έστω ένα κύμα που κινείται εντός αγωγού με ταχύτητα c 0 m/s. Η κατανομή utx, του κύματος την χρονική στιγμή t 0 είναι τριγωνική και φαίνεται στο Σχήμα. Εφαρμόζοντας την εξίσωση κύματος ης τάξης να υπολογισθεί αριθμητικά η διάδοση του κύματος μέχρι την χρονική t 0. sec με τις μεθόδους α) πρόδρομη στο χρόνο ανάδρομη στο χώρο, β) Lax-Wendroff, γ) πεπλεγμένη Euler και δ) McCormack για x m και τρεις τιμές του χρονικού βήματος t 0.00, 0.00 και Σχολιάστε τα αριθμητικά αποτελέσματα για τις τρεις τιμές του χρονικού βήματος συγκρίνοντας τα μεταξύ τους και με την αναλυτική λύση. Επίσης να σχολιασθούν η αριθμητική διάχυση και διασπορά των μεθόδων. u(0, x ) t x Σχήμα : Κατανομή κύματος τη χρονική στιγμή t 0 Λύση Εφαρμόζοντας τη μέθοδο των χαρακτηριστικών η αναλυτική λύση είναι: uxt (, ) f( x ct) () με f την αρχική τριγωνική κατανομή: 0, x x, x f( x) () x 0, x 0, x Το ίδιο πρόβλημα επιλύεται αριθμητικά με τέσσερα αριθμητικά σχήματα. Σε όλες τις περιπτώσεις η βασική παράμετρος είναι ο αριθμός CFL: v ct/ x, όπου t και

2 x είναι το χρονικό και χωρικό βήμα διακριτοποίησης αντίστοιχα. Το πλέγμα μας αποτελείται από N 70 διαστήματα (7 κόμβοι). n Θεωρούμε ότι u 0 για x 0 και x 70, επομένως στις επόμενες σχέσεις θα είναι: n n u 0 u 0 N Μέθοδος : Πρόδρομη στο χρόνο ανάδρομη στο χώρο (Ρητό σχήμα) u u vu, i n n n n n n n i i i i u u v u u, i,..., N Μέθοδος : ΜcCormack (Ρητό σχήμα) Το σχήμα αυτό αποτελείται από εξισώσεις (πρόβλεψη και διόρθωση): n/ n n n Πρόβλεψη: ui ui vui ui, i,..., N n n n/ n/ n/ Διόρθωση: i i i i i u u u v u u, i,..., N n/ n n n n n n/ n/ i : u u vu u και u u u vu n/ n n i N : un un vun u u u v u u n n n/ n/ n/ και N N N N N Μέθοδος 3: Πεπλεγμένη Euler v n n v n n ui ui ui ui, i,..., N v i : u n n n u u n v n n i N : un un un Το σύστημα που προκύπτει είναι τριδιαγώνιο και επιλύεται με τη μέθοδο Thomas. Μέθοδος 4: Lax-Wendroff (Ρητό σχήμα) n n v n n v n n n ui ui uiui ui ui ui, i,..., N n n v n v n n i : u u u u u n n v n v n n i N : un un un un un

3 Το ακόλουθο πρόγραμμα σε Fortran επιλύει το πρόβλημα αρχικών τιμών και με τις 4 μεθόδους: program ftbs_mac_cormack implicit none! Variables real,allocatable:: u(:),uold(:),uprev(:),x(:), u0(:),t(:,:),t(:,:),t3(:,:),t4(:,:),t(:,:) real,allocatable:: aa(:),bb(:),cc(:),dd(:),xx(:) real::v, dx, dt, c, pi, t,max,err integer::i,n, tmax, m, done, method character()::num!tmax= n=70 c=0! dt=0.00!dt=0.00! dt=0.00 dt=0.006 dx=. v=c*dt/dx pi= tmax=nint(0./dt) allocate(u(n+), uold(n+),uprev(n+), x(n+), u0(n+), t(n+,tmax),t(n+,tmax),t3(n+,tmax),t4(n+,tmax),t(n+,tmax)) allocate(aa(n+),bb(n+),cc(n+),dd(n+),xx(n+)) do i=,n+ x(i)=(i-)*dx open(,file='res_all_4.txt',recl=000) write(,'(a,i4)') 'N+= ',n+ write(,'(a,f.)') 'c= ',c write(,'(a,f.)') 'dt= ',dt write(,'(a,f.)') 'dx= ',dx write(,'(a,f.)') 'v= ',v write(,'(a,i)') 'tmax= ',tmax do method=,4!=ftbs = Mac Cormack 3=peplegmenh Euler 4=Lax- Wendroff if (method==) then do i=,n+ u(i)=f(x(i))!print*,i,u(i)!read* open(0,file='f_4.txt')

4 open(0,file='f_4.txt') open(300,file='f3_4.txt') open(400,file='f4_4.txt') open(00,file='f_4.txt') do m=,tmax uold=u do i=, n+ if(i==)then u(i)=uold(i)*(.-v)+v*uold(n) else u(i)=uold(i)*(.-v)+v*uold(i-) endif t(:,m)=u elseif (method==)then do i=,n+ u(i)=f(x(i)) do m=,tmax uold=u do i=,n u0(i)=uold(i)-v*(uold(i+)-uold(i)) u0(n+)=uold(n+)+v*uold(n+) u()=0.*(uold()+u0()-v*u0()) do i=,n+ u(i)=0.*(uold(i)+u0(i)-v*(u0(i)-u0(i-))) t(:,m)=u elseif (method==3)then do i=,n+ u(i)=f(x(i)) do m=,tmax uold=u! Ypologismos syntelestwn algorithmou Thomas gia tous n- eswterikous kombous! px gia n=7 (6 eswterikoi komboi):! b() c() d()! a() b() c() d()! 0 a(3) b(3) c(3) 0 0 d(3)! 0 0 a(4) b(4) c(4) 0 d(4)! a() b() c() d()! a(6) b(6) d(6)

5 do i=,n+ if (i>) AA(i)=-v/. BB(i)=. if (i<=n) CC(i)=v/. DD(i)=uold(i) call Thomas(n+,AA,BB,CC,DD,XX) u(:)=xx(:) t3(:,m)=u elseif (method==4)then do i=,n+ u(i)=f(x(i)) do m=,tmax uold=u u()=uold()- c*dt*(uold())/(.*dx)+(0.*c***dt**/dx**)*(uold()-.*uold()) do i=, n u(i)=uold(i)-c*dt*(uold(i+)-uold(i- ))/(.*dx)+(0.*c***dt**/dx**)*(uold(i+)-.*uold(i)+uold(i-)) u(n+)=uold(n+)-c*dt*(- uold(n))/(.*dx)+(0.*c***dt**/dx**)*(-.*uold(n+)+uold(n)) t4(:,m)=u endif!method do m=,tmax t=m*dt write(,*) ' T=',t,' ' write(,*) 'i x FTBS McCormack Peplegmenh_euler Lax-Wendroff Analytikh' do i=,n+ write(,'(i3,f.,f8.)') i,x(i),t(i,m),t(i,m),t3(i,m),t4(i,m),f(x(i)-c*t) write(num,'(i)') m!open(3,file="for_mathematica_t_m"//trim(adjustl(num))//".txt")!do i=,n+!write(3,'(3f.)') t,x(i),t3(i,m)! close(3) do i=,n+ write(0,'(f8.)') x(i),t(i,m) write(0,'(f8.)') x(i),t(i,m) write(300,'(f8.)') x(i),t3(i,m) write(400,'(f8.)') x(i),t4(i,m) write(00,'(f8.)') x(i),f(x(i)-c*t)

6 !print*,i,t3(i,m)!m print*, 'Done' contains real function f(x) real::x if (x<=.or. x>=) then f=0 elseif (x>.and. x<) then f=*x- else f=-*x+0 end if end function! Algorithmos Thomas subroutine Thomas(n,a,b,c,d,x) integer,intent(in) :: n real, INTENT(INOUT) ::a(n),b(n),c(n),d(n) real, INTENT(OUT) ::x(n) integer::i real ::t(n),u(n) t()=b() u()=d()/t() do i=,n t(i)=b(i)-a(i)*c(i-)/t(i-) u(i)=(d(i)-a(i)*u(i-))/t(i) x(n)=u(n) do i=n-,,- x(i)=u(i)-c(i)/t(i)*x(i+) end subroutine Thomas end program ftbs_mac_cormack Στη συνέχεια παρουσιάζεται ενδεικτικά το αποτέλεσμα του κώδικα για t 0.0 κατά την ζητούμενη τελική χρονική στιγμή t 0. x FTBS Lax-Wendroff McCormack Πεπλεγμένη Αναλυτική Euler

7

8 Για μια ποιοτική μελέτη των αποτελεσμάτων, ο κώδικας εκτελείται για τις ζητούμενες τιμές του t και τα αποτελέσματα αναπαριστάνονται γραφικά με τη βοήθεια του Mathematica. Έτσι δημιουργούνται τα ακόλουθα γραφήματα: Αναλυτική Λύση FTBS Lax-Wendroff ΜcCormack Πεπλεγμένη Euler Δt=0.00 v=0. Δt=0.00 v=0. Δt=0.00 v= 300 Δt=0.006 v= O κώδικας σε Mathematica που χρησιμοποιήθηκε για την παραγωγή των γραφημάτων είναι ο ακόλουθος (με κατάλληλη, κάθε φορά, τροποποίηση των παραμέτρων): a=readlist["f_.txt",{number,number}]; n=length[a]/7; b=table[listplot[a[[7(i-)+;;7(i-)+7]],joined->true],{i,,n,6}] Show[b,PlotRange->All] Μελετώντας τα ανωτέρω διαγράμματα καταλήγουμε στο συμπέρασμα ότι ακριβή λύση στο πρόβλημά μας δίνουν μόνον τα ρητά σχήματα και μάλιστα μόνο για v. Σε όλες τις υπόλοιπες περιπτώσεις όλα τα σχήματα παρουσιάζουν κάποιο βαθμό

9 αριθμητικής διάχυσης (απόσβεση και διασπορά), με αποτέλεσμα η λύση να αποκλίνει ολοένα και περισσότερο από την αναλυτική καθώς μετακινούμαστε στο χρόνο. Επίσης, παρατηρούμε ότι οι λύσεις των σχημάτων McCormack και Lax-Wendroff ταυτίζονται για το συγκεκριμένο προβλημα. Τέλος, παρατηρούμε ότι για τιμές του v τα ρητά σχήματα αποκλίνουν. Τα ανωτέρω συμπεράσματα βρίσκονται σε ακολουθία με τη θεωρητική ανάλυση της ευστάθειας και της συνοχής των αριθμητικών σχημάτων που χρησιμοποιήθηκαν. Ειδικότερα για τη συνοχή των συγκεκριμένων σχημάτων ισχύουν τα ακόλουθα: Η τροποποιημένη εξίσωση πεπερασμένων διαφορών του σχήματος FTBS είναι η cx x 3 3 ut cux vuxx c v 3v uxxx Ox, x t, xt, t 6 (3) όπου c0, x. Αν στην εξ. (3) θέσουμε v τότε προκύπτει η εξίσωση 3 3 ut cux 0 O x, x t, xt, t, η οποία είναι σχεδόν ταυτόσημη με την αρχική εξίσωση κύματος. Επομένως στη συγκεκριμένη περίπτωση δεν έχουμε αριθμητική διάχυση. Αν στην εξ. (3) θέσουμε v 0. τότε προκύπτει η εξίσωση 3 3 ut cux 0 uxx O x, x t, xt, t, η οποία έχει μόνο αριθμητική απόσβεση. Αν, τέλος, στην εξ. (3) θέσουμε v 0. τότε προκύπτει η εξίσωση 3 3 ut cux 7uxx. uxxx O x, x t, xt, t, η οποία παρουσιάζει και αριθμητική απόσβεση (άρτιες παράγωγοι του u ) και αριθμητική διασπορά (περιττές παράγωγοι του u ). Η τροποποιημένη εξίσωση πεπερασμένων διαφορών του σχήματος Lax-Wendroff είναι η 3 cx x ut cux v uxxx c v u (4) xxxx 6 8 η οποία για v ανάγεται στην αρχική εξίσωση κύματος, ενώ για v 0. και v 0. γίνεται αντίστοιχα ut cux uxxx 9.37uxxxx και ut cux 3.uxxx.86uxxxx οι οποίες παρουσιάζουν αριθμητική απόσβεση. Το σχήμα McCormack έχει συμπεριφορά αντίστοιχη με αυτή του Lax-Wendroff. Τέλος για την πεπλεγμένη Euler, η τροποποιημένη εξίσωση πεπερασμένων διαφορών είναι η 3 ut cux c tu xx c x c t uxxx 6 3 Παρατηρούμε ότι το δεξιό τμήμα της τροποποιημένης εξίσωσης δεν μηδενίζεται για οποιαδήποτε επιλογή του αριθμού, επομένως το σχήμα θα παρουσιάζει πάντοτε αριθμητική διάχυση.

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4 ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4 ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ. ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-00, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ # ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5..00 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Να επιλυθεί η εξίσωση

Διαβάστε περισσότερα

(συνθήκη συμμετρίας) (4) Το παραπάνω πρόβλημα μπορεί να περιγράψει τη μεταβατική πλήρως ανεπτυγμένη ροή σε κυλινδρικό αγωγό.

(συνθήκη συμμετρίας) (4) Το παραπάνω πρόβλημα μπορεί να περιγράψει τη μεταβατική πλήρως ανεπτυγμένη ροή σε κυλινδρικό αγωγό. ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 00-0, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ (αρχικών και οριακών τιμών) ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..00 ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Ζητείται να επιλυθεί η εξίσωση t

Διαβάστε περισσότερα

Επιλύστε αριθμητικά με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: ( )

Επιλύστε αριθμητικά με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: ( ) ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Επιλύστε αριθμητικά με τη μέθοδο

Διαβάστε περισσότερα

Επιλύστε αριθμητικά το με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών:

Επιλύστε αριθμητικά το με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 1-13, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ημερομηνίες παράδοσης: Ασκήσεις 1 και : -1-1, Ασκήσεις 3 και 4: 8-1-13 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ

Διαβάστε περισσότερα

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r Άσκηση : πρόκειται για ΣΔΕ δύο οριακών τιμών με εφαρμογή του αλγόριθμου Thomas για επίλυση τριγωνικού συστήματος Έχουμε να επιλύσουμε την εξίσωση: du du u dr r dr με οριακές συνθήκες u () 0 και u(0) πεπερασμένη

Διαβάστε περισσότερα

Άσκηση 1 Έχουµε να επιλύσουµε την εξίσωση κύµατος 1 ης τάξης (υπερβολική εξίσωση) (1)

Άσκηση 1 Έχουµε να επιλύσουµε την εξίσωση κύµατος 1 ης τάξης (υπερβολική εξίσωση) (1) Άσκηση Έχουµε να επιλύσουµε την εξίσωση κύµατος ης τάξης (υπερβολική εξίσωση) u t + cu = 0 () Θα χρησιµοποιήσουµε τις ακόλουθες µεθόδους: α) Μέθοδος FTBS (Πρόδροµη στο χρόνο, ανάδροµη στο χώρο) Το σχήµα

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ. ΑΣΚΗΣΗ 1 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-1, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 15.1.9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΠΑΡΑΔΕΙΓΜΑ 17 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 005-006, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Ομάδα Α: Άσκηση Έχουμε να επιλύσουμε

Διαβάστε περισσότερα

Επιµέλεια: Γιάννης Λυχναρόπουλος Οµάδα Α: Άσκηση 2 Έχουµε να επιλύσουµε την εξίσωση: 2

Επιµέλεια: Γιάννης Λυχναρόπουλος Οµάδα Α: Άσκηση 2 Έχουµε να επιλύσουµε την εξίσωση: 2 Οµάδα Α: Άσκηση Έχουµε να επιλύσουµε την εξίσωση: du du u = dr + r dr = (Α) du µε οριακές συνθήκες u () = 0 και u(0) πεπερασµένη ή = 0 (συνθήκη dr r = 0 συµµετρίας). Η αναλυτική λύση της διαφορική ς εξίσωσης

Διαβάστε περισσότερα

Οι παρακάτω ασκήσεις είναι από το βιβλίο των S. C. Chapra και R. P. Canale με τίτλο Numerical Methods for Engineers, 6 th edition.

Οι παρακάτω ασκήσεις είναι από το βιβλίο των S. C. Chapra και R. P. Canale με τίτλο Numerical Methods for Engineers, 6 th edition. ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 04-05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΣ ΕΞΙΣΩΣΕΙΣ: Α) ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Β) ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος:

Διαβάστε περισσότερα

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι 2006-7

Υπολογιστικές Μέθοδοι 2006-7 Υπολογιστικές Μέθοδοι 006-7 Άσκηση. (Επιμέλεια: Ιωάννης Λυχναρόπουλος) Θα επιλύσουμε την εξίσωση: urr ur u t, t t 0 και R i /Rout r r Έστω Ri 0.4 και Rout δηλαδή: Ri / Rout 0.4 με αρχική συνθήκη: ur (,0)

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος. Η μόνιμη θερμοκρασιακή κατανομή σε δύο διαστάσεις περιγράφεται από την εξίσωση: και

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος. Η μόνιμη θερμοκρασιακή κατανομή σε δύο διαστάσεις περιγράφεται από την εξίσωση: και ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ και ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Η μόνιμη

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας

Διαβάστε περισσότερα

w 1, z = 2 και r = 1

w 1, z = 2 και r = 1 ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 0..009 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Δίδεται η διαφορική εξίσωση Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ. ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 011-01, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5-1-011 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιλέξτε μία εκ των Ασκήσεων 1 και : ΑΣΚΗΣΗ 1 Να λυθεί το πρόβλημα οριακών

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΕΜΒΟΛΗ

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΕΜΒΟΛΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΕΜΒΟΛΗ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση Η σχέση ανάµεσα στην τάση και στην θερµοκρασία ενός θερµοστοιχείου πλατίνας µε 0% ρόδιο δίνεται από τον

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0.008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Άσκηση Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί η εξίσωση ροής διαμέσου ενός κυλινδρικού αγωγού λόγω διαφοράς πίεσης: d u du u = + = dr r dr du με

Διαβάστε περισσότερα

Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό αγωγό περιγράφεται από την συνήθη διαφορική εξίσωση

Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό αγωγό περιγράφεται από την συνήθη διαφορική εξίσωση Άσκηση ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ 08-09 5 Ο ΕΞΑΜΗΝΟ Ι ΑΣΚΩΝ:. Βαλουγεώργης ΕΡΓΑΣΙΑ: ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΟΡΙΑΚΩΝ ΤΙΜΩΝ (Σ Ε & Μ Ε Ηµεροµηνία παράδοσης: 8//09 Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό

Διαβάστε περισσότερα

Παράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγµα # ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση ίδεται η διαφορική εξίσωση: dy dx y 0 = 0 x = y + e, Να επιλυθεί το πρόβληµα αρχικών τιµών µε τις µεθόδους Euler και Runge-Kutta

Διαβάστε περισσότερα

5. Ανάλυση διακριτής μορφής ΔΜΠ με ΠΔ

5. Ανάλυση διακριτής μορφής ΔΜΠ με ΠΔ 5. Ανάλυση διακριτής μορφής ΔΜΠ με ΠΔ Η διακριτή μορφή διαφορικών μερικών παραγώγων (ΔΜΠ) επιτυγχάνεται με την εφαρμογή πεπερασμένων διαφορών (ΠΔ) ή άλλων μεθόδων διακριτοποίησης όπως πεπερασμένοι όγκοι

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx

την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία παράδοσης --0 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Με βάση τη σειρά Taylor βρείτε για τη παράγωγο

Διαβάστε περισσότερα

Άσκηση 1. Δίδεται η διαφορική εξίσωση dy. Λύση. Έχουμε dy

Άσκηση 1. Δίδεται η διαφορική εξίσωση dy. Λύση. Έχουμε dy Άσκηση ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική εξίσωση dy x =

Διαβάστε περισσότερα

Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)

Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k) Παράδειγμα # EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί το παρακάτω μη γραμμικό σύστημα με την μέθοδο Newton: ( ) ( ) f, = + = 0 f, = + 8=

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016 Διδάσκoντες: Χαράλαμπος Παναγόπουλος, Μάριος Κώστα Βαθμός: Όνομα: Α.Δ.Τ.:... ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 24/03/2016 Άσκηση 1 (1 μονάδα) Ποιο είναι το αποτέλεσμα

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

y 1 και με οριακές συνθήκες w

y 1 και με οριακές συνθήκες w ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Η εξίσωση Laplace σε

Διαβάστε περισσότερα

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα:

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα: ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0 05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0 Ημερομηνία παράδοσης εργασίας: 9 0 Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ:..6 Επιµέλεια απαντήσεων: Ι. Λυχναρόπουλος. Έστω το πρόβληµα αρχικών τιµών: ( dx( d x

Διαβάστε περισσότερα

Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση 1 Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Να επιλυθεί η ροή ρευστού διαμέσου τετραγωνικού αγωγού η οποία εκφράζεται μέσω της διαφορικής εξίσωσης Poisson

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων:

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων: ΠΑΡΑΔΕΙΓΜΑ 6 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Η διατήρηση μάζας σε ένα σύστημα τριών

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 00-0, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5--00 ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Θεωρούμε τετραγωνική πλάκα πλευράς L που φορτίζεται με ομοιόμορφο

Διαβάστε περισσότερα

Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Τα ισοζύγια μάζας του συστήματος διανομή ατμού σε μονάδα διυλιστηρίου δίνονται από τις παρακάτω

Διαβάστε περισσότερα

Πίνακας Περιεχομένων 7

Πίνακας Περιεχομένων 7 Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 6. Πίνακες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative

Διαβάστε περισσότερα

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

MEM 253. Αριθμητική Λύση ΜΔΕ * * * MEM 253 Αριθμητική Λύση ΜΔΕ * * * 1 Ένα πρόβλημα-μοντέλο Ροή θερμότητας σε ένα ομογενές μέσο. Ζητούμε μια συνάρτηση x [0, 1] και t 0 τέτοια ώστε u(x, t) ορισμένη για u t u(0, t) u(x, 0) = u xx, 0 < x

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-010, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ 1 Έστω το πρόβλημα

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι = 0.4 και R

Υπολογιστικές Μέθοδοι = 0.4 και R Υπολογιστικές Μέθοδοι 006-7 Άσκηση. (Επιμέλεια: Ιωάννης Λυχναρόπουλος) Θα επιλύσουμε την εξίσωση: urr + ur =u t, t > t 0 και R i /Rout r r Έστω R i = 0.4 και R out = δηλαδή: Ri / R out = 0.4 με αρχική

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή . Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 9. Δυναμικά Δεδομένα Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 4. Επανάληψη Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ 1 ΟΥ ΒΑΘΜΟΥ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ 1 ΟΥ ΒΑΘΜΟΥ Α ΛΥΚΕΙΟΥ Page1 ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ 1 ΟΥ ΒΑΘΜΟΥ Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: 3.1 - Η 1 ΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΗ i. ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ: 1. Να κατανοήσουν τον ρόλο της αλγεβρικής αναγωγής σε απλούστερες αλγεβρικές

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας

Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας. Συναρτήσεις στη PASCAL Σκοπός Προσομοίωση ενός Συστήματος / Κυκλώματος,

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων;

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων; ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια υπορουτίνα; ΥΠΟΡΟΥΤΙΝΕΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν ή περισσότερους υπολογισμούς Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές φορές μέσα

Διαβάστε περισσότερα

Παράδειγμα #4 ΑΛΓΕΒΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Παράδειγμα #4 ΑΛΓΕΒΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Παράδειγμα #4 ΑΛΓΕΒΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση 1 Τα ισοζύγια µάζας του συστήµατος διανοµής ατµού σε µονάδα διυλιστηρίου δίνονται από τις παρακάτω εξισώσεις: 181.60

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις O.D.E.

Συνήθεις διαφορικές εξισώσεις O.D.E. Συνήθεις διαφορικές εξισώσεις O.D.E. ΦΥΣ 145 - Διαλ.07 1 Παράδειγμα αριθμητικής λύσης φυσικού προβλήματος: Πολλοί πυρήνες είναι ασταθείς π.χ. U 35 διασπάται σε δύο πυρήνες εκπέμποντας ακτινοβολία. Η σχάση

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 8: Μοντέλα προσομοίωσης σε πορώδεις υδροορείς Αναπληρωτής Καθηγητής Νικόλαος

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 8. Διαδικασίες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative

Διαβάστε περισσότερα

Παράδειγμα #3 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΑΠΕΥΘΕΙΑΣ ΜΕΘΟΔΟΥΣ Επιμέλεια: Ν. Βασιλειάδης

Παράδειγμα #3 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΑΠΕΥΘΕΙΑΣ ΜΕΘΟΔΟΥΣ Επιμέλεια: Ν. Βασιλειάδης Παράδειγμα #3 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΑΠΕΥΘΕΙΑΣ ΜΕΘΟΔΟΥΣ Επιμέλεια: Ν. Βασιλειάδης Άσκηση 1 Τα ισοζύγια μάζας του συστήματος διανομής ατμού σε μονάδα διυλιστηρίου δίνονται από τις παρακάτω

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.

Διαβάστε περισσότερα

διακριτοποίηση αριθµητική παραγώγιση

διακριτοποίηση αριθµητική παραγώγιση Ανέκαθεν οι άνθρωποι αντιµετώπιζαν προβλήµατα υπολογισµού µη κανονικών ποσοτήτων όπως είναι για παράδειγµα το εµβαδόν ενός χωραφιού µε ακανόνιστο περίγραµµα, ή ο όγκος µιας δεξαµενής κωνικού σχήµατος κλπ.

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Υποπρογράμματα Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή

Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2008-2009 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 14.10.2008 Να μετατραπεί ο αριθμός στο δυαδικό σύστημα.! " Ο αριθμός μετατρέπεται αρχικά

Διαβάστε περισσότερα

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 Μ4. Συναρτήσεις, Υπορουτίνες, Ενότητες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr

Διαβάστε περισσότερα

Θα χρησιμοποιήσουμε κύλινδρο με L=R για απλοποίηση (και Δr=Δz).

Θα χρησιμοποιήσουμε κύλινδρο με L=R για απλοποίηση (και Δr=Δz). Άσκηση. Θα λύσουμε την εξίσωση: urr + ur + u u r με αρχικές-συνοριακές τιμές τις: ur (,,0 0, ur (,0, 0 και u(,, 00. Επίσης, λόγω συμμετρίας ισχύει ότι ur (0,, 0. Θα χρησιμοποιήσουμε κύλινδρο με LR για

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή 4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης

Διαβάστε περισσότερα

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Κεφάλαιο 6 Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Σε αυτό το κεφάλαιο θεωρούμε την εξίσωση της θερμότητας στη μια διάσταση ως προς τον χώρο και θα κατασκευάσουμε μεθόδους πεπερασμένων

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

Ενότητα 3 (μέρος 1 ο )

Ενότητα 3 (μέρος 1 ο ) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 3 (μέρος 1 ο ) Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση α. Να στρογγυλοποιηθούν οι παρακάτω αριθμοί σε 4 σημαντικά ψηφία. 3 8 7.0045, 79.830, 73448,,, 7 9 3 Στρογγυλοποίηση σε 4 σημαντικά

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

Παράδειγμα #5 ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ & ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης

Παράδειγμα #5 ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ & ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης Παράδειγμα #5 ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ & ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Το παρακάτω αλγεβρικό τρι-διαγώνιο σύστημα έχει προκύψει από την επίλυση µιας συνήθους διαφορικής εξίσωσης που περιγράφει

Διαβάστε περισσότερα

0.5, Μεταφορά θερμότητας ανάμεσα σε κυλίνδρους μεγάλου μήκους (χωρίς ασπίδα):

0.5, Μεταφορά θερμότητας ανάμεσα σε κυλίνδρους μεγάλου μήκους (χωρίς ασπίδα): ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 0-05 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 6-03-05 Ημερομηνία

Διαβάστε περισσότερα

Υδραυλική των Υπόγειων Ροών

Υδραυλική των Υπόγειων Ροών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Αριθμητικά μοντέλα υπόγειων υδροορέων Καθηγητής Κωνσταντίνος Λ. Κατσιαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου Καθηγητής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2009-2010 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 13.10.2009 Άσκηση 1. Δίνονται τα

Διαβάστε περισσότερα

0.1 Εκχειλίσεις κατά την Επίλυση Τετραγωνικής Εξίσωσης

0.1 Εκχειλίσεις κατά την Επίλυση Τετραγωνικής Εξίσωσης 0.1. ΕΚΧΕΙΛ ΙΣΕΙΣ ΚΑΤ Α ΤΗΝ ΕΠ ΙΛΥΣΗ ΤΕΤΡΑΓΩΝΙΚ ΗΣ ΕΞ ΙΣΩΣΗΣ 1 0.1 Εκχειλίσεις κατά την Επίλυση Τετραγωνικής Εξίσωσης Θεώρησε, για a 0 την τετραγωνική εξίσωση ax 2 +bx+c = 0, η οποία, ως γνωστόν, έχει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 3 η Σειρά Ασκήσεων 07.12.2010 Άσκηση 1. Δίνονται τα

Διαβάστε περισσότερα

Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και

Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 05-06 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0-03-06 Ημερομηνία

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Τι είναι τα υποπρογράμματα Αυτόνομες μονάδες κώδικα Γραμμένα από τον χρήστη Η δομή

Διαβάστε περισσότερα

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ.Π.Θ. ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 008-009 ΚΩΝΣΤΑΝΤΙΝΟΣ ΜΟΥΤΣΟΠΟΥΛΟΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ 1. ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ ΣΥΝΑΓΩΓΗΣ Αντικείµενο

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα

Διαβάστε περισσότερα

Η μέθοδος του Verlet - εισαγωγικά

Η μέθοδος του Verlet - εισαγωγικά Η μέθοδος του Verlet - εισαγωγικά ΦΥΣ 145 - Διαλ.08 1 q Η μέθοδος του Euler στηρίζεται στον ορισμό της δεξιάς παραγώγου. Ένας ισοδύναμος ορισμός είναι f (t + h) # f (t # h) f (t) = lim h"0 2h q Αυτή η

Διαβάστε περισσότερα

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Είδαμε

Διαβάστε περισσότερα

{F W t } 0 t T = σ(w k (s), s t, 1 k) L 2 ([0, T ])

{F W t } 0 t T = σ(w k (s), s t, 1 k) L 2 ([0, T ]) Αναλυτικές και Αριθμητικές Λύσεις Υπερβολικών Στοχαστικών Μερικών Διαφορικών Εξισώσεων μέσω του αναπτύγματος σε Wiener Chaos Ε. Α. Καλπινέλλη Οικονομικό Πανεπιστήμιο Αθηνών Σεπτέμβριος 2011 Εισαγωγή Μέσω

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Παρουσίαση 3ης Άσκησης

Παρουσίαση 3ης Άσκησης Παρουσίαση 3ης Άσκησης Παράλληλος προγραμματισμός για αρχιτεκτονικές κατανεμημένης μνήμης με MPI Συστήματα Παράλληλης Επεξεργασίας 9ο Εξάμηνο, ΣΗΜΜΥ Εργ. Υπολογιστικών Συστημάτων Σχολή ΗΜΜΥ, Ε.Μ.Π. Νοέμβριος

Διαβάστε περισσότερα

i. Επιλύστε με απαλοιφή Gauss μερικής οδήγησης το σύστημα:

i. Επιλύστε με απαλοιφή Gauss μερικής οδήγησης το σύστημα: ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 04 0, Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑ #: ΕΠΙΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΞΙΣΩΣΕΩΝ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 8 0 04 Ημερομηνία παράδοσης εργασίας: 0 04 Επιμέλεια

Διαβάστε περισσότερα

Μετατροπή μήτρας από μορφή πίνακα σε μορφή καταλόγου μη-μηδενικών στοιχείων και αντιστρόφως

Μετατροπή μήτρας από μορφή πίνακα σε μορφή καταλόγου μη-μηδενικών στοιχείων και αντιστρόφως Μετατροπή μήτρας από μορφή πίνακα σε μορφή καταλόγου μη-μηδενικών στοιχείων και αντιστρόφως Παράδειγμα 1: >> A=[1 0 0 2 1 0 3 0 0 1 0 0 2 2 0 4 0 0 6 0 0 0 1 0 5] A = 1 0 0 2 1 0 3 0 0 1 0 0 2 2 0 4 0

Διαβάστε περισσότερα

Αριθμητική Ανάλυση Εργασία #1

Αριθμητική Ανάλυση Εργασία #1 ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2006-2007, 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ και ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης 2. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς

Διαβάστε περισσότερα