ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4 ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4 ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ."

Transcript

1 ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ # ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Να επιλυθεί η εξίσωση κύματος ης τάξης u t + cu = 0 με αρχική συνθήκη u(, 0) = si( π), 0 και περιοδικές οριακές συνθήκες με μία από τις παρακάτω τεχνικές πεπερασμένων διαφορών. Να βρεθεί η αντίστοιχη τροποποιημένη εξίσωση. Να σχολιασθούν η αριθμητική διάχυση και διασπορά του σχήματος. Επίσης, να βρεθεί το κριτήριο ευστάθειας και να υπολογισθούν οι συντελεστές ενίσχυσης και διαφορά φάσης. Να γίνουν τα αντίστοιχα διαγράμματα.. Πεπλεγμένη Euler. McCormack 3. La Wedroff.. Πεπλεγμένη τραπεζοειδής Λύση Εφαρμόζοντας τη μέθοδο των χαρακτηριστικών η αναλυτική λύση είναι: ut (, ) = si( π ( ct)) Το ίδιο πρόβλημα επιλύεται αριθμητικά με πέντε αριθμητικά σχήματα. Σε όλες τις περιπτώσεις η βασική παράμετρος είναι ο αριθμός CFL: v= cδt/ Δ, όπου Δt και Δ είναι το χρονικό και χωρικό βήμα διακριτοποίησης αντίστοιχα. Μέθοδος : Πρόδρομη στο χρόνο ανάδρομη στο χώρο (Ρητό σχήμα) ( ) ( ), u = u v u u, i =,..., N + i i i i u + = u v u u N i = Μέθοδος : ΜcCormack (Ρητό σχήμα) Το σχήμα αυτό αποτελείται από εξισώσεις: (και διόρθωση): / ui = ui v ui+ ui, i =,..., N / / / Διόρθωση: ui = ui + ui v( ui ui ), i =,..., N / i = : ( u u v u u ) και u = u + u v u u N / i = N + : un+ = un+ v( u un ) και un+ = un+ + un+ v un+ un Πρόβλεψη: ( ) = + + / / / ( + + ) / / / + ( )

2 Μέθοδος 3: Πεπλεγμένη Euler v v ui+ + ui ui = ui, i =,..., N v v i = : u + u un = u v v i = N + : u + un+ un = un + Λόγω των περιοδικών συνθηκών το σύστημα δεν είναι τριδιαγώνιο. Επομένως, για την επίλυσή του εφαρμόζουμε την επαναληπτική μέθοδο Gauss-Seidel. Γράφουμε το σύστημα στη μορφή: ( k) v ( k ) v ( k) ui = ui ui+ + ui, i =,..., N ( k) v ( k ) v ( ) u = u u + u k N ( k) v ( k) v ( ) un+ = un+ u + u k N, όπου με ( k), k =,,... δηλώνουμε την k -επανάληψη της Gauss-Seidel Μέθοδος : Πεπλεγμένη Τραπεζοειδής v u ( ),,..., i = ui ui+ + ui+ ui ui i = N v i = : u = u ( u + u un un) v i = N + : un+ = un+ ( u + u u N u N) Για την επίλυση του συστήματος εφαρμόζουμε την επαναληπτική μέθοδο Gauss- Seidel. Γράφουμε το σύστημα στη μορφή: ( + + ) ( N N) v k k ( N ) ( k) v ( k ) ( k) ui = ui ui + ui ui ui, i =,..., N ( k) v ( k ) ( k ) u = u u + u u u ( k) ( ) ( ) N+ N+ N u = u u + u u u

3 Μέθοδος 5: La-Wedroff (Ρητό σχήμα) v v ui = ui ( ui+ ui ) + ( ui+ ui + ui ), i =,..., N v v i = : u + = u ( u un) + ( u u + un) v v i = N + : un+ = un+ ( u un) + ( u un+ + un) Το ακόλουθο πρόγραμμα επιλύει το πρόβλημα αρχικών τιμών και με τις 5 μεθόδους: program ftbs_mac_cormack implicit oe! Variables real,allocatable:: u(:),uold(:),uprev(:),(:),u0(:), t(:,:), t(:,:), t3(:,:), t(:,:),t5(:,:) =00 real::v, d, dt, c, pi, t,ma,err iteger::i,, tma, m, doe, method character()::um tma=0 allocate(u(), uold(),uprev(), (), u0(), t(,tma),t(,tma),t3(,tma),t(,tma),t5(,tma)) c=0.8 dt=0.0 d=./ v=c*dt/d pi= do i=, (i)=(i-)*d ope(,file='res_all.tt',recl=0000) write(,'(a3,i)') 'I= ', write(,'(a3,f8.5)') 'c= ',c write(,'(a3,f8.5)') 'dt= ',dt write(,'(a3,f8.5)') 'd= ',d write(,'(a3,f8.5)') 'i= ',v tma=0 do method=,5!=ftbs = Mac Cormack 3=peplegmeh Euler =Peplegmeh trapezoeidhs 5=La-Wedroff if (method==) the do i=, u(i)=si(*pi*(i)) do m=,tma uold=u do i=, if(i==)the u(i)=uold(i)*(.-v)+v*uold() else u(i)=uold(i)*(.-v)+v*uold(i-) edif t(:,m)=u elseif (method==)the 3

4 do i=, u(i)=si(*pi*(i)) do m=,tma uold=u do i=, if(i==)the u0(i)=uold(i)-v*(uold()-uold(i)) else u0(i)=uold(i)-v*(uold(i+)-uold(i)) edif do i=, if(i==)the u(i)=0.5*(uold(i)+u0(i)-v*(u0(i)-u0())) else u(i)=0.5*(uold(i)+u0(i)-v*(u0(i)-u0(i-))) edif t(:,m)=u elseif (method==3)the err= do i=, u(i)=si(*pi*(i)) doe=0 do m=,tma uold=u!gauss-seidel do while (doe==0) uprev=u u()=uold()+(v/.)*u()-(v/.)*u() do i=, u(i)=uold(i)+(v/.)*u(i-)-(v/.)*u(i+) u()=uold()+(v/.)*u()-(v/.)*u()! prit*, uold(),uold(),u(),u()!read* ma=maval(abs(u-uprev))!prit*,m,ma if(ma<err) the doe= edif!gauss-seidel t3(:,m)=u elseif (method==)the err= do i=, u(i)=si(*pi*(i)) do m=,tma!gauss-seidel uold=u doe=0 do while (doe==0) uprev=u u()=uold()-(v/.)*(u()+uold()-u()-uold()) do i=, u(i)=uold(i)-(v/.)*(u(i+)+uold(i+)-u(i-)-uold(i-))

5 u()=uold()-(v/.)*(u()+uold()-u()-uold()) ma=maval(abs(u(:)-uprev(:))) prit*,m,ma if(ma<err) the doe= edif!gauss-seidel t(:,m)=u ed do elseif (method==5) the do i=, u(i)=si(*pi*(i)) do m=,tma uold=u u()=uold()-c*dt*(uold()- uold())/(.*d)+(0.5*c***dt**/d**)*(uold()-.*uold()+uold()) do i=, u(i)=uold(i)-c*dt*(uold(i+)-uold(i- ))/(.*d)+(0.5*c***dt**/d**)*(uold(i+)-.*uold(i)+uold(i-)) u()=uold()-c*dt*(uold()- uold())/(.*d)+(0.5*c***dt**/d**)*(uold()-.*uold()+uold()) t5(:,m)=u edif!method do m=,tma t=m*dt write(,*) ' T=',t,' ' write(,*) 'i FTBS McCormack Peplegmeh_euler Trapezoeidhs La-Wedroff Aalytikh' do i=, if (mod(i,0)/=) cycle write(,'(i3,f0.,6f5.5)') i,(i),t(i,m),t(i,m),t3(i,m),t(i,m),t5(i,m),si(*pi*((i)-c*t)) write(um,'(i)') m ope(3,file="for_mathematica_t_m"//trim(adjustl(um))//".tt") do i=, write(3,'(3f5.5)') t,(i),t(i,m) close(3)!m prit*, 'Doe' ed program ftbs_mac_cormack Ακολουθεί πίνακας αποτελεσμάτων για 0 χρονικά βήματα με c = 0.8, Δ t = 0.0 και Δ = 00 : Πεπλεγμένη Πεπλεγμένη La Αναλυτική t i FTBS McCormack Euler ΤραπεζοειδήςWedroff Λύση

6

7

8 Η γραφική εξέλιξη της λύσης δίνεται στο ακόλουθο σχήμα: t y 0.0 y t Σχήμα : Εξέλιξη κύματος σε 0 χρονικά βήματα Το Σχήμα δημιουργήθηκε με Mathematica χρησιμοποιώντας τις ακόλουθες εντολές: Do[yData =ReadList["for_mathematica_t_m"<>ToStrig[]<>".tt",{Numb er,number,number}];g =ListPoitPlot3D[yData ],{,,0}]; t=table[g,{,,0}]; Show[t,PlotRage{{0,0.},Automatic,Automatic},AesLabel{"t","","y "}] Στη συνέχεια θα μελετηθεί η ευστάθεια και η συνοχή της μεθόδου Πεπλεγμένη Euler: Ευστάθεια: u =Ψ e k με a = a i ak ak ak ( +Δ ) ak ( ) Ψ e Ψ e + v( Ψ e Ψ e ) = 0 akδ ak Ψ Ψ + vψ e vψ e = 0 akδ ak Ψ + vψ e vψ e =Ψ Ψ ξ = = Ψ v ak ak ( e Δ e Δ + ) ak ak e e = [ cos( kδ ) + asi( k) ] [ cos( k) asi( kδ ) ] = asi( kδ ) avsiβ ξ = = + avsi( kδ ) + v si β Συντελεστής ενίσχυσης: avsi β avsiβ + v si β + v si ξ = = = = + v si β + v si β + v si β + si ( v β ) β 8

9 ξ = + v si β Επομένως, η μέθοδος είναι ευσταθής για κάθε τιμή του αριθμού CFL Γωνία φάσης: vsi β Im( ) Im( ) + si ϕ = Arcta = Arcta = Arcta Re( ξ) Re( ξ) + v si β ϕ = ta ( vsi β ) ξ ξ v β Συνοχή: Αναπτύσσοντας όλες τις ποσότητες της ΕΠΔ σε σειρά Taylor γύρω από τον κόμβο έχουμε: u i 3 Δt Δt ui = ui +Δ tut + utt + uttt + O[ Δ t ]! 3! 3 ui± = ui + ±Δ + Δ t u+ ±Δ + Δ t u+ ±Δ + Δt u t! t 3! t ui± = ui ±Δ u +Δ tut + ( Δ u ± Δ tut +Δ t utt) +! ( ±Δ u + 3Δ tut ± 3 Δ t utt +Δ tuttt ) + O[, Δt ] 3! Για να διευκολυνθούμε στις πράξεις αρχικά υπολογίζουμε τη διαφορά u u = i+ i 3 3 = ui +Δ u +Δ tut + ( Δ u + Δ tut +Δ t utt ) + ( +Δ u + 3 Δ tut + 3Δ t utt +Δt uttt )! 3! 3 3 ui +u Δtut ( u Δ tut +Δt utt ) ( Δ u + 3 Δtut 3Δ t utt +Δ t uttt ) =! 3! 3 6 Δ u + Δ tut + Δ u + Δt utt 3! 3! Αντικαθιστούμε τα αναπτύγματα και την διαφορά στην ΕΠΔ: v ui ui + ( ui+ ui ) = 0 3 Δt Δt v 3 6 Δ tut + utt + uttt + Δ u + Δ tut + Δ u + Δ t utt = 0! 3! 3! 3! Δt Δt c 3 6 ut + utt + uttt + Δ u + Δ tut + Δ u + Δ t utt = 0! 3! 3! 3! Δt Δt c 3c ut + cu = utt uttt cδtut u Δ t utt (ΤΔΕ)! 3! 3! 3! 9

10 Η παραπάνω εξίσωση αποτελεί μία πρώτη μορφή της τροποποιημένης διαφορικής εξίσωσης που αποδεικνύει ότι το πεπλεγμένο σχήμα Euler έχει συνοχή. Περαιτέρω επεξεργασία της ΤΔΕ οδηγεί σε περισσότερες πληροφορίες για το αριθμητικό σχήμα. Παραγωγίζοντας την παραπάνω εξίσωση διαδοχικά ως προς t και ως προς και κρατώντας όρους πρώτης τάξης βρίσκουμε τις διαφορικές εξισώσεις Δt Δt utt + cut = uttt cδ tutt και ut + cu = utt cδ tut Από τις οποίες με κατάλληλη επεξεργασία προκύπτει η διαφορική εξίσωση για τη η παράγωγο ως προς το χρόνο t t utt c u Δ Δ = uttt cδ tutt + c utt + c Δ tut Στη συνέχεια οι παράγωγοι ως προς t και οι μικτές παράγωγοι αντικαθίστανται με παραγώγους ως προς με βάση τις παρακάτω σχέσεις: u = u = u = u = cu = cu ( ) ( ) t t t t 3 ttt = tt = = t = = ( ) ( ) ( ) t t ( ) u u c u c u c cu c u u = u = cu = cu tt tt Αντικαθιστώντας τις παραπάνω εξισώσεις στην διαφορική εξίσωση για τη η παράγωγο ως προς το χρόνο προκύπτει t t 3 3 utt cu Δ Δ = + cu Δ tcu + c u cδ tu = cu Δ tcu Τέλος, αντικαθιστώντας τη παραπάνω έκφραση και τις άλλες απαραίτητες ποσότητες στην ΤΔΕ καταλήγουμε στην τελική μορφή της τροποποιημένης διαφορικής εξίσωσης του σχήματος: Δt 3 Δt 3 Δt ut + cu =! c u c Δ tu + c u cδt c u cu 3! c 3 3 u Δtcu 3! 3! Δt 3 Δt 3 Δt 3 Δt c 3 Δt ut + cu = c + c Δ t u + c + c c c u c ut + cu = c Δtu cδ + c Δ t u = c Δtu ( + ν ) u Από την ΤΔΕ είναι προφανές ότι το σχήμα έχει συνοχή διότι για Δt 0, 0 η ΤΔΕ καταλήγει στην εξίσωση κύματος ης τάξης. Όμως γίνεται επίσης προφανές ότι ανεξάρτητα από την τιμή του αριθμού CFL, δηλαδή ανεξάρτητα της διακριτοποίησης που επιλέγεται το σχήμα έχει πάντα αριθμητικά απόσβεση και αριθμητική διασπορά αφού οι συντελεστές των παραγώγων u και u δεν μηδενίζονται. Πρόκειται λοιπόν για σχήμα που είναι πάντα ευσταθές αλλά που παράλληλα παρουσιάζει μεγάλη αριθμητική διάχυση (απόσβεση και διασπορά) και επομένως δεν διαθέτει καλή συνοχή. 0

11 ΑΣΚΗΣΗ Να λυθεί αριθμητικά η γραμμική εξίσωση u u u + c = μ, 0 L t > 0 c > 0 t με αρχική συνθήκη u(,0) = si( k) και περιοδικές οριακές συνθήκες εφαρμόζοντας το σχήμα πεπερασμένων διαφορών uj j uj j uj+ uj + uj + c = μ. Δt Να βρεθεί η τροποποιημένη εξίσωση και το κριτήριο ευστάθειας. Βοήθημα: Η αναλυτική λύση είναι u(, t) = ep( k μt) si k( ct) Λύση ΕΠΔ: ui+ ui + ui ui ui ui = μδ t + u i cδt μδt μδt μδt ui = + v u i + + v u i + ui, + i =,..., N μδt μδt μδt i = : u = + v u N + + v u + u μδt μδt μδt i = N + : un+ = + v u N + + v u N + u + Πρόγραμμα Fortra program rhto implicit oe! Variables real,allocatable:: u(:),uold(:), (:),t(:) real::v, d, dt, c, pi, t,ma,err,mi,k,coef iteger::i,, tma, m! Body of ftbs_mac_cormack =0 allocate(u(), uold(),(),t()) c=0.8 mi=. k=. dt=0.0 tma=0 pi= d=*pi/ v=c*dt/d

12 do i=, (i)=(i-)*d ope(,file='res_ask.tt',recl=0000) write(,'(a3,i)') 'I= ', write(,'(a3,f8.5)') 'c= ',c write(,'(a3,f8.5)') 'dt= ',dt write(,'(a3,f8.5)') 'd= ',d write(,'(a3,f8.5)') 'i= ',v do i=, u(i)=si(k*(i)) u()=u() coef=(mi*dt)/d** do m=,tma t=m*dt uold=u u()=coef*(uold()-*uold()+uold())+uold()-v*(uold()- uold()) do i=, u(i)=coef*(uold(i+)-*uold(i)+uold(i-))+uold(i)- v*(uold(i)-uold(i-)) u()=u() write(,*) ' N=',m,'--t=',m*dt,'-----' write(,*) 'i FTBS Aalytikh Abs_Sfalma' do i=,!if (mod(i,0)/=) cycle write(,'(i3,f0.,3(f5.5))') i,(i),u(i),ep(-k*mi*t)*si(k*((i)- c*t)),abs(u(i)-ep(-k*mi*t)*si(k*((i)-c*t))) ed do!tma prit*, 'Doe' ed program rhto Αποτελέσματα για 0 χρονικά βήματα θέτοντας k =, L = π, c = 0.8, μ =, N = 0, Δ = π /0 και Δ t = 0.0: t i 0.0 Αριθμητική Λύση Αναλυτική Λύση Απόλυτο Σφάλμα

13

14

15 Ευστάθεια: u =Ψ e k με a = a i μδt cδt μ v Επίσης, στην ΕΠΔ θέτουμε = = c ReΔ αριθμός Reyolds., όπου Re είναι ο αριθμητικός v v v Ψ e = + v Ψ e + + v Ψ e + Ψ e Re ReΔ Re ak ak ( ) ak ak ( +) v v v v e v e Re Re ReΔ Ψ v ak v v ak ξ = = v e v e Ψ Re ReΔ ReΔ ak ak Ψ = + Ψ + + Ψ + Ψ v v v ξ = + v β a β + v+ β + a β Re Re ReΔ ( cos si ) ( cos si ) v v v v v ξ = + v cos β a + v si β + v+ cos β + a si β Re Re Re Re ReΔ v v v v v ξ = + v cos β + v+ cos β + α + v si β + si β Re Re ReΔ Re ReΔ v v ξ = vcos β + v+ cos β + αvsi β Re Re Επομένως για να έχει το σχήμα ευστάθεια θα πρέπει να ισχύει: ξ v v v cosβ v v si ReΔ ReΔ < < β Συνοχή: 3 Δt Δt ui = ui +Δ tut + utt + uttt + O[ Δt ]! 3! 3 ui± = ui ±Δ u + u ± u + O[ Δ ]! 3! 3 3 ui+ ui + ui = ui +Δ u + u + u ui + ui Δ u + u u =! 3!! 3! ( ) =Δ u + O Αντικαθιστώντας στην ΕΠΔ προκύπτει 3 3 Δt Δt u i i i +Δ tut + utt + uttt u u u Δ u + u u i! 3!! 3! + c = Δt = μ ( Δ u ) + O( ) 5

16 Δt Δt ut + utt + uttt + cu c u + c u = μu 6 6 Δt Δt ut + cu = μu utt uttt + c u c u + O( Δ ) 6 6 Δt utt + cut = μut uttt + c ut + O( Δt, Δ ) Δt ut + cu = μu utt + c u + O( Δt, Δ ) Δt Δt u = c u + μu u + c u cμu + c u c u 3 u = cu, u = c u, u = c u tt t ttt t tt t ttt tt 3 Δt 3 Δt utt = c u cμu + c u c u cμu + c u c u 3 u = c u cμ c Δ t+ c Δ u ( ) tt ΤΔΕ: t 3 3 t ut cu μu Δ c u ( cμ c t c ) u c Δ u c Δ + = Δ + Δ + + u c u 6 6 Δt 3 ut + cu = μ c + c u + cδtμ c Δ t + c Δt c u 3 6 c ν ut + cu = μu + ( ν) u c 6 + ν 3ν u 6 ReΔ ΑΣΚΗΣΗ 3 Εφαρμόστε ένα σχήμα πεπερασμένων διαφορών στην διδιάστατη εξίσωση κύματος: u u u + c + = 0 t y Στη συνέχεια βρείτε την αντίστοιχη τροποποιημένη εξίσωση και μελετείστε την ευστάθεια του προτεινόμενου αριθμητικού σχήματος. Λύση: Ευστάθεια: Βλέπε απαντήσεις της ης Εργασίας του 005-6, Άσκηση 3. Συνοχή Ρητού Σχήματος ui, j = ui, j v( ui, j ui, j) vy( ui, j ui, j ) () Αναπτύσσουμε σε Taylor γύρω από το u i, j 3 Δt Δt i j = i j+δ t+ tt+ ttt+ Δ u, u, tu u u O[ t ]! 3! 3 ui, j = ui, j Δ u + u u + O[ Δ ]! 3! τους όρους: 6

17 και u u yu Δy Δy u u! 3! O y 3 i, j = i, j Δ y+ yy yyy+ [ Δ ] Αντικαθιστώντας στην () παίρνουμε: 3 3 Δt Δt ui, j+δ tut+ utt+ uttt= ui, j v ui, j ui, j+u u+ u! 3!! 3! 3 Δy Δy vy ui, j ui, j +Δyuy uyy + uyyy! 3! 3 3 Δt Δt Δ tut + utt + uttt = v u u + u Δy Δy v Δyu u + u 6 y y yy yyy 3 Δ tut + vδ u + vyδ yuy = v u + u Δy Δy Δt Δt vy uyy + uyyy utt uttt 6 6 Δy Δy Δt Δt u + c( u + u ) = c u c u + c u c u u u t y yy yyy tt ttt () Κρατώντας στην () όρους πρώτης τάξης και παραγωγίζοντας ως προς t, και y παίρνουμε τις σχέσεις Δy Δt utt + c( ut + uyt ) = c ut + c uyyt uttt Δy Δt ut + c( u + uy ) = c u + c uyy utt Δy Δt uty + c( uy + uyy ) = c uy + c uyyy utty Από τον συνδυασμό των οποίων προκύπτει η: ( ) ( ) ( ) u + c u + u cu c u + u cu c u + u = tt t yt t y ty y yy Δy Δt Δy Δt Δy Δt c ut + c uyyt uttt c u c uyy + c utt c uy c uyyy + c utty u = c u + c u + c u + tt y yy Δy Δt + c ut + c uyyt uttt Δy Δt Δy Δt c u c u + c u c u c u + c u yy tt y yyy tty Στη συνέχεια αντικαθιστούμε στην (3) τις χρονικές με χωρικές παραγώγους. (3) 7

18 Ξεκινώντας από τη σχέση ut c( u uy) 0 u t = ( u t ) = c ( u u y ) + = c ( u u + y ) uyyt = c( uyy + uyyy ) + + =, έχουμε: ( ) ( ) t ( ) t ( ) ( ) u = u = c u + u = c u + u = tt t y t yt = c c u + u c u + u = c u + c u + c u y y yy y yy ( ) u = u = cu + cu + cu = ttt tt t t yt yyt ( y ) ( y yy ) ( yy yyy ) c u u c u u c u u = u = c u + c u + c u tt y yy u = c u + c u + c u tty y yy yyy Αντικαθιστώντας τις παραπάνω σχέσεις στην (3) παίρνουμε: u = c u + c u + c u tt y yy Δy c( u + uy ) c( uyy + uyyy ) Δt c ( u uy ) c ( uy uyy ) c ( uyy uyyy ) () Δy Δt c u c uyy + c ( c u + c uy + c uyy ) Δy Δt c uy c uyyy + c ( c uy + c uyy + c uyyy ) Τελικά για να πάρουμε την ΤΔΕ αντικαθιστούμε την () στην () και μετατρέπουμε όλες τις υπόλοιπες χρονικές παραγώγους σε χωρικές. Έτσι καταλήγουμε στη σχέση: u + c u + u = ( ) t y Δt 3 c = c c u c Δt c ΔtΔ + u Δy Δt 3 cδy + c c uyy c Δt c ΔtΔ y+ uyyy c Δt c Δ t u + c ΔtΔy c Δt u c Δtu η οποία γράφεται και ως 3 3 y yy y ( ) u + c u + u = t y c = c ( v ) u ( v 3v + ) u + 6 c + c ( vy) uyy ( vy 3vy + ) uyyy + 6 ΔΔ t ΔΔ t y + c ( ν) u + c ( ν) u c Δtu y yy y 8

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0. ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Άσκηση Έστω ένα κύμα που κινείται εντός αγωγού με ταχύτητα c 0 m/s. Η κατανομή

Διαβάστε περισσότερα

Άσκηση 1 Έχουµε να επιλύσουµε την εξίσωση κύµατος 1 ης τάξης (υπερβολική εξίσωση) (1)

Άσκηση 1 Έχουµε να επιλύσουµε την εξίσωση κύµατος 1 ης τάξης (υπερβολική εξίσωση) (1) Άσκηση Έχουµε να επιλύσουµε την εξίσωση κύµατος ης τάξης (υπερβολική εξίσωση) u t + cu = 0 () Θα χρησιµοποιήσουµε τις ακόλουθες µεθόδους: α) Μέθοδος FTBS (Πρόδροµη στο χρόνο, ανάδροµη στο χώρο) Το σχήµα

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι 2006-7

Υπολογιστικές Μέθοδοι 2006-7 Υπολογιστικές Μέθοδοι 006-7 Άσκηση. (Επιμέλεια: Ιωάννης Λυχναρόπουλος) Θα επιλύσουμε την εξίσωση: urr ur u t, t t 0 και R i /Rout r r Έστω Ri 0.4 και Rout δηλαδή: Ri / Rout 0.4 με αρχική συνθήκη: ur (,0)

Διαβάστε περισσότερα

(συνθήκη συμμετρίας) (4) Το παραπάνω πρόβλημα μπορεί να περιγράψει τη μεταβατική πλήρως ανεπτυγμένη ροή σε κυλινδρικό αγωγό.

(συνθήκη συμμετρίας) (4) Το παραπάνω πρόβλημα μπορεί να περιγράψει τη μεταβατική πλήρως ανεπτυγμένη ροή σε κυλινδρικό αγωγό. ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 00-0, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ (αρχικών και οριακών τιμών) ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..00 ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Ζητείται να επιλυθεί η εξίσωση t

Διαβάστε περισσότερα

w 1, z = 2 και r = 1

w 1, z = 2 και r = 1 ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 0..009 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Δίδεται η διαφορική εξίσωση Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ. ΑΣΚΗΣΗ 1 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-1, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 15.1.9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι = 0.4 και R

Υπολογιστικές Μέθοδοι = 0.4 και R Υπολογιστικές Μέθοδοι 006-7 Άσκηση. (Επιμέλεια: Ιωάννης Λυχναρόπουλος) Θα επιλύσουμε την εξίσωση: urr + ur =u t, t > t 0 και R i /Rout r r Έστω R i = 0.4 και R out = δηλαδή: Ri / R out = 0.4 με αρχική

Διαβάστε περισσότερα

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας

Διαβάστε περισσότερα

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ. ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 011-01, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5-1-011 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιλέξτε μία εκ των Ασκήσεων 1 και : ΑΣΚΗΣΗ 1 Να λυθεί το πρόβλημα οριακών

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

5. Ανάλυση διακριτής μορφής ΔΜΠ με ΠΔ

5. Ανάλυση διακριτής μορφής ΔΜΠ με ΠΔ 5. Ανάλυση διακριτής μορφής ΔΜΠ με ΠΔ Η διακριτή μορφή διαφορικών μερικών παραγώγων (ΔΜΠ) επιτυγχάνεται με την εφαρμογή πεπερασμένων διαφορών (ΠΔ) ή άλλων μεθόδων διακριτοποίησης όπως πεπερασμένοι όγκοι

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό αγωγό περιγράφεται από την συνήθη διαφορική εξίσωση

Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό αγωγό περιγράφεται από την συνήθη διαφορική εξίσωση Άσκηση ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ 08-09 5 Ο ΕΞΑΜΗΝΟ Ι ΑΣΚΩΝ:. Βαλουγεώργης ΕΡΓΑΣΙΑ: ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΟΡΙΑΚΩΝ ΤΙΜΩΝ (Σ Ε & Μ Ε Ηµεροµηνία παράδοσης: 8//09 Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό

Διαβάστε περισσότερα

z είναι οι τρεις ανεξάρτητες

z είναι οι τρεις ανεξάρτητες Κεφάλαιο 5 Επίλυση παραβολικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές 5. Εξίσωση θερµότητας ή διάχυσης Η πλέον αντιπροσωπευτική εξίσωση µεταξύ των παραβολικών εξισώσεων είναι η εξίσωση θερµότητας

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r Άσκηση : πρόκειται για ΣΔΕ δύο οριακών τιμών με εφαρμογή του αλγόριθμου Thomas για επίλυση τριγωνικού συστήματος Έχουμε να επιλύσουμε την εξίσωση: du du u dr r dr με οριακές συνθήκες u () 0 και u(0) πεπερασμένη

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθματος Διάλεξη : Ολοκλρωση Μερικών Διαφορικών Εξισώσεων: Παραβολικές και Υπερβολικές Εξισώσεις στην μία διάσταση D Γιάννης Δημακόπουλος & Γιάννης Τσαμόπουλος ΧΜ66 Εαρινό

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή Κεφ. 4: Ολοκλήρωση 4. Εισαγωγή 4. Εξισώσεις ολοκλήρωσης Newto Cotes 4.. Κανόνας τραπεζίου 4.. Πρώτος και δεύτερος κανόνας Simpso 4.. Πολλαπλά ολοκληρώματα 4. Ολοκλήρωση Gauss 4.. Πολυώνυμα Legedre, Chebyshev,

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος. Η μόνιμη θερμοκρασιακή κατανομή σε δύο διαστάσεις περιγράφεται από την εξίσωση: και

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος. Η μόνιμη θερμοκρασιακή κατανομή σε δύο διαστάσεις περιγράφεται από την εξίσωση: και ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ και ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Η μόνιμη

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0.008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Άσκηση Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης

Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σημαίνει ο όρος lop στους επιστημονικούς υπολογισμούς. Ο όρος lop (loatig poit operatio) συναντάται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Είδαμε

Διαβάστε περισσότερα

Υδραυλική των Υπόγειων Ροών

Υδραυλική των Υπόγειων Ροών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Αριθμητικά μοντέλα υπόγειων υδροορέων Καθηγητής Κωνσταντίνος Λ. Κατσιαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου Καθηγητής

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

y 1 και με οριακές συνθήκες w

y 1 και με οριακές συνθήκες w ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Η εξίσωση Laplace σε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή . Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή 4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί η εξίσωση ροής διαμέσου ενός κυλινδρικού αγωγού λόγω διαφοράς πίεσης: d u du u = + = dr r dr du με

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο:

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ ΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Έστω [ α, b], f :[ α, b], y. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: Ζητείται µια συνάρτηση y :[

Διαβάστε περισσότερα

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 8: Μοντέλα προσομοίωσης σε πορώδεις υδροορείς Αναπληρωτής Καθηγητής Νικόλαος

Διαβάστε περισσότερα

Πίνακας Περιεχομένων 7

Πίνακας Περιεχομένων 7 Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων:

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων: ΠΑΡΑΔΕΙΓΜΑ 6 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Η διατήρηση μάζας σε ένα σύστημα τριών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και

Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 05-06 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0-03-06 Ημερομηνία

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα

Δρ. Σταύρος Καραθανάσης

Δρ. Σταύρος Καραθανάσης Δρ. Σταύρος Καραθανάσης Μέθοδοι Επίλυσης Συστημάτων Κανονικών Διαφορικών Εξισώσεων προσαρμοσμένες στα Προβλήματα Χημικής Κινητικής Για τον υπολογισμό των συγκεντρώσεων των χημικά δραστικών ενώσεων δημιουργείται

Διαβάστε περισσότερα

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Είδαμε την διακριτοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

3. ΕΠΙΛΥΣΗ ΠΑΡΑΒΟΛΙΚΩN ΕΞΙΣΩΣΕΩΝ

3. ΕΠΙΛΥΣΗ ΠΑΡΑΒΟΛΙΚΩN ΕΞΙΣΩΣΕΩΝ 3. ΕΠΙΛΥΣΗ ΠΑΡΑΒΟΛΙΚΩN ΕΞΙΣΩΣΕΩΝ Σύνοψη Στο Κεφάλαιο 3 «Επίλυση Παραβολικών Εξισώσεων» παρατίθενται αριθμητικές τεχνικές επίλυσης παραβολικών εξισώσεων. Αναφέρονται μερικές ρητές αριθμητικές τεχνικές και

Διαβάστε περισσότερα

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Κεφάλαιο 6 Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Σε αυτό το κεφάλαιο θεωρούμε την εξίσωση της θερμότητας στη μια διάσταση ως προς τον χώρο και θα κατασκευάσουμε μεθόδους πεπερασμένων

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.

Διαβάστε περισσότερα

την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx

την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία παράδοσης --0 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Με βάση τη σειρά Taylor βρείτε για τη παράγωγο

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

Θα χρησιμοποιήσουμε κύλινδρο με L=R για απλοποίηση (και Δr=Δz).

Θα χρησιμοποιήσουμε κύλινδρο με L=R για απλοποίηση (και Δr=Δz). Άσκηση. Θα λύσουμε την εξίσωση: urr + ur + u u r με αρχικές-συνοριακές τιμές τις: ur (,,0 0, ur (,0, 0 και u(,, 00. Επίσης, λόγω συμμετρίας ισχύει ότι ur (0,, 0. Θα χρησιμοποιήσουμε κύλινδρο με LR για

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση

Διαβάστε περισσότερα

Παράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγµα # ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση ίδεται η διαφορική εξίσωση: dy dx y 0 = 0 x = y + e, Να επιλυθεί το πρόβληµα αρχικών τιµών µε τις µεθόδους Euler και Runge-Kutta

Διαβάστε περισσότερα

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα:

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα: ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0 05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0 Ημερομηνία παράδοσης εργασίας: 9 0 Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ:..6 Επιµέλεια απαντήσεων: Ι. Λυχναρόπουλος. Έστω το πρόβληµα αρχικών τιµών: ( dx( d x

Διαβάστε περισσότερα

Κεφάλαιο 8: Μέθοδοι Χρονικής Ολοκλήρωσης

Κεφάλαιο 8: Μέθοδοι Χρονικής Ολοκλήρωσης Κεφάλαιο 8: Μέθοδοι Χρονικής Ολοκλήρωσης 8. Εισαγωγή Στο παρόν κεφάλαιο θα εξετάσουμε τον τρόπο επίλυσης της εξίσωσης δυναμικής ισορροπίας (ή εξίσωση κίνησης) του μονοβάθμιου ταλαντωτή με απ ευθείας χρονική

Διαβάστε περισσότερα

Διαφορικές εξισώσεις 302.

Διαφορικές εξισώσεις 302. Διαφορικές εξισώσεις 32. Μαθηματικό Αθήνας Συλλογή ασκήσεων 1 Λύτες: Βουλγαρίδου Εύα Ορμάνογλου Στράβων Παπαμικρούλη Ελένη Παπανίκου Μυρτώ Καθηγητές: Αθανασιάδου - Μπαρμπάτης Επιμέλεια L A TEX: Βώβος Μάριος

Διαβάστε περισσότερα

Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή

Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

Επιλύστε αριθμητικά με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: ( )

Επιλύστε αριθμητικά με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: ( ) ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Επιλύστε αριθμητικά με τη μέθοδο

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-010, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ 1 Έστω το πρόβλημα

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Εαρινό Εξάμηνο 2017 Διδάσκουσα: Δρ. Βλαχομήτρου Μαρία ΠΡΟΤΕΙΝΟΜΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ 1.

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Γεώργιος Ακρίβης. Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

Γεώργιος Ακρίβης. Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Γεώργιος Ακρίβης Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Γ. Α. (akrivis@cse.uoi.gr) Προβλήματα δοκιμής στην ΑΑ 19 Απριλίου 018 1 / 7 Προβλήματα δοκιμής Πρόκειται για απλές συνήθεις

Διαβάστε περισσότερα

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική

Διαβάστε περισσότερα

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

MEM 253. Αριθμητική Λύση ΜΔΕ * * * MEM 253 Αριθμητική Λύση ΜΔΕ * * * 1 Ένα πρόβλημα-μοντέλο Ροή θερμότητας σε ένα ομογενές μέσο. Ζητούμε μια συνάρτηση x [0, 1] και t 0 τέτοια ώστε u(x, t) ορισμένη για u t u(0, t) u(x, 0) = u xx, 0 < x

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU ειδικές περιπτώσεις: Cholesky, Thomas..

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος. Διάλεξη 10: Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης (1D)

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος. Διάλεξη 10: Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης (1D) ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος Διάλεξη : Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης D Γιάννης Δημακόπουλος & Γιάννης Τσαμόπουλος ΧΜ66 Εαρινό Εξάμηνο Πρόβλημα

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού

Διαβάστε περισσότερα

6. Αριθμητική επίλυση συνήθων διαφορικών

6. Αριθμητική επίλυση συνήθων διαφορικών 6. Αριθμητική επίλυση συνήθων διαφορικών Η συμπεριφορά πολλών φυσικών συστημάτων περιγράφεται από συνήθεις διαφορικές εξισώσεις ή από συστήματα συνήθων διαφορικών εξισώσεων. Παραδείγματα τέτοιων συστημάτων

Διαβάστε περισσότερα

Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)

Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k) Παράδειγμα # EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί το παρακάτω μη γραμμικό σύστημα με την μέθοδο Newton: ( ) ( ) f, = + = 0 f, = + 8=

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas)..

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 4: Εξίσωση διάχυσης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 4: Εξίσωση διάχυσης ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 4: Εξίσωση διάχυσης Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... 1. Εξετάσαμε τις μεθόδους των

Διαβάστε περισσότερα

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

Παρουσίαση 3ης Άσκησης

Παρουσίαση 3ης Άσκησης Παρουσίαση 3ης Άσκησης Παράλληλος προγραμματισμός για αρχιτεκτονικές κατανεμημένης μνήμης με MPI Συστήματα Παράλληλης Επεξεργασίας 9ο Εξάμηνο, ΣΗΜΜΥ Εργ. Υπολογιστικών Συστημάτων Σχολή ΗΜΜΥ, Ε.Μ.Π. Νοέμβριος

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ:

Διαβάστε περισσότερα

Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση 1 Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Να επιλυθεί η ροή ρευστού διαμέσου τετραγωνικού αγωγού η οποία εκφράζεται μέσω της διαφορικής εξίσωσης Poisson

Διαβάστε περισσότερα