Μάθηµα 18 ο, 19 Νοεµβρίου 2008 (9:00-10:00).

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μάθηµα 18 ο, 19 Νοεµβρίου 2008 (9:00-10:00)."

Transcript

1 Μάθηµα 8 ο, 9 Νοµβρίου 008 (9:00-0:00) Άσκηση 4 Θωρούµ κβαντικό σύστηµα ύο πιπέων, ηλαή έχουµ ύο ιιοκαταστάσις της νέργιας, Ĥ Ε και Ĥ Ε, τις οποίς ν γνωρίζουµ Ενώ για τον τλστή Α, γνωρίζουµ τις ιιοκαταστάσις του, ηλαή Α ˆ a Α ˆ Γνωρίζουµ ακόµα ότι ˆ + () ˆ + () (α) Να βρθούν οι ιιοκαταστάσις της νέργιας (β) Να βρθί πως ξλίσσται χρονικά το σύστηµα και η µέση τιµή του τλστή Α, αν το σύστηµα προέρχται αρχικά από µια µέτρηση στην οποία το φυσικό µέγθος που πριγράφι ο τλστής Α, έχι τιµή (γ) Να βρθί πως ξλίσσται χρονικά το σύστηµα και η µέση τιµή του τλστή Α, 0 + αν η αρχική κατάσταση ίναι ( x) Λύση (α) Χρησιµοποιούµ τις ιιοσυναρτήσις, του τλστή Α, για να κάνουµ την αναπαράσταση του τλστή της Χαµιλτονιανής Έτσι βρίσκουµ (, ) (, ) (, ) (, ) Καθώς,, +, +,, +, + 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (, ) (, + ) (, ) + (, ) ( ) ( ),, +, +,, +, + 0,, +, +,, +, 0+, +, 0+ Αν βρούµ τις ιοσυναρτήσις του τλστή της Χαµιλτονιανής θα βρθούν µ ιαγωνοποίηση Ο ιαγώνιος πίνακας βρίσκται από την συνθήκη det(η-λι)0 Αφού, λ 0 λ 0 λ Η σχέση det( A -λι)0 (-λ) - 0 (-λ-)(-λ+)0 λ + ή λ ιιοτιµές

2 λ άρα ο καινούριος ιαγώνιος πίνακας ίναι: 0 λ 0 και Η λ (+) Η λ (-) Τώρα θα βρω τις ιιοσυναρτήσις και Οι ιιοσυναρτήσις αυτές θα ίναι γραµµικός συνυασµός των ιιοσυναρτήσων της νέργιας, ηλαή d +d d +d Έτσι υπό µορφή στήλης τα ζητούµ ιιοιανύσµατα (ώ έχουµ αναπαράσταση των d d ιιοιανυσµάτων µ στήλη) ίναι d και d Άρα για το πρώτο ιιοιάνυσµα, χριάζται να λύσω το αλγβρικό σύστηµα: λ d λ + λ d d 0 (3) d 0 Ενώ για το ύτρο ιιοιάνυσµα, χριάζται να λύσω το αλγβρικό σύστηµα: λ d λ λ d 0 d (4) d 0 d + d o (3): d d d d Αν θέλουµ να ίναι και ορθοκανονικές οι ιιοσυναρτήσις, θα πρέπι να ισχύι ότι: (, ) (d +d,d +d ) d + d άρα d d και d +d + o (4): d +d 0 d +d 0 d d Αλλά αφού (, ) έχουµ d d άρα d +d (β) Αφού το σύστηµα προέρχται αρχικά από µια µέτρηση στην οποία το φυσικό 0 µέγθος που πριγράφι ο τλστής Α, έχι τιµή, έχουµ ( x) + Αλλά έχουµ και, οπότ αφαιρώντας τις υο αυτές σχέσις βρίσκουµ, έτσι βρίσκουµ c c 0 3 c για ( )

3 Έτσι η κυµατοσυνάρτηση που πριγράφι το σύστηµα ανα πάσα χρονική στιγµή ίναι Et Et e e ( xt, ) Α ˆ a Ενώ από τις σχέσις βρίσκω τα στοιχία του πίνακα Α m, τώρα όµως µ Α ˆ αναπαράσταση ως προς τις ιιοσυναρτήσις της νέργιας Για παράιγµα + + Α (, A ), A (, ) (, ) (, ) (, ) A + A + A + A (, a ) (, ) (, a ) (, ) a+ a(, ) + (, ) + a(, ) + (, ) Ανάλογα βρίσκουµ a, a, a + Α Α Α Οι παραπάνω τιµές ίναι ανµνόµνς καθώς έχουµ Α ˆ a Αˆ ( + ) a( + ) Α ˆ Αˆ a, ( ) ( ) και από την προσθαφαίρση των παραπάνω σχέσων βρίσκουµ ˆ a+ a Α + ˆ a a+ Α + Έτσι βρίσκουµ a+ a+ a a A () t ( A + A ) ( Ae + Ae ) + e + e a+ a + cos ωt 0 + (γ) Καθώς η αρχική κατάσταση ίναι ( x), έχουµ µία στάσιµη κατάσταση και ω ω ω ω t t t t Et ( x, t) e Τώρα έχουµ c, νώ όλοι οι άλλοι συντλστές µηνίζονται Έτσι έχουµ a+ A () t A

4 Συµβολισµός Drac Πολλές φορές για την αναπαράσταση των ιιοιανυσµάτων χρησιµοποιίται ο φορµαλισµός του Drac Στα πλαίσια αυτού του φορµαλισµού έχουµ τις ξής αντιστοιχίς: φ ( x) και φ ( x), όπου φ (x) ιιοιανύσµατα κάποιου τλστή που πριγράφι φυσικό µέγθος Το ονοµάζται ket-ιιοιάνυσµα και το ονοµάζται ra-ιιοιάνυσµα Το σωτρικό γινόµνο ορίζται ως: raket) φ (x) (x)dx j φj (το j ονοµάζται Η συνθήκη ορθοκανονικότητας ύο ιιοσυνάρτησων µ τη χρήση του συµβολισµού Drac παίρνι τη µορφή j j Ενώ η πληρότητα των ιιοκαταστάσων ίνται από την έκφραση ˆ, όπου ˆ ίναι ο µοναιαίος τλστής Η ανάπτυξη της αυθαίρτης κατάστασης (καθώς και η κυµατοσυνάρτηση (x) έχι ανάλογη αντιστοιχία (x) (x) ) σ ιιοκαταστάσις κφράζται ως c [ ], όπου c Οπότ, γνικύοντας τα στοιχία αναπαράστασης µ πίνακα του τλστή Α, A (x) A (x) dx A j υπολογίζονται από την σχέση: j φ ( φj ) Τέλος, µ την βοήθια των ιιοιανυσµάτων αυτών ορίζουµ και τλστές, όπως ο προβολικός τλστής, ο οποίος «προβάλι» την κυµατοσυνάρτηση πάνω στην ιιοκατάσταση Επίσης ( c ) ψ ( x, t) C ψ ( x) e E t Et ψ ( x, t) ψ 0 e

5 Άσκηση 5 Έστω ότι έχω ˆ + + +, όπου τα ιανύσµατα,ίναι τα ιιοιανύσµατα του τλστή Α, Α ˆ α Α ˆ α Να βρθούν οι ιιοτιµές και τα ιιοιανύσµατα του τλστή της νέργιας Λύση Ο τλστής της νέργιας σ µορφή πίνακα ίναι Οπότ ˆ ˆ ˆ ˆ ˆ [ ] Οµοίως για, Λόγω ορθοκανονικότητας, βρίσκουµ Ιιοιανύσµατα του Η, ˆ Ε φ και ˆ Ε φ λ ιαγωνοποιώ τον det οπότ λ + Ε και λ Ε Για λ + 0 λ ( λ)( λ) 0 d d d d d d Οπότ φ d + και φ d + Έτσι d d + φ και φ

Αναπαράσταση τελεστών µε πίνακα

Αναπαράσταση τελεστών µε πίνακα Μάθηµα 7 ο, 8 Νοεµβρίου 008 (9:00-:00) Άσκηση Bonus[+05 στον τελικό βαθμό] Για ένα μονοδιάστατο κβαντικό σύστημα που περιγράφεται από τρεις καταστάσεις με ενέργεια Ε, Ε και Ε3 και αντίστοιχες ιδιοσυναρτήσεις

Διαβάστε περισσότερα

Μάθηµα 13 ο, 30 Οκτωβρίου 2008 (9:00-11:00).

Μάθηµα 13 ο, 30 Οκτωβρίου 2008 (9:00-11:00). Μάθηµα ο 0 Οκτωβρίου 008 (9:00-:00) ΑΣΚΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΘΕΜΕΛΙΩ ΕΙΣ ΑΡΧΕΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Άσκηση 9 Έστω ένα κβαντικό σύστηµα το οποίο περιγράφεται από τρεις ενεργειακές καταστάσεις (ιδιοτιµές ενέργειας

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Κβαντική Φυσική Ι Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι

Διαβάστε περισσότερα

c 2 b b Λύση Το δυναµικό οµογενούς ηλεκτρικού πεδίου έντασης ε είναι V( x)

c 2 b b Λύση Το δυναµικό οµογενούς ηλεκτρικού πεδίου έντασης ε είναι V( x) ΑΣΚΗΣΗ 8 Φορτισµένος αρµονικός ταλανττής βρίσκται µέσα σ οµογνές ηλκτρικό πδίο έντασης. Τη χρονική στιγµή t= ο ταλανττής βρίσκται στη βασική κατάσταση. Να υπολογιστί η πιθανότητα ο ταλανττής να παραµίνι

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαιο 7 ιασκοντες: Ν. Μαρµαρίης - Α. Μπεληγιάννης Βοηθοι Ασκησεων: Χ. Ψαρουάκης Ιστοσελια Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii.html - - Ασκηση.

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες. ΘΕΜΑ [5575] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Αυγούστου ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης,5 ώρες (α) Να αποδειχθεί ότι για οποιοδήποτε µη εξαρτώµενο από τον χρόνο τελεστή Α, ισχύει d A / dt = A,

Διαβάστε περισσότερα

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου

Διαβάστε περισσότερα

Μάθηµα 19 ο, 25 Νοεµβρίου 2008 (9:00-11:00) & Συµπλήρωµα 7 εκεµβρίου 2010 (9:00-11:00).

Μάθηµα 19 ο, 25 Νοεµβρίου 2008 (9:00-11:00) & Συµπλήρωµα 7 εκεµβρίου 2010 (9:00-11:00). Μάθηµα 9 ο, 5 Νοεµβρίου 008 (9:00-:00) & Συµπλήρωµα 7 εκεµβρίου 00 (9:00-:00). ΑΣΚΗΣΗ 9- Θεωρούµε φυσικά µεγέθη που περιγραφονται από τους τελεστές A, B, C και H (Χαµιλτονιανή). Γνωρίζουµε για τους τελεστές

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α. Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι

Διαβάστε περισσότερα

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n 3 Θεωρία διαταραχών 3. ιαταραχή µη εκφυλισµένων καταστάσεων 3.. Τοποθέτηση του προβλήµατος Θέλουµε να λύσουµε µε τη ϑεωρία των διαταραχών το πρόβληµα των ιδιοτιµών και ιδιοσυναρτήσεων ενός συστή- µατος

Διαβάστε περισσότερα

# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ

# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ Μθοδολογία στην υθία γραμμή Κοινά σημία δύο γραμμών. Για να βρούμ τις συντταγμένς του σημίου δύο γραμμών, λύνουμ το σύστημα των ξισώσών τους. ΓΡΑΜΜΗ Μια ξίσωση της μορφής φ(χ,ψ)= λέγται ξίσωση μιας πίπδης

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες. ΘΕΜΑ 1[1] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 1 ( ιδάσκων: ΑΦ Τερζής ιάρκεια εξέτασης 3 ώρες Ηλεκτρόνιο βρίσκεται σε δυναµικό απειρόβαθου πηαδιού και περιράφεται από την 1 πx πx κυµατοσυνάρτηση

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω) Εξέταση: 17 Ιούνη 2013 ( ιδάσκων: Α.Φ. Τερζής) ΘΕΜΑ 1[ ]

ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω) Εξέταση: 17 Ιούνη 2013 ( ιδάσκων: Α.Φ. Τερζής) ΘΕΜΑ 1[ ] ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω Εξέταση: 17 Ιούνη 13 ( ιδάσκων: ΑΦ Τερζής ΘΕΜΑ 1[1515] Θεωρούµε κβαντικό σύστηµα που περιράφεται από την Χαµιλτονιανή, ε H 4ε 1 1 3i 1 1, µε 1, ιδιοσυναρτήσεις κάποιου

Διαβάστε περισσότερα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις

Διαβάστε περισσότερα

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι

Διαβάστε περισσότερα

Αντλία νερού: Ο ρόλος της αντλίαςμελέτη συμπεράσματα σχόλια.

Αντλία νερού: Ο ρόλος της αντλίαςμελέτη συμπεράσματα σχόλια. Αντλία νρού: Ο ρόλος της μλέτη συμπράσματα σχόλια.. Ο ρόλος της. Η αντλία χρησιμοποιίται ώστ να μταφέρι μια ποσότητα νρού κί που δν μπορί να μταφρθί μόνο μ τις πιέσις που δημιουργούνται από το υπόλοιπο

Διαβάστε περισσότερα

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2 http://elearn.maths.gr/, maths@maths.gr, Τηλ: 979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

4. Αναδροµικός τύπος Είναι ο τύπος που συσχετίζει δύο ή περισσότερους γενικούς όρους µιας ακολουθίας

4. Αναδροµικός τύπος Είναι ο τύπος που συσχετίζει δύο ή περισσότερους γενικούς όρους µιας ακολουθίας 5. ΑΚΟΛΟΥΘΙΕΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε συνάρτηση µε πεδίο ορισµού το το σύνολο N * = {,, 3, 4.} και σύνολο αφίξεως το R Η ακολουθία συµβολίζεται (α ν ) ή (β ν ) κ.λ.π.

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών

Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Τ.Ε.Ι. Θσσαλονίκης Τµήµα Πληροφορικής Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Θωρία Παραδίγµατα και Άλυτς Ασκήσις Γουλιάνας Κώστας Ε ίκουρος Καθηγητής eml : gul@t.tethe.gr Ιστοσλίδα

Διαβάστε περισσότερα

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / 010-11 ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές αικονίσις, Ααγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 Έστω η γραμμική αικόνιση T : μ T ( 1,1) = (, 0) και ( 0,1) ( 1,1) T = (α) Βρίτ τον ίνακα της

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

Â. Θέλουμε να βρούμε τη μέση τιμή

Â. Θέλουμε να βρούμε τη μέση τιμή ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου

Διαβάστε περισσότερα

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L. Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Να µελετηθεί το απειρόβαθο κβαντικό πηγάδι µε θετικές ενεργειακές καταστάσεις ( E > ). Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης νός συστήματος συντταγμένων για τον προσδιορισμό της θέσης νός σημίου πάνω σ μια πιφάνια προέρχται από την Γωγραφία και ήταν γνωστή στους αρχαίους

Διαβάστε περισσότερα

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων . 80 Σύνολα µέτρου µηδέν στον και ο χαρακτηρισµός του Lebesgue των iema ολοκληρωσίµων συναρτήσων 7. Ορισµός. Έστω για κάθ 0 Α, λέµ ότι το Α έχι διάστατο µέτρο µηδέν αν, > υπάρχι ακολουθία ανοικτών διάστατων

Διαβάστε περισσότερα

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ 1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Πρόχειρο ιαγώνισµα: 11 Νοεµβρίου 2008 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 1 ώρα.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Πρόχειρο ιαγώνισµα: 11 Νοεµβρίου 2008 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 1 ώρα. Μάθηµα 6 ο, Νοεµβρίου 8 (9:-:). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Πρόχειρο ιαγώνισµα: Νοεµβρίου 8 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης ώρα. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: ΕΤΟΣ ΣΠΟΥ ΩΝ: ΘΕΜΑ [4] Σωµάτιο εριγράφεται

Διαβάστε περισσότερα

Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 39 Περιεχόµενα 1ης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ Πριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ A. ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ Γραμμική ξίσωση μ δύο αγνώστους ονομάζται κάθ ξίσωση της μορφής: α + βψ = γ (), μ α,β,γ π.χ. ψ =, =, ψ =, κλπ.

Διαβάστε περισσότερα

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό

Διαβάστε περισσότερα

Λύσεις σετ ασκήσεων #6

Λύσεις σετ ασκήσεων #6 ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ. Κοντογιάννης Πέμπτη 8 Μαΐου 07 Φυλλάδιο #4 Λύσις στ ασκήσων #6. Θόρυβος od. Έστω ότι ένα κανάλι έχι αλφάβητο ισόδου και αλφάβητο ξόδου το {0}. Όπως στο προηγούμνο στ η έξοδος του

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11 ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

Ατομική και ηλεκτρονιακή δομή των στερεών

Ατομική και ηλεκτρονιακή δομή των στερεών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ατομική και ηλκτρονιακή δομή των στρών Εισαγωγή στη μέθοδο Γραμμικός Συνδυασμός Ατομικών Τροχιακών Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα Άδις

Διαβάστε περισσότερα

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -

Διαβάστε περισσότερα

Μπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται;

Μπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται; Έστω μακροσκοπικό σύστημα αποτούμνο από μόρια τα οποία μπορούν να βρθούν σ ένα σύνοο μη κφυισμένων καταστάσων μ νέργια, όπου,, 2, 3, 4,. Σ προηγούμνο παράδιγμα δίξαμ ότι η κυρίαρχη διαμόρφωση νός τέτοιου

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ

ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ η Ερώτηση Γνωρίζουµε πως η κυµατοσυνάρτηση είναι η λύσης της κυµατικής εξίσωσης, που περιγράφει το µέγεθος της ιαταραχής, ( rt, ) r. Ψ= σε κάθε χρονική στιγµή, t, και σε κάθε θέση

Διαβάστε περισσότερα

Άσκηση 1 (α) ============================================================== Έχουµε L = π, εποµένως η σειρά Fourier είναι: 1 2 a. cos. a n. b n.

Άσκηση 1 (α) ============================================================== Έχουµε L = π, εποµένως η σειρά Fourier είναι: 1 2 a. cos. a n. b n. http://elear.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις 6ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει μια εφαρμογή για να γίνει πιο κατανοητός

Διαβάστε περισσότερα

x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι

x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδι3α(ΑΚΠ3α), x > Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( x) x Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για (α) c> και (β) c< Για την περίπτωση (α) να µελετηθεί

Διαβάστε περισσότερα

= 2L. Οι ενεργειακές καταστάσεις του αρχικού πηγαδιού υπολογίζονται από την σχέση En

= 2L. Οι ενεργειακές καταστάσεις του αρχικού πηγαδιού υπολογίζονται από την σχέση En Πρόβηµα ΑειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Θεωρούµε αειρόβαθο κβαντικό ηγάδι άχους, στο οοίο βρίσκεται εγκωβισµένο ηεκτρόνιο στην θεµειώδη κατάσταση Ε ιασιάζουµε το άχους του σωήνα ού αότοµανα βρεθεί η ιθανότητα

Διαβάστε περισσότερα

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Λεκτική Ανάλυση II

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Λεκτική Ανάλυση II Γλώσσς Προγραμματισμού Μταγλωττιστές Λκτική Ανάλυση II Πανπιστήμιο Μακδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακλλαρίου Δομή Ππρασμένα Αυτόματα Νττρμινιστικά Ππρασμένα Αυτόματα Μη-Νττρμινιστικά Ππρασμένα

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 2004-2005 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 2004-2005 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 4-5 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ Ανδρέας Φ. Τερζής Πάτρα Γενάρης 5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΤΕΛΕΣΤΩΝ ΜΕ ΜΗΤΡΕΣ [ΠΙΝΑΚΕΣ]

Διαβάστε περισσότερα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

ΚΕΦΑΛΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σχδίαση μ τη χρήση Η/Υ ΕΦΑΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΟΣ, ΕΠΙΟΥΡΟΣ ΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΗΣΗΣ ΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΑΡΙΣΑΣ Γωνίς πιπέδων: Η γωνία δυο τμνόμνων πιπέδων ορίζται

Διαβάστε περισσότερα

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β 1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι

Διαβάστε περισσότερα

ΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ

ΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ ΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ Έχουµε 2 ευθείες ε 1,ε 2 και τουλάχιστον µία ευθεία που τέµνει αυτές τις 2 ευθείες, εδώ τη (δ). Ονοµάζουµε τις γωνίες µε βάση το: 1. Πού βρίσκονται σε σχέση µε

Διαβάστε περισσότερα

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 11/11/08

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 11/11/08 //8 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 4 8-9 η ΕΡΓΑΣΙΑ Προθεσµία παράδοσης //8 Άσκηση Α) Έστω, οι µετατοπίσεις των µαζών από τη θέση ισορροπίας όπως στο Σχήµα. Στη µάζα ενεργούν µόνο οι δυνάµεις από τα

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις

Επαναληπτικές ασκήσεις Επαναληπτικές ασκήσις Έστω απομονωμένο μακροσκοπικό σύστημα το οποίο αποτλίται από mol όμοιων και διακριτών μονοατομικών μορίων τα οποία δν αλληλπιδρούν μταξύ τους. Τα μόρια αυτά μπορούν να βρθούν ίτ σ

Διαβάστε περισσότερα

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { }

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { } http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ 2 ο. Α. 1. Θεωρία σχολικό βιβλίο σελ Θεωρία σχολικό βιβλίο σελ. 61

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ 2 ο. Α. 1. Θεωρία σχολικό βιβλίο σελ Θεωρία σχολικό βιβλίο σελ. 61 ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 5 / / 0 ΘΕΜΑ ο Α Θωρία σχολικό βιβλίο σλ 7 Θωρία σχολικό βιβλίο σλ 6 Β Λ, Σ, Λ, 4 Λ, 5 Λ, 6 Λ, 7 Λ, 8 Σ, 9 Λ, 0 Σ Γ Β,, Α, 4 Α, 5 Α ΘΕΜΑ ο A λ, µ Β µ, λ 6 α xa

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 11. ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 11. ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 11. ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ Στέλιος Τζωρτζάκης 1 3 4 Χρονεξαρτημένη χαμιλτονιανή Στα προβλήματα τα οποία εξετάσαμε μέχρι τώρα η

Διαβάστε περισσότερα

(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3

(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3 0 ΕΞΙΣΩΣΕΙΣ ΤΟΥ EULER Ορισμός : Οι γραμμικές διαφορικές ξισώσις, των οποίων οι συντλστές ίναι δυνάμις του βαθμού ίσου μ την τάξη της αντίστοιχης παραγώγου, ονομάζονται ξισώσις του Eule Πχ η ομογνής ξίσωση

Διαβάστε περισσότερα

Κεφάλαιο 7 Βάσεις και ιάσταση

Κεφάλαιο 7 Βάσεις και ιάσταση Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε

Διαβάστε περισσότερα

2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός

2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 8575 Β (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(,) και Β(5,6). α) Να βρίτ την ξίσωση της υθίας που διέρχται από τα σηµία Α και B.

Διαβάστε περισσότερα

Περίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους

Περίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ Κοντογιάννης Πέμπτη Μαΐου 7 Φυλλάδιο #3 Πρίληψη Προηγούμνου Μαθήματος Κανάλια πικοινωνίας μ θόρυβο και η χωρητικότητά τους Πώς πριγράφουμ ένα κανάλι πικοινωνίας; Τι θα πι «θόρυβος»;

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 16: Αναπαράσταση τελεστών με μήτρες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναπτύξει την μεθοδολογία εύρεσης ιδιοτιμών

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

Παράρτηµα Γ Eνότητα Γ.1 Απόδειξη θεωρήµατος 1.5 Kεφαλαίου 1.

Παράρτηµα Γ Eνότητα Γ.1 Απόδειξη θεωρήµατος 1.5 Kεφαλαίου 1. Παράρτηµα Γ νότητα Γ. Απόδιξη θωρήµατος.5 Kφαλαίου. στω f ίναι συνχής και πραγµατική συνάρτηση στο κανονικοποιηµένη (αφαιρώντας µια σταθρά) ώστ f ( x) dx= u = Pr f αρµονική µ (,) v (,) =. Τότ η. στω u

Διαβάστε περισσότερα

E n. (, ) Η χρονοεξαρτώµενη εξίσωση Schrödinger, έχει την µορφή ˆ

E n. (, ) Η χρονοεξαρτώµενη εξίσωση Schrödinger, έχει την µορφή ˆ Πρόβλημα ΓενικέςΈννοιεςΚβαντομηχανικήςα(ΓΕΚα Σε ένα μονοδιάστατο κβαντικό σύστημα να δειχθεί ότι η γενική λύση της χρονοεξαρτώμενης εξίσωσης Schrödiger είναι της μορφής Ψ ( x,t c ( x e i E t, όπου τα E

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΕΠΝΛΗΠΤΙΚ ΦΥΛΛΙ ΕΠΙΜΕΛΕΙ ΣΙΛΗΣ ΥΕΡΙΝΣ ΕΠΙΜΕΛΕΙ: ΥΕΡΙΝΣ ΣΙΛΗΣ ΘΕΩΡΙ ΜΕΡΣ ο : ΛΕΡ ΚΕΦΛΙ ο ΦΥΣΙΚΙ ΡΙΘΜΙ. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; πάντηση ι

Διαβάστε περισσότερα

3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες.

3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες. 32 3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητς. Στην παράγραφο αυτή πρόκιται να ισαγάγουμ μια σημαντική, ίσως την σημαντικότρη, κλάση τοπολογικών γραμμικών χώρων. Αυτή ίναι η κλάση των τοπικά κυρτών χώρων

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλιστά σύνολα Στην παράγραφο αυτή αναπτύσσται ο µηχανισµός που θα µας πιτρέψι να µλτήσουµ τις αναλυτικές ιδιότητς των συναρτήσων πολλών µταβλητών. Θα χριαστούµ τις έννοις της ανοικτής σφαίρας

Διαβάστε περισσότερα

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής

Διαβάστε περισσότερα

υ Β = υ cm - υ στρ(β) = υ cm - ω R 2 = υ cm cm - υ2 υ υcm Β = 2. ιαιρώντας κατά µέλη παίρνουµε ότι: Β3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη β

υ Β = υ cm - υ στρ(β) = υ cm - ω R 2 = υ cm cm - υ2 υ υcm Β = 2. ιαιρώντας κατά µέλη παίρνουµε ότι: Β3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη β ΑΠΑΝΤΗΣΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩ ΩΝΙΙΣΜΑ ΦΥΣΙΙΚΗΣ ΠΡΡΟΣΑΝΑΤΟΛΙΙΣ ΣΜΟΥ ΓΓ ΛΥΚΕΙΙΟΥ 1133 1122 -- 22001155 Θέµα Α Α1. δ Α2. β Α3. β Α4. δ Α5. α) Σ β) Λ γ) Σ δ) Σ ε) Λ Θέµα Β Β1. Σωστή απάντηση η (β). Εφόσον παρατηρούνται

Διαβάστε περισσότερα

ΕΑΠ ΦΥΕ 34. ( γ ) Βρείτε την ενέργεια σε ev του φωτονίου της σειράς Balmer, που έχει το

ΕΑΠ ΦΥΕ 34. ( γ ) Βρείτε την ενέργεια σε ev του φωτονίου της σειράς Balmer, που έχει το ΕΑΠ ΦΥΕ 4 Σύντοµες Απαντήσεις στην Εξέταση Ιουνίου 4 στο µάθηµα «Από την Κασική στην Σύγχρονη Φυσική» ) Η σειρά Balmer του γραµµικού φάσµατος του ατόµου του υδρογόνου αντιστοιχεί σε µεταβάσεις ηεκτρονίων

Διαβάστε περισσότερα

) = 0 όπου: ω = κ µε m-εκφυλισµό

) = 0 όπου: ω = κ µε m-εκφυλισµό Εκφυλισμένες ιδιοτιμές Ø Υποθέσαµε ότι : ω k ω k ΦΥΣ 211 - Διαλ.25 1 Ø Τι ακριβώς συµβαίνει όταν έχουµε εκφυλισµών των ιδιοτιµών? Ø Στην περίπτωση αυτή πολλαπλές ιδιοτιµές αντιστοιχούν σε πολλαπλά ιδιοδιανύσµατα

Διαβάστε περισσότερα

Σειρά Ασκήσεων στην Αντοχή των Υλικών

Σειρά Ασκήσεων στην Αντοχή των Υλικών Σιρά Ακήων ην Ανοχή ων Υλικών Άκηη η Σο ημίο Α μιας πίπδης μαλλικής πιφάνιας μ μέρο λαικόηας 00 GP και λόγο Pissn 0.5 μρήθηκαν οι πιμηκύνις ις καυθύνις, και μ η διάαξη ων πιμηκυνιομέρων ου χήμαος, ως 900,

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Κβαντική Φυσική Ι Ενότητα 6: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

============================================================== Σχηµατίζουµε τον πίνακα µε στήλες τα διανύσµατα v1,v2,v3,u1,u2:

============================================================== Σχηµατίζουµε τον πίνακα µε στήλες τα διανύσµατα v1,v2,v3,u1,u2: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ -: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10 9// ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 3 - η ΕΡΓΑΣΙΑ Προθεσµία παράδοσης 6// Άσκηση A) Θεωρούµε x την απόσταση της µάζας m από το σηµείο ισορροπίας της και x, x3 τις αποστάσεις των µαζών m και m3 από το

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 4η Σειρά Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 4η Σειρά Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - 4η Σειρά Ασκήσεων Ασκηση.. Χρησιµοποιούµε το κριτήριο ολοκλήρωσης : dx x( x +

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 2 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 22/12/09 ( )

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 2 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 22/12/09 ( ) 19/11/9 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 4 9-1 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ης ΕΡΓΑΣΙΑΣ Προθσµία παράδοσης /1/9 Άσκηση 1 Η γνική µορφή νός ΗΜ κύµατος δίνται από E E sin k r ωt (1) ( ) Α) Το µέτρο του πλάτους πλάτος

Διαβάστε περισσότερα

Τι είναι πραγματική συνάρτηση πραγματικής μεταβλητής ;

Τι είναι πραγματική συνάρτηση πραγματικής μεταβλητής ; Μάθημα Κεφάλαιο: Όριο Συνέχεια Συνάρτησης Θεματικές Ενότητες:. Η έννοια της συνάρτησης.. Πεδίο ορισμού συνάρτησης. 3. Σύνολο τιμών συνάρτησης. Τι είναι πραγματική συνάρτηση πραγματικής μεταβλητής ; Από

Διαβάστε περισσότερα

1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 1 1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΘΕΩΡΙΑ 1. Ταυτότητα Ευκλείδειας διαίρεσης : Για δύο οποιαδήποτε πολυώνυµα (x) και δ(x) µε δ(x) µπορούµε να βρούµε δύο άλλα πολυώνυµα π(x) και υ(x) τέτοια ώστε να ισχύει (x) = δ(x)π(x)

Διαβάστε περισσότερα

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο 1 3.3 ΜΗΚΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙ 1. Μήκος κύκλου ακτίνας ρ : Το µήκος L ενός κύκλου δίνεται από τον τύπο L = 2πρ ή L = πδ όπου δ η διάµετρος του κύκλου και π ένας άρρητος αριθµός του οποίου προσέγγιση µε δύο δεκαδικά

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 5 και Ρ(Β) = Ρ(Α ). Αν τα Α, Β είναι ασυµβίβαστα, να εξετάσετε αν είναι ασυµβίβαστα και τα Α, Β 5 i είξτε ότι Ρ(Α Β)=

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που παρουσιάζται στις διαφάνις

Διαβάστε περισσότερα

1 η εκάδα θεµάτων επανάληψης

1 η εκάδα θεµάτων επανάληψης η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων : Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. (α) Εχουµε ότι : 6 5 x= y= 6 x= 6 x= c(x + y)dxdy = ) c

Διαβάστε περισσότερα

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017 Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί

Διαβάστε περισσότερα

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L

Διαβάστε περισσότερα

3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)

3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x) 4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ

Διαβάστε περισσότερα

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y 5 Έστω Το θεώρηµα αντίστροφης απεικόνισης Ι R ανοικτό διάστηµα, : Ι R διαφορίσιµη της κλάσης a Ι : '( a) 0 Τότε από την συνέχεια της ' υπάρχει 0 ' 0 για κάθε ( a δ, a+ δ) δ > :( a δ, a δ) C και + Ι και

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα