ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: Γιάννης Ζαµπέλης Μαθηµατικός

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός"

Transcript

1 ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 8575 Β (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(,) και Β(5,6). α) Να βρίτ την ξίσωση της υθίας που διέρχται από τα σηµία Α και B. (Μονάδς ) β) Να αποδίξτ ότι η µσοκάθτος του υθυγράµµου τµήµατος ΑΒ έχι ξίσωση την y = + 7 (Μονάδς 5) α) Χριαζόµαστ τον συντλστή διύθυνσης της ΑΒ και ένα σηµίο, έστω το Α. y y Μ τη βοήθια του τύπου λ ΑΒ =,µ θα υπολογίσουµ τον συντλστή διύθυνσης. 6 λαβ = =, άρα η υθία ΑΒ θα έχι ξίσωση 5 ΑΒ : y = ( ) y= + y= Μ, =, 4. β) Έστω µέσο Μ του τµήµατος ΑΒ, τότ οι συντταγµένς του θα ίναι: Έστω () η µσοκάθτη της υθίας ΑΒ, ΑΒ λ λ = λ =,αφούλ = πιδή ΑΒ ΑΒ Εποµένως η ξίσωση της υθίας () θα δίνται από τον τύπο: : y 4 y 4 y 7 = = + + = + 66 Β (Αναρτήθηκ 5 4) ίνται τρίγωνο ΑΒΓ µ κορυφές τα σηµία Α(,), Β(,) και Γ(,4). α) Να βρίτ την ξίσωση της πλυράς ΑΓ. (Μονάδς 7) β) Να βρίτ τις ξισώσις του ύψους Β και της διαµέσου ΑΜ. (Μονάδς 8) 4 α) Ο συντλστής διύθυνσης της ΑΓ ίναι λ= = = Άρα η ξίσωση της ΑΓ ίναι:αγ : y = ( ) y= + 9+ y= + β) Αφού Β : ύψος θα ισχύι: Β ΑΓ ποµένως θα πρέπι: λβ λαγ = λ Β =,αφούλαγ = Άρα η ξίσωση του ύψους Β ίναι: 4 y = (+ ) y= + + y= + Έχουµ ΑΜ: διάµσος του τριγώνου ποµένως Μ: µέσο της ΒΓ Οι συντταγµένς του µέσου Μ της ΒΓ ίναι Μ = = και yμ = =, άρα 5 Μ,.

2 Εποµένως ο συντλστής διύθυνσης της διαµέσου ΑΜ θα ίναι: 5 λ= = =. 5 5 Και η ξίσωση της διαµέσου ΑΜ θα ίναι: 9 4 y = ( ) y= + + y= ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β (Αναρτήθηκ 5 4) Θωρούµ µια υθία () και ένα σηµίο Α(6, -) κτός της (). Έστω Μ(, ) η προβολή του Α στην (). Να βρίτ: α) Την ξίσωση της υθίας (). (Μονάδς ) β) Το συµµτρικό του Α ως προς την (). (Μονάδς ) α) Για να βρούµ την ξίσωση της υθίας () χριαζόµαστ ένα σηµίο και συντλστή διύθυνσης ym ya ( ) λαμ = = = =. M A 6 4 Γνωρίζουµ ότι το Μ ίναι η προβολή του Α στην (), ποµένως η ΑΜ θα ίναι κάθτη στην () και θα ισχύι ότι AM () λαμ λ = λ = αφού λαμ =. Μ τη βοήθια του τύπου: y yo = λ ( o ) υπολογίζουµ την ξίσωση της υθίας () y = ( ) y= 4+ y= β) Έστω Α το συµµτρικό του Α ως προς την (), τότ το σηµίο Μ θα ίναι µέσο του υθύγραµµου τµήµατος ΑΑ. Εποµένως θα ισχύι : + 6+ M = = 4= 6+ A A = και y + y + y ym = = = + y y = A A A A A A A A Άρα το συµµτρικό του Α ως προς την () ίναι το Α ( -, )

3 4 5 7 Β (Αναρτήθηκ 5 4) ίνονται τα σηµία Α(, ), Β(-, 5) και Γ(-, -4). α) Να αποδίξτ ότι σχηµατίζουν τρίγωνο. (Μονάδς 8) β) Να βρίτ το συµµτρικό του Β ως προς το µέσο Μ της ΑΓ. (Μονάδς ) α) Για να δίξουµ ότι τα σηµία Α, Β, Γ σχηµατίζουν τρίγωνο, αρκί να δίξουµ ότι δν ίναι συνυθιακά σηµία. Υπολογίζουµ τις συντταγµένς των διανυσµάτων Έχουµ, ΑΒ= ( B A, yb ya) = (, 5 ) = (, ) και BΓ=, y y = ( ), 4 5 = (, 9). Γ Β Γ Β Ελέγχουµ την ορίζουσα των συντταγµένων των δυο διανυσµάτων αν ίναι διάφορη του µηδνός. det( AB, BΓ) = = ( 9) ( ) = 7+ = 9 9 Άρα τα διανύσµατα AB και BΓ ίναι µη συγγραµµικά, δηλαδή τα Α, Β, Γ ίναι µη συνυθιακά, ποµένως σχηµατίζουν τρίγωνο. β) Έχουµ Μ: µέσο ΑΓ. Άρα οι συντταγµένς του θα ίναι : A + Γ M = = = ya + yγ 4 ym = = = Άρα Μ, µέσο της ΑΓ. Αφού :συµµτρικό του Β ως προς το Μ θα πρέπι το Μ να ίναι το µέσο και του Β. Εποµένως θα ισχύι : Β+ + M = = και = + = y M y + y 5+ y = = Β = 5+ y y = 6 Οπότ το συµµτρικό του σηµίου Β ως προς το Μ ίναι το (, - 6) γ) Παρατηρούµ ότι το σηµίο Μ διχοτοµί τα υθύγραµµα τµήµατα ΑΓ και Β, ποµένως το ττράπλυρο ΑΒΓ ίναι παραλληλόγραµµο.

4 4 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β (Αναρτήθηκ 8 4 ) ίνονται οι παράλληλς υθίς : y 8=, : 4y+ = και το σηµίο Α της που έχι ττµηµένη το 4. α) Να βρίτ τις συντταγµένς του σηµίου Α. (Μονάδς 5) β) Να βρίτ την ξίσωση της υθίας η οποία διέρχται από το σηµίο Α ίναι κάθτη στην υθία (Μονάδς ) γ) Αν Β ίναι το σηµίο τοµής των υθιών, τότ να βρίτ τις συντταγµένς του Β.(Μονάδς ) α) Το Α ίναι σηµίο της, ποµένως οι συντταγµένς του θα πρέπι να παληθύουν την ξίσωση της υθίας. Έχουµ λοιπόν: 4 y 8= y= 4 y= ποµένως οι συντταγµένς του ίναι: Α(4, ) β) Ψάχνουµ ξίσωση υθίας, µ λ λ = λ =,αφούλ = = Εποµένως η ξίσωση της θα ίναι: : y ( ) = ( 4) y= + 6 γ) Για να βρούµ τις συντταγµένς του σηµίου Β θα πρέπι να λύσουµ το σύστηµα των ξισώσων των υθιών. Είναι: 4y + = ( + ) 6 5y + 6 = 5y = 6 = y = και y+ 6= 5 Εποµένως ίναι 7 6 Β, = = = Β (Αναρτήθηκ 8 4 ) ίνονται οι υθίς : 8 y+ 6= και : y = οι οποίς τέµνονται στο σηµίο Μ. Αν οι υθίς τέµνουν τον άξονα y ' y στα σηµία Α και B αντίστοιχα, τότ: α) να βρίτ τις συντταγµένς των σηµίων Μ, A και B (Μονάδς ) β) αν Κ ίναι το µέσο του τµήµατος ΑΒ, να βρίτ τον συντλστή διύθυνσης του διανύσµατος ΜΚ (Μονάδς 5) α) Για να βρούµ τις συντταγµένς του σηµίου Μ θα λύσουµ το σύστηµα των ξισώσων των υθιών. Είναι: 8y+ 6= 6y ( + + = ) 7y 7= y= και + y+ 5= + y+ 5= 8 + 6= + 8= = 8 Εποµένως οι συντταγµένς του σηµίου Μ ίναι Μ( 8,).

5 4 5 Από την ξίσωση της υθίας για = παίρνουµ 8y+ 6= y= άρα η υθία τέµνι τον άξονα y' y στο σηµίο Α(,) Από την ξίσωση της υθίας για = παίρνουµ y+ 5= y= 5άρα η υθία τέµνι τον άξονα y' y στο σηµίο Β(, 5) β) Το µέσο Κ του ΑΒ έποµένως οι συντταγµένς θα ίναι: + y + y Κ, Α Β Α Β δηλ. Κ, Το διάνυσµα ΜΚ έχι συντταγµένς: 5 ΜΚ = ( Κ Μ, yκ yμ) = ( 8), = 8, Άρα ο συντλστής διύθυνσης του ΜΚ 5 5 ίναι = Β (Αναρτήθηκ 8 4 ) ίνονται οι υθίς :8 + y 8 = : y + = οι οποίς τέµνονται στο σηµίο Μ. α) Να βρίτ τις συντταγµένς του σηµίου Μ και, στη συνέχια, να βρίτ την ξίσωση της υθίας που διέρχται από το Μ ίναι κάθτη στον άξονα ' (Μονάδς ) β) Να αποδίξτ ότι οι υθίς που διέρχονται από το Μ και έχουν συντλστή διύθυνσης λ έχουν ξίσωση την: λ y λ+ 4=, όπου λ R (Μονάδς 5) Λύση α) Για να βρούµ τις συντταγµένς του σηµίου Μ, θα λύσουµ το σύστηµα των ξισώσων των υθιών Είναι: 8+ y 8= 8 + (+ ) 8= 9 = 7 = y+ = y= + y= + y= 4 Άρα οι υθίς τέµνονται στο σηµίο Μ(, 4). Η υθία που διέρχται από το σηµίο Μ ίναι κάθτη στον άξονα ' έχι ξίσωση = β) Έστω (η) µια υθία που διέρχται από το σηµίο Μ(,4) και έχι συντλστή διύθυνσης λ, τότ η ξίσωση της θα δίνται από τον τύπο: y 4= λ( ) y 4= λ λ λ y λ+ 4= 6 Β (Αναρτήθηκ 5 4) Θωρούµ το υθύγραµµο τµήµα ΑΒ µ µέσο Μ και Α(, ), Μ(, 5). α) Να βρίτ τις συντταγµένς του σηµίου Β. (Μονάδς ) β) Να βρίτ την ξίσωση της µσοκαθέτου του υθυγράµµου τµήµατος ΑΒ, καθώς και τα κοινά σηµία αυτής µ τους άξονς και y y. (Μονάδς 5) 5

6 4 5 α) Έχουµ Μ µέσο του τµήµατος ΑΒ ποµένως θα ισχύι: Α + Β + Μ = Β = 4= + Β Β = 5. yα + yβ + yβ yμ = = + y 5 = Β yβ = Β 5,. Άρα: β) Υπολογίζουµ αρχικά τον συντλστή διύθυνσης της υθίας ΑΒ yβ y Α ( ) 4 7 λαβ = = = =. 5 6 Β Α Ψάχνουµ ξίσωση υθίας () ώστ: ΑΒ λ λαβ = λ 7 =,αφού λαβ= 7 Εποµένως η ξίσωση της µσοκαθέτου θα δίνται από τον τύπο: ( ) : y 5= ( ( ) ) 7y 5= + 6 7y+ 4= 7 4 Από την ξίσωση της υθίας για y= παίρνουµ + 4= = άρα η υθία τέµνι τον άξονα ' στο σηµίο 4 Γ, Από την ξίσωση της υθίας για = παίρνουµ άξονα y' y στο σηµίο, y+ 4= y= άρα η υθία τέµνι τον 7 65 Β (Αναρτήθηκ 5 4) ίνται η υθία : + y + = και το σηµίο Α(5,). α) Να βρίτ την ξίσωση της υθίας η, η οποία διέρχται από το Α ίναι κάθτη προς την υθία. (Μονάδς 9) β) Να βρίτ την ξίσωση της υθίας η, η οποία διέρχται από το Α ίναι παράλληλη προς τον άξονα. (Μονάδς 7) γ) Να βρίτ το σηµίο τοµής των υθιών ηκαι ηκαι την απόστασή του από την αρχή των αξόνων. (Μονάδς 9) α) Έχουµ: ( ) : + y+ = µ λ =. = Είναι : η λη λ Η ξίσωση της υθίας ηίναι: ( η ) : y ( 5) λ = η λη =. = y = 5 y 4=. 6

7 β) Έχουµ η / / ποµένως θα πρέπι: ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 λη = όποτ η ξίσωση της υθίας ηίναι της µορφής :, y = 5, ποµένως θα έχουµ: y= y, όπου (, y) ένα τυχαίο σηµίο της υθίας, άρα ( ) ( η ) : y= y =. γ) Για να βρούµ το κοινό σηµίο Κ των ηκαι ηλύνουµ το σύστηµα των ξισώσων των δυο υθιών, δηλ.: y 4= y 4= 4= = 5. y = y = y = y = K 5,. Εποµένως οι συντταγµένς του Κ θα ίναι: Η απόσταση του Κ από την αρχή των αξόνων θα δίνται από τον τύπο: ΟK = 5 + = Β (Αναρτήθηκ 8 4 ) ίνονται οι υθίς : y+ 5= : + y 5= α) Να αποδίξτ ότι οι υθίς ίναι κάθτς µταξύ τους. (Μονάδς 9) β) Να βρίτ τις συντταγµένς του σηµίου τοµής Α των υθιών (Μονάδς 9) γ) Να βρίτ την ξίσωση της υθίας που διέρχται από το σηµίο Α και την αρχή Ο των αξόνων. (Μονάδς 7) Λύση α) Οι υθίς έχουν συντλστές διύθυνσης λ Επιδή λ λ = προκύπτι ότι = και λ = αντίστοιχα. β) Για να βρούµ τις συντταγµένς του σηµίου τοµής Α των υθιών θα λύσουµ το σύστηµα των ξισώσων των δυο υθιών. Είναι: y+ 5= = y 5 = y 5 = + y 5= (y 5) + y 5= y = y= Άρα οι υθίς τέµνονται στο σηµίο Α(,) γ) Ο συντλστής διύθυνσης της υθίας ΟΑ ίναι: λ= = πιδή διέρχται από την αρχή Ο των αξόνων η υθία θα ίναι της µορφής: y= λ, ποµένως y= η ζητούµνη ξίσωση. 7

8 8595 Β (Αναρτήθηκ 8 4 ) ίνονται οι υθίς : + y+ = : + y 4= ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 α) Να βρίτ τις συντταγµένς του σηµίου τοµής Α των υθιών (Μονάδς 8) β) Αν η υθία τέµνι τον άξονα y ' y στο σηµίο Β και η υθία τέµνι τον άξονα ' στο σηµίο Γ, τότ: i) να βρίτ τις συντταγµένς των σηµίων Β και Γ. (Μονάδς 8) ii) να αποδίξτ ότι η υθία που διέρχται από τα σηµία Β και Γ έχι ξίσωση την 4y = (Μονάδς 9) α) Για να βρούµ τις συντταγµένς του σηµίου σηµίο τοµής Α, θα λύσουµ το σύστηµα των ξισώσων των υθιών Έχουµ λοιπόν, y 6 y 6 ( + ) + = = 5= = = + y= 4 + y= 4 + y= 4 y= ( ) + 4 y= Α, Άρα το σηµίο τοµής ίναι το β) i) Αφού η υθία και θα παληθύι την ξίσωση της. ηλαδή yβ yβ τέµνι τον άξονα y' y στο σηµίο Β, τότ αυτό θα έχι συντταγµένς Β(, y ) + + = =, ποµένως Β(, ) Οµοίως αφού η υθία τέµνι τον άξονα ' στο σηµίο Γ, τότ αυτό θα έχι συντταγµένς Γ( Γ, ) και θα παληθύι την ξίσωση της. ηλαδή Β+ 4= Β 4= Β = 4, άρα Γ( 4, ) ii) Βρίσκουµ αρχικά τον συντλστή διύθυνσης της υθίας ΒΓ, αυτός θα ίναι yγ y Β ( ) λ= = =. Γ Β 4 4 Εποµένως η ξίσωση ΒΓ θα ίναι: y ( ) = ( ) 4y+ = 4y = 4 86 Β (Αναρτήθηκ 8 4 ) Θωρούµ την υθία που τέµνι τους άξονς ' και y ' y στα σηµία Α(,) και Β(,6) αντίστοιχα. α) Να βρίτ την ξίσωση της υθίας (Μονάδς 8) β) Αν ίναι η υθία που διέρχται από την αρχή των αξόνων ίναι κάθτη στην, τότ να βρίτ: i) την ξίσωση της υθίας (Μονάδς 9) ii) τις συντταγµένς του σηµίου τοµής των υθιών (Μονάδς 8) Β 8

9 4 5 α) Ο συντλστής διύθυνσης της υθίας που διέρχται από τα σηµία Α και Β θα ίναι: yβ yα 6 6 λ = = = =. Β Α Εποµένως η ξίσωση της ίναι: : y = y= y 6= β) i) Η διέρχται από την αρχή των αξόνων ποµένως θα έχι ξίσωση της µορφής: y= λ Έχουµ: λ λ = λ = αφούλ = Εποµένως η υθία έχι ξίσωση: : y= λ y= y= y= ii) Έστω K( K, y K) το σηµίο τοµής των. Για να βρούµ το σηµίο τοµής Καρκί να λύσουµ το σύστηµα των ξισώσων. Έχουµ λοιπόν, y 6 4 y + = = + = + = 5= 5 5 y= y= y= 6 y= y= Άρα το σηµίο τοµής Κ έχι συντταγµένς K, Β (Αναρτήθηκ 8 4 ) Έστω Μ(,5) το µέσο υθυγράµµου τµήµατος ΑΒ µ Α(,). α) Να βρίτ: i) τις συντταγµένς του σηµίου Β. (Μονάδς 6) ii) την ξίσωση της υθίας που διέρχται από τα σηµία Α και Β. (Μονάδς 7) β) Να βρίτ τις συντταγµένς σηµίου Κ του άξονα ' έτσι, ώστ να ισχύι (ΚΑ) = (ΚΒ). (Μονάδς ) α) i) Έχουµ Μ µέσο ΑΒ ποµένως θα ισχύι: Α+ Β + Β Μ = = + Β = 6 Β = 5 και yα+ yβ + yβ yμ = 5= + yβ = yβ = 9 B 5,9 Εποµένως το σηµίο B ίναι το ii) Ο συντλστής διύθυνσης της υθίας που διέρχται από τα σηµία Α και Β ίναι: yβ yα 9 8 λab = = = λab =. 5 4 Β Α 9

10 4 5 H ζητούµνη υθία διέρχται από το σηµίο Α(, ) και έχι συντλστή διύθυνσης λ=. Εποµένως έχι ξίσωση, AB : y = ( ) y = y = β) Έχουµ Κ σηµίο του, άρα θα έχι συντταγµένς Κ( Κ,) Ξέρουµ ότι: ( ΚΑ) ( ΚΒ) ( ) ( y y ) ( ) ( y y ) Εποµένως έχουµ Κ(, ). = + = + Α Κ Α Κ Β Κ Β Κ ( ) ( ) ( 5 ) ( 9 ) Κ Κ Κ + = = Κ Κ Κ Κ + = 6 8 = 4 = Κ Κ 86 Β (Αναρτήθηκ 8 4 ) ίνται η υθία (): y+= και το σηµίο Α(,-4). α) Να βρίτ την ξίσωση της υθίας που διέρχται από το Α ίναι κάθτη στην (). (Μονάδς ) β) Να βρίτ την προβολή του σηµίου Α πάνω στην υθία (). (Μονάδς 5) α) Ψάχνουµ ξίσωση υθίας (η) της µορφής : y y = λ ( ),όπου: (, y ) = (, 4) Κ () (η) λ λη = λη = αφούλ = (() : y= + ) Άρα: y ( 4) = ( ) y+ 4= y 6= β) Η προβολή του Α στην υθία () ίναι το σηµίο τοµής των (), (η). Λύνουµ το σύστηµα των δυο ξισώσων και έχουµ: y + = = + = = 7 = y= 6 y= y= 6 y= 6 y= 7 5 Άρα η προβολή του Α πάνω στην () ίναι το σηµίο M,

11 (Αναρτήθηκ 8 4 ) ίνται η ξίσωση: + y+ y 6 6y+ 8= α) Να αποδίξτ ότι η ξίσωση παριστάνι γωµτρικά δύο υθίς γραµµές οι οποίς ίναι παράλληλς µταξύ τους. (Μονάδς 7) β) Αν : + y = και : + y 4=, να βρίτ την ξίσωση της µσοπαράλληλης των (Μονάδς 8) γ) Αν Α ίναι σηµίο της υθίας µ τταγµένη το και Β σηµίο της υθίας µ ττµηµένη το, τότ: i) να βρίτ τις συντταγµένς των σηµίων A και Β (Μονάδς ) ii) να βρίτ τις συντταγµένς δύο σηµίων Γ και της υθίας έτσι, ώστ το ττράπλυρο ΑΓΒ να ίναι ττράγωνο. (Μονάδς 8) α) Θωρούµ το πρώτο µέλος της () τριώνυµο µ µταβλητή το y: y + 6 y+ 6+ 8= Η διακρίνουσα του τριωνύµου ίναι: = = = 4> Άρα, η ξίσωση θα έχι δύο ρίζς πραγµατικές και άνισς: β± 6 ± 4 6 ± y, = = = α + 6+ y = y = y y = + = Συνπώς, η () παριστάνι δύο υθίς µ ξισώσις : + y = : + y 4= οι οποίς ίναι παράλληλς, αφού έχουν ίδιο συντλστή διύθυνσης. β) Έστω σηµίο M(, y ) της µσοπαράλληλης () των ( ), ( ), τότ θα ισχύι: d( M, ) = d( M, ) + y + y 4 = y = + y 4 + y = + y 4 ή + y = + y 4 = 4 αδύνατη ή + y = y+ 4 + y 6= + y =

12 γ) i) Έστω A( A,) το σηµίο πάνω στην, άρα την παληθύι: : + = = άρα, Α(,). A Έστω B(, yb) το σηµίο πάνω στην, άρα την παληθύι: : + y 4= y = άρα, Β(,) B ii) Έστω (κ, λ) σηµίο της υθίας (), τότ θα ισχύι: κ+ λ = κ= λ Το ΑΒΓ ίναι ττράγωνο αν και µόνο αν ίναι ορθογώνιο και ρόµβος. Για να ίναι ορθογώνιο θα πρέπι να ισχύι: Α Β κ,λ κ, λ = A B ( + ) ( ) = κ, κ κ,κ κ κ + κ κ+ = κ κ κ + κ= κ κ = Οπότ, Για κ= ίναι λ=-+= Για κ= ίναι λ=-+= κ κ = κ κ = κ= ή κ= ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Άρα, (, ) ή (, ). Αν (, ), τότ Γ(, ) και αντίστροφα. Επιπλέον, ΑΒ = (ΒΓ) = (Γ ) = ( Α) =, άρα το Α ΒΓ ίναι και ρόµβος και τλικά ίναι ττράγωνο.

13 (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(λ+,λ-), Β(, ) και Γ(4,6), λ R. α) Να βρίτ την µσοκάθτο του τµήµατος ΒΓ. (Μονάδς 7) β) Αν το σηµίο Α ισαπέχι από τα σηµία Β και Γ, να βρίτ την τιµή του λ. (Μονάδς 8) γ) Για λ=4,να βρίτ σηµίο ώστ το ττράπλυρο ΑΒ Γ να ίναι ρόµβος. (Μονάδς ) α) Έστω Μ το µέσο του ΒΓ. Οι συντταγµένς τότ του Μ θα ίναι: Μ, = (,4) Ο συντλστής διύθυνσης της υθίας ΒΓ ίναι, 6 4 λβγ = = =, 4 Ψάχνουµ ξίσωση υθίας : ΒΓ λ λβγ = λ = Η ξίσωση της µσοκαθέτου του υθύγραµµου τµήµατος ΒΓ ίναι, y 4= ( ) y 8= + + y = β) Έχουµ ότι το Α ισαπέχι από τα σηµία Β, Γ, ποµένως θα πρέπι να ανήκι στην µσοκάθτο του ΒΓ, οπότ οι συντταγµένς του θα παληθύουν την ξίσωση της: + y =, δηλαδή λ+ + ( λ ) = λ = λ= 4, άρα Α( 5, ) γ) Έστω (, y ) οι συντταγµένς του σηµίου, τότ το σηµίο Μ θα ίναι και µέσο του Α, ποµένως θα ισχύι: + 5+ και Άρα,5 ya+ y + y ym = 4= 8= + y y = 5 A M = = =

14 86 (Αναρτήθηκ 8 4 ) : κ κ y κ ίνονται οι υθίς ( + ) + = και ζ : + κ + κ y+ 6κ = ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 α) Να ξτάστ αν υπάρχι τιµή του κ, ώστ οι υθίς να ίναι παράλληλς. (Μονάδς ) β) Να βρίτ την αµβλία γωνία που σχηµατίζουν οι υθίς () και (ζ ). (Μονάδς 5) α) Για να ίναι παράλληλς οι δυο υθίς θα πρέπι να έχουν τον ίδιο συντλστή διύθυνσης (αν ορίζονται) ή να ίναι παράλληλς στον άξονα y y (αν δν ορίζονται ). Για κ έχουµ: λ Α κ κ = = = Β + κ κ+ Α + κ + κ Για κ έχουµ: λζ = = = Β κ κ Για κ και κ για να ίναι παράλληλς οι δυο υθίς θα πρέπι: κ + κ λ = λζ = κ ( κ) = ( κ+ ) ( + κ) κ κ = κ+ κ + + κ 5κ + κ+ = κ+ κ 4 6 κ, ζ = = < άρα για κάθ R { } ίναι ( ) / / = έχουµ ( ) : y = y = και Γιακ ζ : 4 4 = = άρα ( ) / / ( ζ ) Αν κ= τότ ( ) : + 4= = και ( ζ ) : y+ 8= + y 4= άρα ( ) / / ( ζ ) Εποµένως για κάθ κ Rέχουµ ( ) / / ( ζ ) β) Θωρούµ τα διανύσµατα: δ = ( + κ, κ) και δ = ( κ,+ κ) ώστ δ / /( ) Αρκί λοιπόν να υπολογίσουµ τη γωνία των δυο διανυσµάτων δ και δ δ δ ( + κ)( κ) + κ( + κ) συν( δ,δ) = = = δ δ + κ + κ κ + + κ κ + κ+ 6κ = = + κ+ κ + 4κ κ+ κ + + 6κ+ 9κ 5κ κ + + = = 5κ + κ+ κ + 4κ+ 5κ κ = + + = 5κ + κ+ 5κ + κ+ 5κ κ 5κ κ = = 5κ + κ+ ( 5κ + κ+ ) = ο Άρα η αµβλία γωνία των δυο διανυσµάτων άρα και των δυο υθιών θα ίναι 5 (δώ βρήκαµ την οξία γωνία τους δ,δ = 45 ) ο ( ) και δ / /( ζ) 4

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά

Διαβάστε περισσότερα

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου) Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα

Διαβάστε περισσότερα

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β 1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι

Διαβάστε περισσότερα

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ 1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11 ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (8//04) Θέματα ης Ομάδας ο ΘΕΜΑ Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP 8556

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α. Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΑΞΟΝΑ

ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΑΞΟΝΑ 1 1-2 ΣΥΜΜΕΤΡΙ ΩΣ ΠΡΣ ΞΝ ΞΝΣ ΣΥΜΜΕΤΡΙΣ ΘΕΩΡΙ Συµµτρικό σηµίου ως προς υθία Όταν το ν βρίσκται πάνω στην νοµάζουµ συµµτρικό του ως προς την υθία το σηµίο µ το οποίο συµπίπτι το όταν ιπλώσουµ το σχήµα κατά

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ 1.1.. ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΕΜΑ ΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1. Εξίσωση γραµµής C Μια εξίσωση µε δύο αγνώστους x, y λέγεται εξίσωση µιας γραµµής C, όταν οι συντεταγµένες των σηµείων της C, και µόνον αυτές, την επαληθεύουν..

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1)

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1) ΚΕΦ 2 ο : H υθία στο πίπδο ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1) Εξίσση γραµµής C του πιπέδου: Είναι µια ξίσση µ δύο αγνώστους x, που έχι τις ιδιότητς i) Oι συντταγµένς κάθ σηµίου της γραµµής C παληθύουν την ξίσση και

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

(Έκδοση: 06 12 2014)

(Έκδοση: 06 12 2014) (Έκδοση: 06 04) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr η έκδοση: 06 04 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ Πριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ A. ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ Γραμμική ξίσωση μ δύο αγνώστους ονομάζται κάθ ξίσωση της μορφής: α + βψ = γ (), μ α,β,γ π.χ. ψ =, =, ψ =, κλπ.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κυριακή 6 Απριλίου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σχολικού βιβλίου, σελίδα.

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7) ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το

Διαβάστε περισσότερα

(Έκδοση: )

(Έκδοση: ) (Έκδοση: 0 03 05) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 4η έκδοση: 0 03 05 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου 3. Ο ΚΥΚΛΟΣ ΘΕΩΡΙΑ. Εξίσωση κύκλου (Ο, ρ) + y ρ. Παραµετρικές εξισώσεις κύκλου ρσυνφ και y ρηµφ 3. Εφαπτοµένη κύκλου + yy ρ 4. Εξίσωση κύκλου µε κέντρο το σηµείο Κ( o, y ο ) και ακτίνα ρ ( o ) + (y y ο

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ . ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣ ΘΕΩΡΙΑ. Ορισµός Γινόµενο πραγµατικού αριθµού λ µε διάνυσµα α 0 λέγεται νέο διάνυσµα λα, που έχει µέτρο λα = λ α και είναι οµόρροπο του α όταν λ > 0 αντίρροπο του α όταν

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΘΕΩΡΙ ΜΕΡΣ ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ. Ποια η έννοια του σημίου,του υθυγράμμου τμήματος, τι ονομάζουμ άκρα του τμήματος,τι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

3.3 Η ΕΛΛΕΙΨΗ. 2. Άµεση συνέπεια (ΜΕ ) + (ΜΕ) = 2α Ο γ.τ του σηµείου Μ είναι έλλειψη µε εστίες Ε και Ε. Περιορισµός : Αν ( ΕΕ ) = 2γ, πρέπει γ < α

3.3 Η ΕΛΛΕΙΨΗ. 2. Άµεση συνέπεια (ΜΕ ) + (ΜΕ) = 2α Ο γ.τ του σηµείου Μ είναι έλλειψη µε εστίες Ε και Ε. Περιορισµός : Αν ( ΕΕ ) = 2γ, πρέπει γ < α 3.3 Η ΕΛΛΕΙΨΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµ έλλιψη µ στίς τ σηµί Ε ι Ε, το γωµτριό τόπο των σηµίων του πιπέδου των οποίων το άθροισµ των ποστάσων πό τ Ε ι Ε ίνι στθρό ι µγλύτρο του Ε Ε.. Άµση συνέπι (ΜΕ )

Διαβάστε περισσότερα

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης 6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σχδίαση μ τη χρήση Η/Υ ΚΕΦΛΙ 2 ΓΕΩΜΕΤΡΙΚΕΣ ΚΤΣΚΕΥΕΣ ΔΡ ΛΕΩΝΙΔΣ ΝΘΠΥΛΣ, ΕΠΙΚΥΡΣ ΚΘΗΓΗΤΗΣ ΤΜΗΜ ΔΙΙΚΗΣΗΣ ΚΙ ΔΙΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΡΙΣΣ Θέμα 16 ο : αρμονική σωτρική ρική διαίρση υθύγραμμου τμήματος σ λόγο

Διαβάστε περισσότερα

5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) :

5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) : 5.6 5.9 σκήσεις σχολικού βιβλίου σελίδας 0 ρωτήσεις Κατανόησης. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ (α ) ( β ) A x x, 5 ( γ) ψ x +, 5 x, 5 ε ε ε ε 4 δ δ ε ε B ε ε 4 (δ ) ψ ψ x 60 o 4 (ε) B 5

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ

Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 5.0 5. σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης σελίδας 4. Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 3 3 (α) x 0 ψ 4 (β) x ψ 7 (γ) x (δ) θ x+ 3x ω 0 ο πάντηση + 0 Στο σχήµα (α) το

Διαβάστε περισσότερα

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ)

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΥΘΕΙΑ Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) 1. Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία με τον

Διαβάστε περισσότερα

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1.

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1. Ασκήσεις στην ευθεία 1. Να βρείτε τα σηµεία τοµής των γραµµών µε εξισώσεις : α) 7x-11y+1=0, x+y-=0 β) y-3x-=0, x +y =4 γ) x +y =α, 3x+y+α=0. Θεωρούµε την γραµµή µε εξίσωση x +y -x+y-5=0. Βρείτε τα σηµεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

Γεωµετρία Γενικής Παιδείας Β Λυκείου 2001

Γεωµετρία Γενικής Παιδείας Β Λυκείου 2001 Γεωµετρία Γενικής Παιδείας Β Λυκείου ΚΦΩΝΗΣΙΣ Ζήτηµα ο Α. Να αποδείξετε ότι, σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσά του, ισούται µε το γινόµενο των προβολών

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / 010-11 ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές αικονίσις, Ααγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 Έστω η γραμμική αικόνιση T : μ T ( 1,1) = (, 0) και ( 0,1) ( 1,1) T = (α) Βρίτ τον ίνακα της

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ο α. I. Σχολικό βιβλίο σελ. 41. ΙΙ. Σχολικό βιβλίο σελ. 89. β. Σχολικό βιβλίο σελ. 71. γ. Σχολικό βιβλίο σελ.60. δ. Σ, Λ,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία.

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία. Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Σε όλα τα παρακάτω αντικείµενα σχηµατίζονται διάφορες γωνίες ανάλογα µε τη σχετική θέση, κάθε φορά, δύο ηµιευθειών που έχουν ένα κοινό ση- µείο, όπως π.χ. είναι οι δείκτες του ρολογιού,

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΟΤΗΤΑ. ε = = Η ελαστικότητα ζήτησης

ΕΛΑΣΤΙΚΟΤΗΤΑ. ε = = Η ελαστικότητα ζήτησης 1 ΕΛΑΣΤΙΚΟΤΗΤΑ Οι οικονοµολόγοι νδιαφέρονται να µτρσουν ορισµένς µταβλητές για να µπορέσουν να κάνουν προβλέψις και για να κτιµσουν µ σχτικ ακρίβια τι αποτέλσµα θα έχι η µταβολ µιας µταβλητς πί µιας άλλης.

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι

Διαβάστε περισσότερα

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ . Η ΕΝΝΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ. Εξίσωση πρώτου βαθµού µε αγνώστους και νοµάζεται κάθε εξίσωση της µορφής α + β = γ. Άγνωστοι είναι το και το. Τα α, β και γ λέγοντα συντελεστές. Ειδικότερα το γ

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση: Να δίνει τον ορισμό του διανύσματος και των εννοιών που είναι κλειδιά όπως: κατεύθυνση φορά ή διεύθυνση, μηδενικό διάνυσμα,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0 ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 05 Γιάννης Ζαµέλης Μαθηµατικός 855 B (Αναρτήθηκε 08 4 ) ίνονται τα διανύσµατα ακαι µε ( α, ) = και α =, = α) Να ρείτε το εσωτερικό γινόµενο α (Μονάδες 8)

Διαβάστε περισσότερα

Απέναντι πλευρές παράλληλες

Απέναντι πλευρές παράλληλες 5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΩΡΙΑ. Γραµµική εξίσωση µε δύο αγνώστους, y Λέγεται κάθε εξίσωση της µορφής α + βy = γ, µε α 0 ή β 0. Γραφική παράσταση γραµµικής εξίσωσης Κάθε γραµµική εξίσωση α + βy = γ παριστάνει

Διαβάστε περισσότερα

10.5. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. ΑΒΓ =λ. ύο τρίγωνα ΑΒΓ και Α Β Γ έχουν υ β = υ β και =. β ποιος είναι ο λόγος β

10.5. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. ΑΒΓ =λ. ύο τρίγωνα ΑΒΓ και Α Β Γ έχουν υ β = υ β και =. β ποιος είναι ο λόγος β 0.5 σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης. ( ) ύο τρίγωνα και έχουν υ β = υ β και =. ( ) β ποιος είναι ο λόγος β : : : 9 : 4 5 4 4 9 Κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_ΜλΘΤ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001 Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 00 Ζήτηµα ο Α.. Έστω α, β, γ ακέραιοι αριθµοί. Να δείξετε ότι ισχύουν οι επόµενες ιδιότητες: α. Αν α β, τότε α λβ για κάθε ακέραιο λ. β. Αν α β και α

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕ Ο

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕ Ο . ΣΥΝΤΕΤΑΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕ Ο ΘΕΩΡΙΑ. Άξονας (Ο, i ) λέγεται κάθε ευθεία εφοδιασµένη µε αρχή Ο και µοναδιαίο διάνυσµα i.. Τετµηµένη σηµείου Μ που ανήκει σε άξονα (Ο, i ) λέγεται ο αριθµός, για τον οποίο ισχύει

Διαβάστε περισσότερα

15 ΑΣΚΗΣΕΙΣ ΣΤΑ ΑΞΙΟΣΗΜΕΙΩΤΑ ΣΗΜΕΙΑ ΤΡΙΓΩΝΟΥ

15 ΑΣΚΗΣΕΙΣ ΣΤΑ ΑΞΙΟΣΗΜΕΙΩΤΑ ΣΗΜΕΙΑ ΤΡΙΓΩΝΟΥ εωμετρία α λυκείου ξιοσημείωτα σημεία τριγώνου 5 ΣΚΗΣΙΣ ΣΤ ΞΙΟΣΗΙΩΤ ΣΗΙ ΤΡΙΩΝΟΥ )ίνεται τρίγωνο µε = 45 και B = 75. ν µέσο της φέρουµε από το κάθετη στη διχοτόµο της γωνίας που τέµνει την στο. Στην παίρνουµε

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον

Ερωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον Ερωτήσεις ανάπτυξης 1. Τα σηµεία και είναι σηµεία του επιπέδου, η είναι ευθεία του. Η τέµνει την Μ στον Μ Ν Ν. Το Ν σαν σηµείο της ανήκει στο, άρα και το Μ σαν σηµείο της Ν ανήκει στο. B. Έστω ε µια ευθεία

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται:

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται: Το διανυσματικό άθροισμα f Μ γράφεται: f Μ = x ΜΑ+ x ΜΑ+ΑΒ + x ΜΑ+ΑΓ = ΜΑ + ΜΑ + ΜΑ + ΑΒ + ΑΓ ( x) ( x) ( x ) ( x) ( x ) = ( x + x + x ) ΜΑ + ( x) ΑΒ + ( x ) ΑΓ = ( x 4x+ ) ΜΑ+ ( x) ΑΒ+ ( x ) Α Γ f Μ είναι

Διαβάστε περισσότερα

ΜΕΓΙΣΤΗ ΚΑΙ ΕΛΑΧΙΣΤΗ ΤΙΜΗ

ΜΕΓΙΣΤΗ ΚΑΙ ΕΛΑΧΙΣΤΗ ΤΙΜΗ ΜΕΓΙΣΤΗ ΚΑΙ ΕΛΑΧΙΣΤΗ ΤΙΜΗ Στην παράγραφο αυτή θα εφαρµόσουµε ιδιότητες των διανυσµάτων, για να βρούµε την µέγιστη και ελάχιστη τιµή παραστάσεων µε µία, δύο και περισσότερες µεταβλητές. Κεντρική ιδέα της

Διαβάστε περισσότερα

Λέγεται κάθε προσανατολισμένη ευθεία x x στην οποία ορίζουμε ως αρχή ένα σημείο. Ο και το μοναδιαίο διάνυσμα i ( i = 1)

Λέγεται κάθε προσανατολισμένη ευθεία x x στην οποία ορίζουμε ως αρχή ένα σημείο. Ο και το μοναδιαίο διάνυσμα i ( i = 1) α.. Άξονας Λέγεται κάθε προσανατολισμένη ευθεία στην οποία ορίζουμε ως αρχή ένα σημείο Ο και το μοναδιαίο διάνυσμα i ( i 1). Ο i I Οι ημιευθείες Ο και O λέγονται αντίστοιχα θετικός ημιάξονας και αρνητικός

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. Υποθέτουµε ότι ο είναι ρητός. ηλαδή, υποθέτουµε p ότι υπάρχουν φυσικοί αριθµοί p και q τέτoιοι ώστε : =, p και q δεν έχουν q κοινούς διαιρέτες. Παρατηρούµε ότι ο άρτιος αριθµός.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΕΞΙΣΩΣΗ ΠΑΡΑΒΟΛΗΣ 8. Να βρεθεί η εξίσωση της παραβολής με κορυφή το (0, 0) στις παρακάτω περιπτώσεις: α) είναι συμμετρική ως προς το θετικό ημιάξονα Οx και έχει παράμετρο p = 5 β)

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

3. Μία τεθλασµένη γραµµή αποτελείται από πέντε διαφορετικά ευθύγραµµα

3. Μία τεθλασµένη γραµµή αποτελείται από πέντε διαφορετικά ευθύγραµµα 1. Να συγκρίνεις το µήκος της γραµµής ΑΒΓ Ε µε το µήκος του ευθύγραµµου τµήµατος ΖΗ, όπως φαίνονται στο διπλανό σχήµα. Μετρώντας µε το υποδεκάµετρο βρίσκουµε ΑΒ = 1,3cm, ΒΓ = 1,3cm, Γ = 1,4cm και Ε = 2,4cm

Διαβάστε περισσότερα

3.5 ΣΧΕΤΙΚΗ ΘΕΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΚΩΝΙΚΗΣ

3.5 ΣΧΕΤΙΚΗ ΘΕΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΚΩΝΙΚΗΣ 1 3.5 ΣΧΕΤΙΚΗ ΘΕΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΚΩΝΙΚΗΣ ΘΕΩΡΙΑ 1. Σχετική θέση ευθείας και κωνικής τοµής Έστω η ευθεία ε : y = λx + β και µία κωνική τοµή C µε εξίσωση την φ(x, y) =. Το πλήθος των κοινών σηµείων της ε και

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα