4 Ομάδες Σημείου. - Ευχέρεια στην εκτέλεση των αντίστοιχων διεργασιών συμμετρίας περιστροφής, στροφοκατοπτρισμού, κατοπτρισμού και αναστροφής.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4 Ομάδες Σημείου. - Ευχέρεια στην εκτέλεση των αντίστοιχων διεργασιών συμμετρίας περιστροφής, στροφοκατοπτρισμού, κατοπτρισμού και αναστροφής."

Transcript

1 4 Ομάδες Σημείου Διδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε: - Να ορίζετε την έννοια της ομάδας σημείου ενός μορίου. - Να διακρίνετε τις βασικές κατηγορίες ομάδων σημείου. - Να διακρίνετε τις βασικές ομάδες σημείου κάθε κατηγορίας. - Να βρίσκετε την ομάδα σημείου ενός μορίου. Προαπαιτούμενες γνώσεις - Κατανόηση και ευχέρεια στον εντοπισμό των στοιχείων συμμετρίας περιστροφής, στροφοκατοπτρισμού, κατοπτρισμού και αναστροφής. - Ευχέρεια στην εκτέλεση των αντίστοιχων διεργασιών συμμετρίας περιστροφής, στροφοκατοπτρισμού, κατοπτρισμού και αναστροφής. - Ευχέρεια στην εύρεση των διεργασιών, οι οποίες προκύπτουν από τους συνδυασμούς και τις δυνάμεις των παραπάνω διεργασιών Εύρεση του Συνόλου των Διεργασιών Συμμετρίας ενός Μορίου Όπως είδαμε στο προηγούμενο κεφάλαιο η περιγραφή της συμμετρίας ενός μορίου στα πλαίσια της μοριακής συμμετρίας συνίσταται στην εύρεση και καταγραφή του συνόλου των στοιχείων και διεργασιών συμμετρίας τα οποία απαντώνται στο μόριο. Το σύνολο αυτό πρέπει να είναι πλήρες, δηλαδή να περιέχει όλες τις απλές διεργασίες συμμετρίας καθώς και αυτές οι οποίες προκύπτουν από τους συνδυασμούς τους ή τις δυνάμεις τους. Η διαδικασία εύρεσης των στοιχείων και των διεργασιών συμμετρίας συνίσταται κατ' αρχή στην κατανόηση της γεωμετρίας του μορίου και στον εντοπισμό ενός όσο το δυνατό μεγαλύτερου αριθμού στοιχείων συμμετρίας. Στη συνέχεια, με βάση τους συνδυασμούς και τις δυνάμεις των διεργασιών τα οποία έχουν εντοπισθεί, προκύπτουν οι υπόλοιπες διεργασίες συμμετρίας και τα αντίστοιχα στοιχεία συμμετρίας. Σχήμα 4.1α Στοιχεία συμμετρίας C, C και σ h στο μόριο PF. Στο Σχήμα 4.1α δίνονται τρία προφανή στοιχεία συμμετρίας του τριγωνικού διπυραμιδικού μορίου PF. Τα στοιχεία αυτά είναι ο άξονας C, ο οποίος ταυτίζεται με την ομάδα F(α)-P-F(β), ο άξονας C, ο 8

2 οποίος ταυτίζεται με την ομάδα P-F(γ), και το επίπεδο σ h, το οποιο ταυτίζεται με το ισημερινό επίπεδο του μορίου PF(γ)F(δ)F(ε). Oι αντίστοιχες διεργασίες είναι οι C, C και σ h. Με βάση αυτές μόνο τις διεργασίες θα δούμε στη συνέχεια ότι προκύπτει το πλήρες σύνολο των στοιχείων και των διεργασιών συμμετρίας του μορίου. Από τις δυνάμεις της διεργασίας C προκύπτουν οι νέες διεργασίες C και Ε = C. Από το συνδυασμό σ h C προκύπτει η διεργασία S = σ h C, ενώ από τις δυνάμεις της διεργασίας S προκύπτει η νέα διεργασία S. Έτσι προκύπτει ένα σύνολο διεργασιών συμμετρίας [Ε, C, C, C, σ h, S, S ]. Oι υπόλοιπες διεργασίες συμμετρίας του μορίου, εάν υπάρχουν, μπορούν να προκύψουν από τους συνδυασμούς των παραπάνω διεργασιών. Παρατηρώντας τους παρακάτω συνδυασμούς των γνωστών μέχρι τώρα διεργασιών προκύπτει ότι κάποιοι συνδυασμοί ισοδυναμούν με μια ήδη γνωστή διεργασία. Κάποιοι άλλοι συνδυασμοί όμως, οι οποίοι επισημαίνονται με το σύμβολο "_", δεν ισοδυναμούν με καμιά από τις ήδη γνωστές διεργασίες και συνεπώς θα ισοδυναμούν με νέες άγνωστες διεργασίες. ΕC = C ΕC = C ΕC = C Εσ h = σ h ΕS = S ΕS = S CΕ = C C Ε = C C C = Ε C C = Ε C C = _ C C =_ C σ h = S C σ h = S C S = S C S = σ h C S = σh C S = S CΕ = C C C = _ C C = _ C σ h = _ C S = _ C S = _ σhε = σ h σ h C = S σ h C = S σ h C = _ σ h S = C σ h S = C SΕ = S S C = S S C = σ h S C = _ S σ h = C S S = Ε S Ε = S S C = σ h S C = S S C = _ S σ h = C S S = Ε Πράγματι, οι συνδυασμοί αυτοί ισοδυναμούν με τις νέες διεργασίας συμμετρίας C ', C, σ v, σ v ' και σ v, οι οποίοι φαίνονται στο Σχήμα 4.1β και προκύπτουν από τους παρακάτω συνδυασμούς. C C = C ' C C = C " σ h C = σ v C S = σ v ' S C = σ v " C C = C ' C C = C " C σ h = σ v S C = σ v ' C S = σ v " Έτσι, στα αρχικά ευρεθέντα στοιχεία συμμετρίας του μορίου προστίθενται οι δύο άξονες C ' και C ", οι οποίοι συμπίπτουν με τους άξονες P-F(δ) και P-F(ε) αντιστοίχως, και τα επίπεδα κατοπτρισμού σ v, σ v ' και σ v ", τα οποία περιέχουν τους άξονες C, C ' και C " και συμπίπτουν με τα επίπεδα PF(α)F(β)F(γ), PF(α)F(β)F(δ) και PF(α)F(β)F(ε) αντιστοίχως. Οι άξονες C και S αποτελούν την τομή των επιπέδων σ v, σ v ' και σ v " και οι άξονες C, C ' και C " την τομή του επιπέδου σ h με καθένα από τα επίπεδα σ v, σ v ' και σ v " αντιστοίχως. Τελικά, το πλήρες σύνολο διεργασιών συμμετρίας του μορίου PF διαμορφώνεται ως: [Ε, C, C, C, C ', C ", σ h, S, S, σ v, σ v ', σ v "]. Σχήμα 4.1β Τα στοιχεία συμμετρίας του μορίου PF. Από τη μελέτη των συνδυασμών των διεργασιών συμμετρίας προκύπτουν οι παρακάτω γενικοί κανόνες με βάση τους οποίους μετά τον εντοπισμό ορισμένων στοιχείων συμμετρίας μπορεί να προβλεφθεί η ύπαρξη νέων. 9

3 1. Ο συνδυασμός δύο διεργασιών περιστροφής ισοδυναμεί πάντα με διεργασία περιστροφής.. Ο συνδυασμός των διεργασιών κατοπτρισμού σε δύο επίπεδα σ και σ', τα οποία σχηματίζουν μεταξύ τους γωνία φ ισοδυναμεί με διεργασία περιστροφής κατά φ, C n (όπου n = π/φ) περί άξονα ο οποίος ταυτίζεται με την τομή των δύο επιπέδων. Αυτό σημαίνει ότι η ύπαρξη των επιπέδων κατοπτρισμού σ και σ' προϋποθέτει την ύπαρξη του άξονα Cn.. Η ύπαρξη άξονα Cn και επιπέδου συμμετρίας σ το οποίο τον περιέχει προϋποθέτει την ύπαρξη n τέτοιων επιπέδων, τα οποία σχηματίζουν μεταξύ τους γωνία φ = π/n και η τομή τους συμπίπτει με τον άξονα. 4. Ο συνδυασμός δύο διεργασιών περιστροφής C και C ', περί δύο άξονες οι οποίοι σχηματίζουν μεταξύ τους γωνία φ ισοδυναμεί με διεργασία περιστροφής περί άξονα, C n κατά φ (όπου n = π/φ). Ο άξονας C n είναι κάθετος στο επίπεδο, το οποίο ορίζουν οι δύο άξονες. Με βάση αυτόν τον κανόνα αποδεικνύεται εύκολα ότι η ύπαρξη άξονα C κάθετου σε άξονα C n προϋποθέτει την ύπαρξη συνολικά n αξόνων C.. Η ύπαρξη άξονα περιστροφής Cn και ενός επιπέδου κατοπτρισμού σ κάθετου σε αυτόν προϋποθέτει την ύπαρξη άξονα στροφοκατοπτρισμού S n. 6. Η ύπαρξη διεργασίας περιστροφής Cn n με άρτια τάξη και ενός κατοπτρισμού σ σε επίπεδο κάθετο στον άξονα προϋποθέτει την ύπαρξη κέντρου συμμετρίας i, αφού C n n σ = σc n n = σc = S = i. Ιδιαίτερο ενδιαφέρον έχει η εφαρμογή των κανόνων αυτών στο παραπάνω παράδειγμα του μορίου PF και μάλιστα στην περίπτωση όπου έχουν εντοπιστεί μόνο τα στοιχεία συμμετρίας [C, C, σ h ]. Κατ' αρχήν η ύπαρξη των C και σ h οδηγεί στον εντοπισμό του S (κανόνας ). Η ύπαρξη των C και C προϋποθέτει την ύπαρξη τριών αξόνων δεύτερης τάξης C, C ' και C ", οι οποίοι σχηματίζουν μεταξύ τους γωνία 10 (κανόνας 4). Έτσι προκύπτει εύκολα το σύνολο [Ε, C, C, C ', C ", σ h, S ]. Στη συνέχεια από τους συνδυασμούς των διεργασιών αυτών προκύπτουν οι διεργασίες κατοπτρισμού, οι οποίες αντιστοιχούν στα στοιχεία συμμετρίας σ v, σ v ', σ v ". Στις επόμενες ενότητες θα δούμε ότι η εύρεση όλων των στοιχείων και διεργασιών συμμετρίας ενός μορίου θα απλοποιηθεί ακόμη περισσότερο. 4.. Ορισμός των Ομάδων Σημείου Το πλήρες σύνολο των διεργασιών συμμετρίας ενός μορίου περιγράφει επακριβώς τη συμμετρία ενός μορίου και καλείται ομάδα συμμετρίας ή ομάδα σημείου. Ο όρος «σημείο» χρησιμοποιείται γιατί, όπως είναι προφανές από τα παραπάνω παραδείγματα, όλα τα στοιχεία συμμετρίας ενός μορίου διέρχονται από ένα κοινό σημείο, το οποίο αποτελεί και το κέντρο μάζας του μορίου. Το σημείο αυτό μπορεί να συμπίπτει ή όχι με τη θέση ενός ατόμου του μορίου και παραμένει ανεπηρέαστο κατά την εφαρμογή οποιασδήποτε διεργασίας συμμετρίας στο μόριο. Ο κανόνας αυτός δεν ισχύει στην περίπτωση μη κεντροσυμετρικών μορίων, όπου τα στοιχεία συμμετρίας τους μπορεί να τέμνονται σε μία γραμμή. Ο όρος «ομάδα» χρησιμοποιείται διότι, όπως θα δειχθεί στη συνέχεια, το σύνολο αυτό των διεργασιών αποτελεί μια μαθηματική ομάδα. Η έννοια των όρων «ομάδα» και «σημείο» καθώς και η στενή σχέση της μοριακής συμμετρίας με τη μαθηματική θεωρία των ομάδων θα διευκρινισθεί στο επόμενο κεφάλαιο. Κάθε δυνατή ομάδα σημείου συνίσταται σε μια σειρά από συγκεκριμένες γενεσιουργές και παράγωγες διεργασίες συμμετρίας. Σε κάθε ομάδα σημείου ανήκουν πολλά και διαφορετικά μόρια και έτσι τα μόρια ταξινομούνται με βάση την ομάδα σημείου στην οποίαν ανήκουν. Η ταξινόμηση αυτή έχει εξαιρετική σημασία καθώς, όπως θα δούμε στη συνέχεια, μας επιτρέπει να μελετήσουμε πολλές από τις ιδιότητές των μορίων τα οποία ανήκουν σε μια ομάδα σημείου με μια ενιαία μεθοδολογία. 4.. Περιγραφή των Ομάδων Σημείου Οι ομάδες σημείου ταξινομούνται σε τέσσερις κατηγορίες, τις μη περιστροφικές ομάδες, τις περιστροφικές ομάδες μοναδικού άξονα, τις διεδρικές και τις κυβικές ομάδες. Σε αυτές προστίθεται η σφαιρική ομάδα, η οποία αποτελεί μια ιδιαίτερη περίπτωση. Σε κάθε κατηγορία εντάσσεται μια σειρά από οικογένειες ομάδων σημείου, οι οποίες έχουν ως μέλη μια σειρά από συγκεκριμένες ομάδες σημείου. Για παράδειγμα στην κατηγορία περιστροφικών ομάδων μοναδικού άξονα εντάσσεται η οικογένεια ομάδων σημείου C nv, η οποία 40

4 έχει ως μέλη τις ομάδες σημείου C v, C v, C 4v, C v και C 6v. Οι κατηγορίες ομάδων σημείου, οι οικογένειες και τα μέλη τους δίνονται στον Πίνακα 4.α. Ο συμβολισμός των ομάδων σημείου στη μοριακή συμμετρία είναι αυτός του Schoenflies, σύμφωνα με τον οποίον το σύμβολο κάθε ομάδας είναι δηλωτικό των στοιχείων και διεργασιών συμμετρίας τα οποία περιέχει. Στα σύμβολα των ομάδων μοναδικού άξονα και των διεδρικών ομάδων ο δείκτης "n" συμβολίζει την τάξη του κύριου άξονα της ομάδας και λαμβάνει τιμές n =,,...,. Για να μη συγχέονται οι συμβολισμοί των ομάδων σημείου με εκείνους των διεργασιών συμμετρίας, στα σύμβολα των ομάδων σημείου θα χρησιμοποιούνται έντονοι και πλάγιοι χαρακτήρεςτόσο για το σύμβολο όσο και για τους δείκτες (π.χ. C v ), σε αντίθεση με τα σύμβολα των διεργασιών συμμετρίας όπου χρησιμοποιούνται έντονοι και πλάγιοι χαρακτήρες μόνο για το σύμβολο της διεργασίας και κανονικοί χαρακτήρες για τους δείκτες (π.χ. C, σ v ). Υπενθυμίζεται ότι για τα στοιχεία συμμετρίας χρησιμοποιούνται πλάγιοι χαρακτήρες για το στοιχείο, X και κανονικοί χαρακτήρες για τους δείκτες (π.χ. C, σ v ). Πίνακας 4.α Κατηγορίες ομάδων σημείου. Συμβολισμός Διεργασίες συμμετρίας Μέλη Μη περιστροφικές ομάδες Ε C1 C1 Ε, σh Cs Cs Ε, i Ci Ci Περιστροφικές ομάδες μοναδικού άξονα n-1 Cn Ε, Cn,..., C n C C C 4 C C 6 C 7 C Cnv Ε, Cn,..., C n-1 n, nσv,d Cv C v C 4v Cv C6v Cnh Ε, Cn,..., C n-1 n, nσh Ch C h C 4h C h C6h n-1 Sn Ε, Sn,..., S n S4 S 6 S8 C v Ε, C, σv C v Διεδρικές ομάδες Dn Ε, Cn,..., C n-1 n, nc (C C n ) D D D 4 D D6 Dnd Ε, Cn,..., C n-1 n, nc, nσ d (C C n ) Dd D d D 4d D d D6d Dnh Ε, Cn,..., C n-1 Dh D n, nc, nσ v,d, σ h (C C n ) h D 4h D h D 6h D8h D h Ε, C, S, C, σ h, σ v, i (C C ) D h Κυβικές ομάδες T Ε, 4C, 4C, C T Td Ε, 8C, C, 6S 4, 6σd Td Th Ε, 4C, 4C, C, i, 4S 6, 4S 6, σh Th O Ε, 8C, C, 6C 4, 6C (C =C 4 ) O Oh Ε, 8C, 6C, 6C 4, C, i, 6S 4, 8S 6, σ h, 6σ d (C =C 4 ) Oh I Ε, 1C, 1C, 0C, 1C I Ε, 1C I, 1C, 0C, 1C, i, 1S 10, 1S 10, 0S 6, h I h 1σ Σφαιρική ομάδα Κ h Ε, C, S, i Κh 8 Στη συνέχεια θα παρουσιαστούν όλες οι οικογένειες ομάδων σημείου οι οποίες απαντώνται στη μοριακή συμμετρία ανά κατηγορία. Για κάθε οικογένεια δίνονται οι ομάδες σημείου μέλη της και μια σειρά από αντιπροσωπευτικά μόρια τα οποία ανήκουν σε αυτές. Για κάθε ομάδα σημείου μέλος μιας οικογένειας περιγράφονται οι γενεσιουργές και παράγωγες διεργασίες συμμετρίας και παρατίθενται όλες οι διεργασίες συμμετρίας της. 41

5 4..1. Μη περιστροφικές ομάδες σημείου: C 1, C s, C i Οι μη περιστροφικές ομάδες χαρακτηρίζονται από την απουσία αξόνων περιστροφής. Τα μόρια τα οποία ανήκουν σε αυτές είναι μόρια χαμηλής συμμετρίας. Οι τρεις ομάδες σημείου της κατηγορίας αναλύονται στη συνέχεια. Ομάδα σημείου C 1. Διεργασίες συμμετρίας: Ε Η ομάδα σημείου C 1 δεν έχει κανένα στοιχείο συμμετρίας εκτός της ταυτότητας, Ε. Τα μόρια τα οποία ανήκουν σ' αυτήν καλούνται ασύμμετρα μόρια. Μερικά τέτοια μόρια δίνονται στο Σχήμα 4..1α. Μεταξύ αυτών, κλασικά παραδείγματα αποτελούν οργανικές ενώσεις οι οποίες περιέχουν έναν τετραεδρικό άνθρακα με τέσσερεις διαφορετικούς υποκαταστάτες, όπως το φθοροχλωροβρωμομεθάνιο. Σχήμα 4..1α Μόρια τα οποία ανήκουν στην ομάδα σημείου C 1. Ομάδα σημείου C s. Διεργασίες συμμετρίας: Ε, σ h Στην ομάδα σημείου C s ανήκουν αμφίπλευρα αντικείμενα και μόρια τα οποία έχουν, εκτός της ταυτότητας, Ε, ένα επίπεδο κατοπτρισμού, σ h και κανένα άλλο στοιχείο συμμετρίας. Το επίπεδο αυτό διχοτομεί τα τρισδιάστατα μόρια, ενώ στα επίπεδα ταυτίζεται με το επίπεδο του μορίου. Μερικά παραδείγματα τέτοιων μορίων δίνονται στο Σχήμα 4..1β. Σχήμα 4..1β Μόρια τα οποία ανήκουν στην ομάδα σημείου C s. Ομάδα σημείου C i. Διεργασίες συμμετρίας: Ε, i Τα αντικείμενα και τα μόρια τα οποία ανήκουν στην ομάδα σημείου C i, εκτός από την ταυτότητα, Ε, έχουν κέντρο αναστροφής, i και κανένα άλλο στοιχείο συμμετρίας. Στην ομάδα C i κατατάσσεται πολύ μικρός αριθμός μορίων, διότι τα περισσότερα κεντροσυμμετρικά μόρια έχουν συνήθως περισσότερα από τα δύο παραπάνω στοιχεία συμμετρίας και συνεπώς υψηλότερη συμμετρία. Μερικά παραδείγματα τέτοιων μορίων δίνονται στο Σχήμα 4..1γ. 4

6 Σχήμα 4..1γ Μόρια τα οποία ανήκουν στην ομάδα σημείου C i. Τέλος, στη Διαδραστική εφαρμογή 4..1α δίνονται μερικά παραδείγματα μορίων τα οποία ανήκουν σε μη περιστροφικές ομάδες σημείου Περιστροφικές ομάδες μοναδικού άξονα: C n, C nv, C nh, S n, C v Κοινό χαρακτηριστικό αυτής της κατηγορίας ομάδων σημείου είναι η ύπαρξη ενός μοναδικού άξονα περιστροφής C n ή στροφοκατοπτρισμού S n. Οι οικογένειες των ομάδων σημείου της κατηγορίας αυτής αναλύονται στη συνέχεια. Ομάδες σημείου C n. Διεργασίες συμμετρίας: Ε, C n,..., C n n-1 Οι ομάδες σημείου C n περιέχουν ως γενεσιουργό διεργασία την κατάλληλη περιστροφή, C n (n > 1). Επίσης περιέχουν την ταυτότητα, Ε, καθώς και όλες τις παράγωγες διεργασίες περιστροφής, οι οποίες προκύπτουν από τις δυνάμεις της διεργασίας C n m. Οι διεργασίες συμμετρίας των ομάδων σημείου μελών της οικογένειας δίνονται στον Πίνακας 4..α. Πίνακας 4..α Διεργασίες συμμετρίας των ομάδων σημείου C n. Οικογένεια ομάδων Cn Γενεσιουργός διεργασία Παράγωγες διεργασίες Μέλη C C C 4 C C6 C7 C8 C C C4 C C6 C 7 C8 Ε Ε Ε Ε Ε Ε Ε C C (C 4 ) C C (C 6 ) C7 C4 (C 8 ) C 4 C C (C 6 ) C7 C8 4 C C 4 4 (C 6 ) C7 C (C 4 8 ) C 6 C7 C8 6 C 7 C4 (C 6 8 ) C 8 7 Τα μόρια τα οποία ανήκουν στις ομάδες C, C, C 4 και C 6 είναι ελάχιστα, ενώ δεν υπάρχουν μόρια τα οποία ανήκουν στις ομάδες C 4, C 7 και C 8. Μερικά παραδείγματα δίνονται στο Σχήμα 4..α. 4

7 Σχήμα 4..α Μόρια τα οποία ανήκουν στις ομάδες σημείου C n. Ομάδες σημείου C nv. Διεργασίες συμμετρίας: Ε, C n,..., C n n-1, nσ v,d Οι ομάδες σημείου C nv περιέχουν ως γενεσιουργές διεργασίες την κατάλληλη περιστροφή, C n (n > 1), και n διεργασίες κατοπτρισμού σ v ή σ d. Για την ακρίβεια η γενεσιουργός διεργασία κατοπτρισμού είναι μία, ενώ οι υπόλοιπες n-1 προκύπτουν από τον συνδυασμό των διεργασιών C m n σ v. Οι υπόλοιπες διεργασίες συμμετρίας των ομάδων αυτών είναι η ταυτότητα, Ε, και όλες οι παράγωγες διεργασίες περιστροφής οι οποίες προκύπτουν από τις δυνάμεις C m n. Τα επίπεδα σ v ή σ d σχηματίζουν διαδοχικά μεταξύ τους γωνία π/n και η τομή τους συμπίπτει με τον άξονα C n. Οι διεργασίες συμμετρίας των ομάδων σημείου μελών της οικογένειας δίνονται στον Πίνακα 4..β. Πίνακας 4..β Διεργασίες συμμετρίας των ομάδων σημείου C nv. Οικογένεια ομάδων C Γενεσιουργός διεργασία Παράγωγες διεργασίες nv Μέλη Cv Cv C 4v Cv C6v C C C 4 C C 6 σv σv σv σv σv σ d σd Ε Ε Ε Ε Ε C C (C 4 ) C C (C 6 ) C 4 C C (C 6 ) 4 C C (C 4 6 ) C 6 44

8 Στις ομάδες σημείου C nv με άξονα περιττής τάξης και στην C v όλα τα επίπεδα συμβολίζονται ως σ v, ενώ στις ομάδες με άξονα άρτιας τάξης με n 4 υπάρχουν n/ επίπεδα κατοπτρισμού σ v και n/ επίπεδα σ d. Υπενθυμίζεται ότι τα επίπεδα σ v είναι αυτά τα οποία διέρχονται από περισσότερα άτομα. Μερικά παραδείγματα μορίων τα οποία ανήκουν στις ομάδες Cv, C v και C 4v δίνονται στο Σχήμα 4..β, ενώ δεν υπάρχουν μόρια τα οποία ανήκουν στις ομάδες C v και C 6v. Σχήμα 4..β Μόρια τα οποία ανήκουν στις ομάδες σημείου C nv. Ομάδες σημείου C nh. Διεργασίες συμμετρίας: Ε, C n,..., C n n-1, σ h Οι ομάδες σημείου C nh περιέχουν ως γενεσιουργές διεργασίες την κατάλληλη περιστροφή περί άξονα C n (n > 1)και μια διεργασία κατοπτρισμού σ h ως προς επίπεδο σ h κάθετο σε αυτόν. Επειδή σ h C n = S n περιέχουν και την παράγωγη διεργασία στροφοκατοπτρισμού S n. Επίσης περιέχουν την ταυτότητα, Ε, και όλες τις παράγωγες κατάλληλες και ακατάλληλες διεργασίες, οι οποίες προκύπτουν από τις δυνάμεις C n m και S n m και από τυχόν συνδυασμούς διεργασιών. Οι ομάδες σημείου με άξονα άρτιας τάξης C h, C 4h και C 6h περιέχουν επιπλέον και τη διεργασία της αναστροφής, i, αφού σ h C =S =i. Οι διεργασίες συμμετρίας των ομάδων σημείου της οικογένειας δίνονται στον Πίνακα 4..γ. Πίνακας 4..γ Διεργασίες συμμετρίας των ομάδων σημείου C nh. Οικογένεια ομάδων C Γενεσιουργός διεργασία Παράγωγες διεργασίες nh Μέλη Ch Ch C4h C h C6h C C C4 C C6 σh σh σh σh σh Ε Ε Ε Ε Ε i (S = σ h C ) C C (C 4 ) C C (C 6 ) C S 4 C C (C 6 ) (σ h C ) S S4 (σ h C 4 ) 4 C C (C 4 6 ) i (S = σ h C ) S C6 (σ h C ) S 4 S S6 (σ h C 6 ) 7 S S (σ h C ) 9 S i (S = σ h C ) S S 6 4

9 Μερικά παραδείγματα μορίων, τα οποία ανήκουν στις ομάδες C h και C h δίνονται στο Σχήμα 4..γ, ενώ δεν υπάρχουν μόρια τα οποία ανήκουν στις ομάδες C 4h, C h και C 6h. Σχήμα 4..γ Μόρια τα οποία ανήκουν στις ομάδες σημείου C nh Ομάδες σημείου S n. Διεργασίες συμμετρίας: Ε, S n,..., S n n. Οι ομάδες σημείου S n έχουν ως γενεσιουργό διεργασία την ακατάλληλη περιστροφή άρτιας τάξης, S n (n > ). Επίσης περιέχουν την ταυτότητα, Ε, και όλες τις παράγωγες κατάλληλες και ακατάλληλες διεργασίες, τα οποία προκύπτουν από τις δυνάμεις S n m. H ομάδα σημείου S 6 περιέχει επιπλέον και τη διεργασία της αναστροφής, i επειδή S 6 = S = i. Οι διεργασίες συμμετρίας των ομάδων σημείου της οικογένειας δίνονται παρακάτω (Πίνακα 4..δ). Πίνακας 4..δ Διεργασίες συμμετρίας των ομάδων σημείου S n. Μέλη Οικογένεια ομάδων Sn S4 S 6 S8 Γενεσιουργός διεργασία S4 S6 S8 Παράγωγες διεργασίες Ε Ε Ε C (S 4 ) C (S 6 ) C4 (C 8 ) S 4 i (S = S 6 ) S8 C 4 (S 6 ) C (S 4 8 ) S 6 S8 C 4 (S 6 8 ) 7 S 8 46

10 Εύκολα διαπιστώνεται ότι οι υποθετικές ομάδες σημείου S 1, S και S n+1 ισοδυναμούν με τις C s, C i και C (n+1)h αντιστοίχως. Μερικά παραδείγματα μορίων, τα οποία ανήκουν στις ομάδες S 4 και S 6 δίνονται στο Σχήμα 4..δ, ενώ δεν υπάρχουν μόρια τα οποία ανήκουν στην ομάδα S 8. Σχήμα 4..δ Μόρια τα οποία ανήκουν στις ομάδες σημείου S n. Ομάδες σημείου C v. Διεργασίες συμμετρίας: Ε, C φ, σ v Η ομάδα σημείου C v περιέχει ως γενεσιουργές διεργασίες την κατάλληλη περιστροφή απειροστής τάξης, C φ και άπειρο αριθμό διεργασιών κατοπτρισμού σ v. Η τομή των επιπέδων σ v συμπίπτει με τον άξονα C φ. Οι παράγωγες διεργασίες είναι οι C -φ, C φ, C -φ, C φ, C -φ,... και η ταυτότητα Ε. Οι διεργασίες συμμετρίας της ομάδας σημείου δίνονται παρακάτω (Πίνακα 4..ε). Πίνακας 4..ε Διεργασίες συμμετρίας των ομάδων σημείου C v. Οικογένεια ομάδων C Γενεσιουργός διεργασία Παράγωγες διεργασίες v Μέλη C v C φ, σv C -φ, C φ, C -φ, C φ, C -φ,... Στην ομάδα C v ανήκουν τα μη κεντροσυμμετρικά γραμμικά μόρια, μερικά παραδείγματα εκ των οποίων δίνονται στο Σχήμα 4..ε. Ο άξονας C φ συμπίπτει με την ευθεία στην οποία κείται το μόριο και αποτελεί την τομή των επιπέδων σ v. Σχήμα 4..ε Μόρια τα οποία ανήκουν στην ομάδα σημείου C v. Τέλος, στη Διαδραστική εφαρμογή 4..α δίνονται μερικά παραδείγματα μορίων τα οποία ανήκουν σε περιστροφικές ομάδες σημείου μοναδικού άξονα Διεδρικές ομάδες: D n, D nd, D nh, D h Κοινό χαρακτηριστικό των διεδρικών ομάδων σημείου είναι η ύπαρξη ενός κύριου άξονα περιστροφής C n και n αξόνων C κάθετων στον κύριο άξονα. Οι οικογένειες των ομάδων σημείου της κατηγορίας αναλύονται στη συνέχεια. 47

11 Ομάδες σημείου D n. Διεργασίες συμμετρίας: Ε, C n,..., C n n-1, nc Οι ομάδες σημείου D n περιέχουν ως γενεσιουργές διεργασίες την κατάλληλη περιστροφή, C n (n > 1) και n διεργασίες περιστροφής C περί άξονες C κάθετους στον κύριο άξονα C n. Επίσης περιέχουν την ταυτότητα, Ε, καθώς και όλες τις παράγωγες διεργασίες περιστροφής, οι οποίες προκύπτουν από τις δυνάμεις C n m. Οι κάθετοι στον κύριο άξονα C n άξονες C σχηματίζουν μεταξύ τους διαδοχικές γωνίες π/n. Οι διεργασίες συμμετρίας των ομάδων σημείου της οικογένειας δίνονται παρακάτω (Πίνακα 4..α). Πίνακας 4..α Διεργασίες συμμετρίας των ομάδων σημείου D n. Μέλη Οικογένεια ομάδων Dn D D D 4 D D6 Γενεσιουργός διεργασία C C C4 C C6 C C C, C C C, C Παράγωγες διεργασίες Ε Ε Ε Ε Ε C C (C 4 ) C C (C 6 ) C 4 C C (C 6 ) 4 C C (C 4 6 ) C 6 Στις ομάδες σημείου D n με άρτιο n (n > ) οι n/ άξονες C συμβολίζονται ως C και οι υπόλοιποι n/, οι οποίοι διχοτομούν τις γωνίες των C, ως C. Οι άξονες C είναι αυτοί οι οποίοι διέρχονται από τα περισσότερα άτομα. Στην περίπτωση της ομάδας σημείου D οι τρεις κάθετοι μεταξύ τους άξονες C είναι ισότιμοι. Έτσι, ο άξονας C, ο οποίος ταυτίζεται με τον καρτεσιανό άξονα z, θεωρείται ως ο κύριος άξονας και συμβολίζεται ως C (z), ενώ οι άλλοι δύο ως C (x) και C (y). Μερικά παραδείγματα μορίων τα οποία ανήκουν στις ομάδες D και D δίνονται στο Σχήμα 4..α, ενώ δεν υπάρχουν μόρια τα οποία ανήκουν στις ομάδες D 4, D και D 6. Σχήμα 4..α Μόρια τα οποία ανήκουν στις ομάδες σημείου D και D. Ομάδες σημείου D nd. Διεργασίες συμμετρίας: Ε, C n,..., C n n-1, nc, nσ d Οι ομάδες σημείου D nd περιέχουν ως γενεσιουργές διεργασίες την κατάλληλη περιστροφή, C n (n > 1), n διεργασίες περιστροφής C περί n άξονες C κάθετους στον κύριο άξονα C n και n κατοπτρισμούς σ d ως προς n επίπεδα σ d. Επίσης οι ομάδες σημείου D nd περιέχουν την ταυτότητα, Ε, τον στροφοκατοπτρισμό S n, ο οποίος προκύπτει από συνδυασμούς C σ d και όλες τις παράγωγες διεργασίες περιστροφής οι οποίες προκύπτουν από τις δυνάμεις C n m και S n m. 48

12 Οι ομάδες σημείου D nd με περιττό n περιέχουν επιπλέον και τη διεργασία αναστροφής, i, αφού S n n = S = i. Οι κάθετοι στον κύριο άξονα Cn άξονες C σχηματίζουν μεταξύ τους διαδοχικές γωνίες π/n. Τα επίπεδα σ d σχηματίζουν μεταξύ τους διαδοχικές γωνίες π/n, περιέχουν τους άξονες C και η τομή τους συμπίπτει με τον κύριο άξονα. Οι διεργασίες συμμετρίας των ομάδων σημείου της οικογένειας δίνονται στον παρακάτω πίνακα (Πίνακα 4..β). Πίνακας 4..β Διεργασίες συμμετρίας των ομάδων σημείου D nd. Μέλη Οικογένεια ομάδων Dnd Dd D d D 4d D d D6d Γενεσιουργός διεργασία C C C4 C C6 C ' C 4C' C 6C' σd σd 4σd σd 6σd Παράγωγες διεργασίες Ε Ε Ε Ε Ε S4 C C (C 4 ) C C (C 6 ) (C σ d ) S6 (C σ d ) C4 C C (C 6 ) 4 S 4 i (S = S 6 ) S8 (C σ d ) C C (C 4 6 ) S 6 S8 S10(C σ d ) C6 S 8 S10 S1(C σ d ) 7 S 8 i (S = S 10 ) S4 (S 1 ) 7 S 10 S1 9 S 10 S1 S 4 (S 9 1 ) 11 S 1 Στις περιπτώσεις των ομάδων D nd με άρτιο n (n > ) προκύπτει και ένας επιπλέον άξονας C. Ο άξονας αυτός αποτελεί το στοιχείο συμμετρίας της παράγωγης διεργασίας περιστροφής C = C n/ n, συμπίπτει με τον κύριο άξονα C n και συμβολίζεται απλά ως C. Οι υπόλοιποι άξονες δεύτερης τάξης συμβολίζονται ως C '. Στην περίπτωση της ομάδας σημείου D d οι τρεις κάθετοι μεταξύ τους άξονες C είναι ισότιμοι. Ωστόσο, ο άξονας ο οποίος ταυτίζεται με τον καρτεσιανό άξονα z συμβολίζεται ως C και οι άλλοι δύο ως C '. Μερικά παραδείγματα μορίων, τα οποία ανήκουν στις ομάδες Dd, D d, D 4d και D d δίνονται στο Σχήμα 4..β, ενώ δεν υπάρχουν μόρια τα οποία ανήκουν στην ομάδα D 6d. Σχήμα 4..β Μόρια τα οποία ανήκουν στις ομάδες σημείου D nd. 49

13 Ομάδες σημείου D nh. Διεργασίες συμμετρίας: Ε, C n,..., C n n-1, nc, nσ v,d, σ h (C C n ) Οι ομάδες σημείου D nh περιέχουν ως γενεσιουργές διεργασίες την κατάλληλη περιστροφή, C n (n > 1), τις n διεργασίες περιστροφής C περί n άξονες C κάθετους στον κύριο άξονα C n, τους n κατοπτρισμούς σ v,d ως προς n επίπεδα σ v,d και τον κατοπτρισμό σ h ως προς επίπεδο σ h. Επίσης οι ομάδες σημείου D nh περιέχουν την ταυτότητα Ε, τον στροφοκατοπτρισμό S n, ο οποίος προκύπτει από το συνδυασμό σ h C n, και όλες τις παράγωγες διεργασίες περιστροφής οι οποίες προκύπτουν από τις δυνάμεις C m n και S m n. Οι ομάδες με άρτιο n περιέχουν επιπλέον και τη διεργασία αναστροφής, i, αφού S n/ n = σ h C n/ n = σ h C = S = i. Οι άξονες C οι οποίοι είναι κάθετοι στον κύριο άξονα C n σχηματίζουν μεταξύ τους διαδοχικές γωνίες π/n. Τα επίπεδα σ v,d σχηματίζουν μεταξύ τους διαδοχικές γωνίες π/n, περιέχουν τους άξονες C και η τομή τους συμπίπτει με τον κύριο άξονα. Οι διεργασίες συμμετρίας των ομάδων σημείου της οικογένειας δίνονται παρακάτω (Πίνακα 4..γ). Πίνακας 4..γ Διεργασίες συμμετρίας των ομάδων σημείου D nh. Οικογένεια ομάδων D Γενεσιουργός διεργασία nh Μέλη Dh Dh D4h Dh C (z) C C4 C C(x), C (y) C C', C C σ(xz), σ(yz), σ σ(xy) σ v σ h σ v σ d σ v h σ h D6h C6 C', C σ σ v d σ h D8h C8 4C', C 4σ 4σ v d σ h Παράγωγες διεργασίες Ε Ε Ε Ε Ε Ε i C C (C 4 ) C C (C 6 ) C4 (C 8 ) S (C σ h ) C4 C C (C 6 ) C8 4 S S4 (C 4 σ h ) C C C (C 4 8 ) S 4 S (C σ h ) (C6 4 ) C8 i (S =σ h C ) S C6 C4 (C 6 8 ) 7 S 10 S (C σ h ) C8 7 9 S 10 S S4 (C 4 σ h ) S 6 (C 6 σ h ) S4 S 6 S8 (C 8 σ h ) i (S = σ h C ) S8 S 8 7 S 8 i (S = σ h C ) Στις ομάδες D nh με άξονα περιττής τάξης όλα τα κατακόρυφα επίπεδα συμβολίζονται ως σ v, ενώ στις ομάδες με άξονα άρτιας τάξης (n > ) υπάρχουν n/ επίπεδα κατοπτρισμού σ v και n/ επίπεδα σ d. Τα επίπεδα σ v είναι αυτά τα οποία διέρχονται από τα περισσότερα άτομα. Στις περιπτώσεις των ομάδων Dnh με άρτιο n (n>) προκύπτει και ένας επιπλέον άξονας C. Ο άξονας αυτός αποτελεί το στοιχείο συμμετρίας της παράγωγης διεργασίας περιστροφής C = C n/ n, συμπίπτει με τον κύριο άξονα C n και συμβολίζεται απλά ως C. Από τους n, κάθετους στον κύριο άξονα C n, άξονες C οι n/ άξονες C, οι οποίοι διέρχονται από τα περισσότερα άτομα συμβολίζονται ως C ', και οι υπόλοιποι n/ ως C. Τα n/ επίπεδα σ v περιέχουν τον C n και έναν C ', ενώ τα n/ επίπεδα σ d περιέχουν τον C n και έναν C. Στην περίπτωση της ομάδας σημείου Dh οι τρεις κάθετοι μεταξύ τους άξονες C είναι ισότιμοι. Έτσι, ο (.Ο) άξονας ο οποίος ταυτίζεται με τον καρτεσιανό άξονα z συμβολίζεται ως C (z) και οι άλλοι δύο ως C (x) και C (y). Τα δύο κατακόρυφα επίπεδα σ v συμβολίζονται ως σ(xz) και σ(yz) και το οριζόντιο επίπεδο σ h ως σ(xy). 0

14 Μερικά παραδείγματα μορίων τα οποία ανήκουν στις ομάδες D h, D h, D 4h, D h και D 6h δίνονται στο Σχήμα 4..γ, ενώ δεν υπάρχουν μόρια τα οποία ανήκουν στην ομάδα D 8h. Σχήμα 4..γ Μόρια τα οποία ανήκουν στις ομάδες σημείου D nh. Ομάδα σημείου D h. Διεργασίες συμμετρίας: Ε, C φ, C, σ v, σ h Η ομάδα σημείου D h περιέχει ως γενεσιουργές διεργασίες την κατάλληλη περιστροφή απειροστής τάξης, C φ, τις διεργασίες περιστροφής C περί άπειρους άξονες C κάθετους στον κύριο άξονα C φ, τους κατοπτρισμούς σ v ως προς άπειρα επίπεδα σ v και τον κατοπτρισμό σ h ως προς επίπεδο σ h. Επίσης περιέχει την ταυτότητα Ε, το στροφοκατοπτρισμό απειροστής τάξης S φ, ο οποίος προκύπτει από το συνδυασμό σ h C φ, όλες τις παράγωγες διεργασίες περιστροφής, οι οποίες προκύπτουν από τις δυνάμεις των αξόνων, δηλαδή C -φ, C φ, C -φ, C φ, C -φ,... και S -φ, S φ, S -φ, S φ, S -φ,... και κέντρο συμμετρίας i. Οι διεργασίες συμμετρίας της ομάδας σημείου δίνονται παρακάτω (Πίνακα 4..δ). Πίνακας 4..δ Διεργασίες συμμετρίας των ομάδων σημείου D h. Οικογένεια ομάδων D Γενεσιουργός διεργασία Παράγωγες διεργασίες h Μέλη D h C φ, S φ, C, σv E C -φ, C φ, C -φ, C φ, C -φ,... S -φ, S φ, S -φ, S φ, S -φ,... i Σχήμα 4..δ Μόρια τα οποία ανήκουν στην ομάδα σημείου D h. 1

15 Στην ομάδα D h ανήκουν τα κεντροσυμμετρικά γραμμικά μόρια μερικά παραδείγματα εκ των οποίων δίνονται στο Σχήμα 4..δ. Οι άξονες C φ φ και S συμπίπτουν με την ευθεία στην οποία κείται το μόριο και αποτελεί την τομή των επιπέδων σ v. Το κέντρο αναστροφής, i, ταυτίζεται με το μέσον του μορίου και το σ h φ διέρχεται από το κέντρο αναστροφής, i και είναι κάθετο στον C. Τέλος, στη Διαδραστική εφαρμογή 4..α δίνονται μερικά παραδείγματα μορίων τα οποία ανήκουν σε διεδρικές ομάδες σημείου Κυβικές ομάδες: Τ, Τ h, Τ d, O, O h Κοινό χαρακτηριστικό των κυβικών ομάδων σημείου είναι η ύπαρξη πολλαπλών αξόνων περιστροφής C n υψηλής τάξης (n > ). Σε αυτές τις ομάδες σημείου ανήκουν τα πλατωνικά στερεά: τετράεδρο, κύβος και οκτάεδρο, τα οποία φαίνονται στο Σχήμα 4..4.α. Οι έδρες των στερεών αυτών είναι κανονικά πολύγωνα (τρίγωνα και τετράγωνα) και όλες οι κορυφές, ακμές και έδρες είναι ισοδύναμες μεταξύ τους. Τα μόρια ή τα γεωμετρικά σχήματα τα οποία ανήκουν σε αυτές τις ομάδες έχουν άμεση σχέση με τα στερεά αυτά. Σχήμα 4..4α Τα πλατωνικά στερεά πλατωνικά στερεά: τετράεδρο, κύβος και οκτάεδρο. Ομάδα σημείου Τ d. Διεργασίες συμμετρίας: Ε, 4C, 4C, C, S 4, S 4, 6σ d Στην ομάδα σημείου Τ d ανήκει ένα από τα πλατωνικά στερεά, το τετράεδρο. Για την ευκολότερη αναγνώριση των στοιχείων και των διεργασιών συμμετρίας της είναι χρήσιμη η σχέση του τετραέδρου με τον κύβο. Συγκεκριμένα, το τετράεδρο είναι το στερεό με τέσσερις κορυφές οι οποίες ταυτίζονται με ισάριθμες κορυφές του κύβου όπως φαίνεται στο Σχήμα 4..4β-1. Σχήμα 4..4β-1 Ορισμός του τετραέδρου με βάση τον κύβο και στοιχεία συμμετρίας, άξονες περιστροφής και στροφοκατοπτρισμού, της ομάδας σημείου Τ d.

16 Σχήμα 4..4β- Ορισμός του τετραέδρου με βάση τον κύβο και στοιχεία συμμετρίας, επίπεδα κατοπτρισμού, της ομάδας σημείου Τ d. Η ομάδα σημείου Τ d περιέχει εκτός της ταυτότητας τα παρακάτω στοιχεία και διεργασίες συμμετρίας: Τέσσερις άξονες περιστροφής C οι οποίοι συμπίπτουν με τις διαγώνιες του κύβου, σχηματίζουν ανά δύο γωνία ~109. και αντιστοιχούν στις διεργασίες 4C και 4C (Σχήμα 4..4β-1). Τρεις κάθετους μεταξύ τους άξονες περιστροφής C, οι οποίοι συνδέουν τα κέντρα των απέναντι ακμών του τετραέδρου ή τα κέντρα των απέναντι πλευρών του κύβου και αντιστοιχούν στις διεργασίες C (Σχήμα 4..4β-1). Τρεις κάθετους μεταξύ τους άξονες στροφοκατοπτρισμού S4, τα οποίασυμπίπτουν με τους άξονες C και αντιστοιχούν στις διεργασίες S 4 και S 4 (Σχήμα 4..4β-1). Έξι επίπεδα κατοπτρισμού σd, τα οποία καθορίζονται από τα ζεύγη των διαγωνίως απέναντι ακμών του κύβου και αντιστοιχούν στις διεργασίες 6σ d (Σχήμα 4..4β-). Ομάδα σημείου Τ. Διεργασίες συμμετρίας: Ε, 4C, 4C, C, S 4, S 4 Η ομάδα σημείου Τ περιέχει μόνο τις κατάλληλες και τις ακατάλληλες περιστροφές της ομάδας σημείου Τ d. Ομάδα σημείου Τ h. Διεργασίες συμμετρίας: Ε, 4C, 4C, C, i, 4S 6, 4S 6, σ h H προσθήκη στην ομάδα σημείου Τ τριών επιπέδων κατοπτρισμού σ h οδηγεί στην ομάδα σημείου Τ h. Τα επίπεδα αυτά καθορίζονται από τα ζεύγη των αξόνων C. Ο συνδυασμός των διεργασιών σ h με τις άλλες διεργασίες της ομάδας έχει σαν αποτέλεσμα τέσσερις επιπλέον διεργασίες S 6 (Σχήμα 4..4β-6), από τις οποίες προκύπτουν ισάριθμες διεργασίες S 6, καθώς και η διεργασία i αφού σ h C = S = i. Έτσι, το σύνολο των διεργασιών της ομάδας σημείου Τ h είναι: Στην ομάδα σημείου Τ d ανήκουν πολλά μόρια, ενώ ελάχιστα είναι αυτά τα οποία ανήκουν στις Τ και Τ h. Μερικά παραδείγματα δίνονται στο Σχήμα 4..4.γ.

17 Σχήμα 4..4γ Μόρια τα οποία ανήκουν στις ομάδες σημείου Τ d, Τ και Τ h. Ομάδες σημείου: O, O h Στην ομάδα σημείου O h ανήκουν τα πλατωνικά στερεά του κύβου και του οκταέδρου. Εκτός της ταυτότητας περιέχει τα παρακάτω στοιχεία και διεργασίες συμμετρίας: Τρεις άξονες περιστροφής C 4 κάθετους μεταξύ τους, οι οποίοι διέρχονται από τα κέντρα απέναντι εδρών στον κύβο ή των απέναντι κορυφών στο οκτάεδρο και αντιστοιχούν στις διεργασίες C 4 και C 4 (Σχήμα 4..4δ-1). Τέσσερις άξονες περιστροφής C, οι οποίοι διέρχονται από τα μέσα απέναντι κορυφών στον κύβο ή εδρών στο οκτάεδρο και αντιστοιχούν στις διεργασίες 4C και 4C (Σχήμα 4..4δ-1). Τρεις άξονες περιστροφής C, οι οποίοι συμπίπτουν με τους άξονες C 4 και αντιστοιχούν στις διεργασίες C (Σχήμα4..4δ-1). έξι άξονες περιστροφής C' κάθετους μεταξύ τους, οι οποίοι διέρχονται από τα μέσα απέναντι ακμών, τόσο στον κύβο όσο και στο οκτάεδρο και αντιστοιχούν στις διεργασίες 6C ' (Σχήμα 4..4δ-1). Τέσσερις άξονες στροφοκατοπτρισμού S6, οι οποίοι συμπίπτουν με τους C και αντιστοιχούν στις διεργασίες 4S 6 και 4S 6 (Σχήμα 4..4δ-1). Τρεις άξονες στροφοκατοπτρισμού S4 κάθετους μεταξύ τους, οι οποίοι συμπίπτουν με τους άξονες C 4 και αντιστοιχούν στις διεργασίες S 4, S 4 και C (S 4 )(Σχήμα 4..4δ-1). Τρία επίπεδα κατοπτρισμού σh, τα οποία καθορίζονται από τα μέσα τεσσάρων ακμών στον κύβο ή τεσσάρων κορυφών του οκταέδρου και αντιστοιχούν στις διεργασίες σ h (Σχήμα 4..4δ-). Σχήμα 4..4δ-1 Άξονες περιστροφής και άξονες στροφοκατοπτρισμού, της ομάδας σημείου O h στον κύβο και στο οκτάεδρο. 4

18 Έξι επίπεδα κατοπτρισμού σ d, τα οποία καθορίζονται από δύο απέναντι ακμές στον κύβο ή διέρχονται από δύο απέναντι κορυφές και διχοτομούν δύο απέναντι ακμές στο οκτάεδρο. Αυτά τα επίπεδα κατοπτρισμού σ d αντιστοιχούν στις διεργασίες 6σ d. (Σχήμα 4..4δ-). Το κέντρο συμμετρίας i, το οποίο συμπίπτει με το κέντρο μάζας του κύβου και του οκταέδρου, αποτελεί το σημείο τομής όλων των παραπάνω στοιχείων συμμετρίας και αντιστοιχεί στη διεργασία i. Σχήμα 4..4δ- Επίπεδα κατοπτρισμού σ h, της ομάδας σημείου O h στον κύβο και στο οκτάεδρο. Σχήμα 4..4δ- Επίπεδα κατοπτρισμού σ d, της ομάδας σημείου O h στον κύβο και στο οκτάεδρο.

19 Έτσι, το σύνολο των διεργασιών της ομάδας σημείου O h είναι: Ομάδα σημείου Oh. Διεργασίες συμμετρίας: Ε, C 4, C 4, 4C, 4C, 6C ', C, i, S 4, S 4, 4S 6, 4S 6, σ h, 6σd Η ομάδα σημείου O περιέχει μόνο τις κατάλληλες περιστροφές της ομάδας σημείου Oh, δηλαδή Ομάδα σημείου O. Διεργασίες συμμετρίας: Ε, C4, C 4, 4C, 4C, 6C ', C Σχήμα 4..4ε Μόρια τα οποία ανήκουν στην ομάδα σημείου O h. Στην ομάδα σημείου O h ανήκουν μόρια, όπως το κουβάνιο και αρκετά οκταεδρικά μόρια ενώσεων συναρμογής μεταβατικών στοιχείων (Σχήμα 4..4.ε), ενώ μόρια τα οποία ανήκουν στην Ο είναι εξαιρετικά σπάνια. Τέλος, στη Διαδραστική εφαρμογή 4..4α δίνονται μερικά παραδείγματα μορίων τα οποία ανήκουν σε κυβικές ομάδες σημείου Εικοσαεδρικές ομάδες: Ι, Ι h Κοινό χαρακτηριστικό των εικοσαεδρικών ομάδων σημείου είναι η ύπαρξη έξι ισότιμων κυρίων αξόνων περιστροφής πέμπτης τάξης, C. Σε αυτές τις ομάδες σημείου ανήκουν τα πλατωνικά στερεά δωδεκάεδρο και εικοσάεδρο, τα οποία φαίνονται στο Σχήμα 4..α. Οι έδρες των στερεών αυτών είναι κανονικά πολύγωνα (τρίγωνα, πεντάγωνα και εξάγωνα) και όλες οι κορυφές, ακμές και έδρες είναι ισοδύναμες μεταξύ τους. Τα μόρια ή τα γεωμετρικά σχήματα τα οποία ανήκουν σε αυτές τις ομάδες έχουν άμεση σχέση με τα στερεά αυτά. Σχήμα 4..4α Τα πλατωνικά στερεά πλατωνικά στερεά: τετράεδρο, κύβος και οκτάεδρο. Ομάδες σημείου: Ι, Ι h Στην ομάδα σημείου Ι h ανήκουν τα πλατωνικά στερεά του δωδεκάεδρου και του εικοσάεδρου. 6

20 Σχήμα 4..β Στοιχεία συμμετρίας της ομάδας σημείου Ι h στο δωδεκάεδρο. Η ομάδα σημείου Ι h, περιέχει εκτός της ταυτότητας, τα παρακάτω στοιχεία και διεργασίες συμμετρίας: Έξι άξονες περιστροφής πέμπτης τάξης, C, οι οποίοι διέρχονται από τα κέντρα απέναντι εδρών στο δωδεκάεδρο (Σχήμα 4..β) ή απέναντι κορυφών στο εικοσάεδρο και αντιστοιχούν στις διεργασίες 6C, 6C, 6C 4 και 6C Δέκα άξονες περιστροφής C, οι οποίοι διέρχονται από τα μέσα απέναντι κορυφών στο δωδεκάεδρο ή εδρών στο εικοσάεδρο και αντιστοιχούν στις διεργασίες 10C και 10C Δεκαπέντε άξονες περιστροφής C, οι οποίοι διχοτομούν τις απέναντι ακμές, τόσο στο δωδεκάεδρο όσο και στο εικοσάεδρο και αντιστοιχούν στις διεργασίες 1C Έξι άξονες στροφοκατοπτρισμού S10, οι οποίοι συμπίπτουν με τους άξονες πέμπτης τάξης, C και αντιστοιχούν στις διεργασίες 6S 10, 6S 10, 6S και 6S 10 Δέκα άξονες στροφοκατοπτρισμού S6, οι οποίοι συμπίπτουν με τους άξονες τρίτης τάξης, C και αντιστοιχούν στις διεργασίες 10S 6 και 10S 6. Δεκαπέντε επίπεδα κατοπτρισμού σ τα οποία αντιστοιχούν στις διεργασίες 1σ Το κέντρο συμμετρίας i, το οποίο συμπίπτει με το κέντρο μάζας του δωδεκάεδρου και του εικοσάεδρου, αποτελεί το σημείο τομής όλων των παραπάνω στοιχείων συμμετρίας και αντιστοιχεί στη διεργασία i Έτσι, το σύνολο των διεργασιών της ομάδας σημείου Ι h είναι: Ομάδα σημείου Ιh. Διεργασίες συμμετρίας: Ε, 6C, 6C, 6C, 6C 4, 10C, 10C, 1C, i, 6S 10, 6S 10, 6S , 6S 10, 1σ. Η ομάδα σημείου Ι περιέχει μόνο τις κατάλληλες περιστροφές της ομάδας σημείου Ιh, δηλαδή: Ομάδα σημείου Ιh. Διεργασίες συμμετρίας: Ε, 6C, 6C, 6C, 6C 4, 10C, 10C, 1C Σχήμα 4..4ζ Μόρια τα οποία ανήκουν στην ομάδα σημείου Ι h. Στην ομάδα σημείου Ι h ανήκουν λίγα μόρια μεταξύ των οποίων το φουλερένιο C 60 (Σχήμα 4..γ), ενώ μόρια τα οποία ανήκουν στην Ι δεν υπάρχουν. Στη Διαδραστική εφαρμογή 4..α δίνονται μερικά παραδείγματα μορίων τα οποία ανήκουν σε εικοσαεδρικές ομάδες σημείου. 7

21 4..6. Σφαιρική ομάδα: Κ h Η ομάδα σημείου K h περιέχει ως γενεσιουργές διεργασίες τις κατάλληλες περιστροφές, C φ, περί άπειρους άξονες απειροστής τάξης, C φ και τις ακατάλληλες διεργασίες περιστροφής S φ περί άπειρους άξονες στροφοκατοπτρισμού απειροστής τάξης, S φ. Παράγωγες διεργασίες είναι η ταυτότητα Ε, οι δυνάμεις των αξόνων C -φ, C φ, C -φ, C φ, C -φ,... και S -φ, S φ, S -φ, S φ, S -φ, οι κατοπτρισμοί σ ως προς άπειρα επίπεδα σ και η αναστροφή i. Οι διεργασίες συμμετρίας της ομάδας σημείου δίνονται στον παρακάτω πίνακα (Πίνακας 4..6α). Πίνακας 4..6α Διεργασίες συμμετρίας της ομάδας σημείου Κ h. Οικογένεια ομάδων Κh Γενεσιουργός διεργασία Παράγωγες διεργασίες Μέλη Κh C φ φ, S, σ E C -φ, C φ, C -φ, C φ, C -φ,... S -φ, S φ, S -φ, S φ, S -φ,... i Στην ομάδα σημείου K h ανήκει η σφαίρα και όλα τα άτομα. Το πλήθος των αξόνων απειροστής τάξης είναι άπειρο διότι οποιοσδήποτε άξονας με τυχαία κατεύθυνση στο χώρο και οποιαδήποτε τάξη αποτελεί άξονα συμμετρίας της σφαίρας, αρκεί βέβαια να διέρχεται από το κέντρο της, το οποίο αποτελεί και το κέντρο αναστροφής i. Επίσης είναι προφανές ότι υπάρχουν άπειρα επίπεδα σ, τα οποία διέρχονται από το κέντρο φ αναστροφής και είναι κάθετα σε έναν από τους άξονες απειροστής τάξης, C. Τέλος, στη Διαδραστική εφαρμογή 4..6α δίνονται μερικά παραδείγματα μορίων τα οποία ανήκουν σε εικοσαεδρικές ομάδες σημείου Συστηματική Μέθοδος Εύρεσης της Ομάδας Σημείου ενός Μορίου Σε κάθε εφαρμογή της μοριακής συμμετρίας η εύρεση της ομάδας σημείου στην οποία ανήκει το υπό μελέτη μόριο είναι το πρώτο και απαραίτητο βήμα. Ο εντοπισμός όμως όλων των στοιχείων συμμετρίας του μορίου πολλές φορές είναι δύσκολος, αφού υπάρχουν ομάδες σημείου οι οποίες έχουν πάνω από 100 διεργασίες συμμετρίας. Παρόλα αυτά σε κάθε ομάδα σημείου υπάρχουν ένα ή περισσότερα στοιχεία συμμετρίας «κλειδιά» τα οποία είναι χαρακτηριστικά για τη συγκεκριμένη ομάδα και αντιστοιχούν στις γενεσιουργές διεργασίες από τις οποίες προκύπτουν όλες οι άλλες. Για παράδειγμα η ύπαρξη σε ένα μόριο ενός κύριου άξονα τρίτης τάξης C και τριών αξόνων δεύτερης τάξης C κάθετων σ' αυτόν σημαίνει ότι θα ανήκει σε μια από τις διεδρικές ομάδες σημείου (D, D h, D d ). Αν το μόριο έχει επιπλέον ένα επίπεδο κατοπτρισμού σ h, τότε ανήκει στην ομάδα σημείου D h. Στην αντίθετη περίπτωση, αν έχει επίπεδα κατοπτρισμού σ v ανήκει στην D d, ενώ αν δεν έχει επίπεδα σ v ανήκει στην D. Με βάση τις παραπάνω διαπιστώσεις και μετά από συστηματική μελέτη των στοιχείων συμμετρίας των ομάδων σημείου ο Zeldin πρότεινε μια απλή μέθοδο εύρεσης της ομάδας σημείου ενός μορίου σύμφωνα με την οποίαν, η σταδιακή αναγνώριση κάποιων χαρακτηριστικών στοιχείων συμμετρίας οδηγεί στον εντοπισμό της ομάδας σημείου του μορίου. Σύμφωνα με τη μέθοδο Zeldin ακολουθώντας μια σειρά από λογικά βήματα αναζητούνται κάποια χαρακτηριστικά στοιχεία συμμετρίας στο υπό μελέτη μόριο και η ύπαρξη ή μη αυτών οδηγεί στην εύρεση της ομάδας σημείου του μορίου. Το λογικό διάγραμμα της μεθόδου δίνεται στο Σχήμα 4.4α, ενώ τα ερωτήματα τα οποία τίθενται σε κάθε λογικό βήμα και οι συνέπειές τους αναλύονται παρακάτω. 8

22 Σχήμα 4.4α Λογικό διάγραμμα της μεθόδου Zeldin. Πορεία εύρεσης της ομάδας σημείου ενός μορίου σύμφωνα με τη μέθοδο Zeldin Είναι το μόριο γραμμικό; Αν το μόριο είναι γραμμικό αναζητείται κέντρο συμμετρίας, i. Υπάρχει κέντρο συμμετρίας, i; Αν το μόριο έχει κέντρο συμμετρίας, i, ανήκει στην ομάδα σημείου D h, ενώ αν δεν έχει ανήκει στην ομάδα σημείου C v. Αν το μόριο δεν είναι γραμμικό αναζητούνται δύο ή περισσότεροι άξονες περιστροφής C. Υπάρχουν δύο ή περισσότεροι άξονες περιστροφής πέμπτης τάξης, C; Αν το μόριο έχει δύο ή περισσότερους άξονες περιστροφής C και έχει επίσης κέντρο συμμετρίας, i, ανήκει στην ομάδα σημείου I h, ενώ αν δεν έχει κέντρο συμμετρίας, ανήκει στην ομάδα σημείου Ι. Αν το μόριο δεν έχει δύο ή περισσότερους άξονες περιστροφής C αναζητούνται δύο ή περισσότεροι άξονες C 4. Υπάρχουν δύο ή περισσότεροι άξονες περιστροφής τέταρτης τάξης, C4; Αν το μόριο έχει δύο ή περισσότερους άξονες περιστροφής C4 και έχει επίσης κέντρο συμμετρίας, i, ανήκει στην ομάδα σημείου Ο h, ενώ αν δεν έχει κέντρο συμμετρίας, ανήκει στην ομάδα σημείου Ο. Αν το μόριο δεν έχει δύο ή περισσότερους άξονες περιστροφής C4 αναζητούνται δύο ή περισσότεροι άξονες C. Υπάρχουν δύο ή περισσότεροι άξονες περιστροφής τρίτης τάξης, C; Αν το μόριο έχει περισσότερους από δύο άξονες περιστροφής C αναζητείται επίπεδο κατοπτρισμού, σ. Υπάρχει επίπεδο κατοπτρισμού, σ; Αν το μόριο δεν έχει επίπεδο κατοπτρισμού, σ, ανήκει στην ομάδα σημείου T, ενώ αν δεν έχει επίπεδο κατοπτρισμού αναζητείται κέντρο συμμετρίας, i. 9

23 Υπάρχει κέντρο συμμετρίας, i; Αν το μόριο έχει κέντρο συμμετρίας, i, ανήκει στην ομάδα σημείου T h, ενώ αν δεν έχει κέντρο συμμετρίας, i, ανήκει στην ομάδα σημείου T d. Αν το μόριο δεν έχει δύο ή περισσότερους άξονες περιστροφής C αναζητείται ένας τουλάχιστον άξονας περιστροφής. Υπάρχει ένας τουλάχιστον άξονας περιστροφής, Cn; Αν το μόριο δεν έχει άξονες περιστροφής αναζητείται επίπεδο κατοπτρισμού, σ. Υπάρχει επίπεδο κατοπτρισμού, σ; Αν το μόριο έχει επίπεδο κατοπτρισμού, σ, ανήκει στην ομάδα σημείου C s, ενώ αν δεν έχει επίπεδο κατοπτρισμού αναζητείται κέντρο συμμετρίας, i. Υπάρχει κέντρο συμμετρίας, i; Αν το μόριο έχει κέντρο συμμετρίας, i, ανήκει στην ομάδα σημείου C i ενώ αν δεν έχει κέντρο συμμετρίας, i, ανήκει στην ομάδα σημείου C 1. Αν το μόριο έχει έναν τουλάχιστον άξονα περιστροφής επιλέγεται ο άξονας με τη μεγαλύτερη τάξη (κύριος άξονας), Cn, και αναζητούνται n άξονες περιστροφής δεύτερης τάξης, C, κάθετοι σε αυτόν. Υπάρχουν n άξονες περιστροφής δεύτερης τάξης, C, κάθετοι στον C n ; Αν το μόριο έχει n άξονες περιστροφής, C, κάθετους στον κύριο άξονα, C n, αναζητείται επίπεδο κατοπτρισμού σ h. Υπάρχει επίπεδο κατοπτρισμού, σh ; Αν υπάρχει επίπεδο κατοπτρισμού σh το μόριο ανήκει στην ομάδα σημείου D nh, ενώ αν δεν υπάρχει επίπεδο κατοπτρισμού αναζητείται επίπεδο κατοπτρισμού σ d. Υπάρχει επίπεδο κατοπτρισμού, σd ; Αν υπάρχει επίπεδο κατοπτρισμού σd το μόριο ανήκει στην ομάδα σημείου D nd, ενώ αν δεν υπάρχει ανήκει στην ομάδα σημείου D n. Αν το μόριο δεν έχει n άξονες περιστροφής, C, κάθετους στον κύριο άξονα, C n, αναζητείται επίπεδο κατοπτρισμού σ h. Υπάρχει επίπεδο κατοπτρισμού, σh ; Αν υπάρχει επίπεδο κατοπτρισμού σh το μόριο ανήκει στην ομάδα σημείου C nh, ενώ αν δεν υπάρχει επίπεδο κατοπτρισμού αναζητούνται n επίπεδα κατοπτρισμού σ v. Υπάρχουν n επίπεδα κατοπτρισμού σv ; Αν υπάρχουν n επίπεδα κατοπτρισμού σv το μόριο ανήκει στην ομάδα σημείου C nv, ενώ αν δεν υπάρχουν αναζητείται άξονας στροφοκατοπτρισμού S n. Υπάρχει άξονας στροφοκατοπτρισμού, Sn; Αν υπάρχει άξονας στροφοκατοπτρισμού Sn, το μόριο ανήκει στην ομάδα σημείου S n, ενώ αν δεν υπάρχει ανήκει στην ομάδα σημείου C n. Σύνοψη 1. H περιγραφή της συμμετρίας ενός μορίου συνίσταται στην εύρεση και στην καταγραφή του συνόλου των στοιχείων και διεργασιών συμμετρίας οι οποίες απαντώνται στο μόριο. Συνήθως εντοπίζεται ένας αριθμός στοιχείων συμμετρίας και στη συνέχεια με βάση τους συνδυασμούς και τις δυνάμεις των διεργασιών οι οποίες έχουν εντοπισθεί προκύπτουν οι υπόλοιπες διεργασίες και τα στοιχεία συμμετρίας.. Το πλήρες σύνολο των διεργασιών συμμετρίας ενός μορίου περιγράφει σαφώς τη συμμετρία ενός μορίου και καλείται ομάδα συμμετρίας ή ομάδα σημείου του μορίου.. Οι ομάδες σημείου ταξινομούνται σε τέσσερις κατηγορίες: τις μη περιστροφικές, τις περιστροφικές μοναδικού άξονα, τις διεδρικές και τις κυβικές. 4. Οι μη περιστροφικές ομάδες χαρακτηρίζονται από την απουσία αξόνων περιστροφής και την παρουσία επιπέδου κατοπτρισμού (ομάδα C s ), κέντρου αναστροφής (ομάδα C i ) ή την απουσία στοιχείων συμμετρίας (ομάδα C 1 ).. Κοινό χαρακτηριστικό των περιστροφικών ομάδων σημείου μοναδικού άξονα είναι η ύπαρξη ενός μοναδικού άξονα περιστροφής Cn ή στροφοκατοπτρισμού S n. Στις ομάδες σημείου C n δεν υπάρχει άλλο στοιχείο συμμετρίας εκτός του C n. Στις ομάδες σημείου C nv υπάρχουν και n κατακόρυφα επίπεδα 60

24 κατοπτρισμού σ v,d. Στις ομάδες σημείου C nh υπάρχει επιπλέον και επίπεδο κατοπτρισμού σ h και συνεπώς S n, ενώ για n άρτιο υπάρχει επιπλέον το κέντρο αναστροφής i. Στις ομάδες σημείου S n δεν υπάρχει άλλο στοιχείο συμμετρίας εκτός του S n. Από τις δυνάμεις της διεργασίας S n προκύπτουν και άξονες περιστροφής μικρότερης τάξης, ενώ για n = 6 προκύπτει και κέντρο αναστροφής i. Η ομάδα σημείου C h, στην οποία ανήκουν τα μη κεντροσυμμετρικά γραμμικά μόρια, περιέχει άξονα περιστροφής C φ και άπειρα επίπεδα σ v. 6. Κοινό χαρακτηριστικό των διεδρικών ομάδων σημείου είναι η ύπαρξη ενός κύριου άξονα περιστροφής Cn και n αξόνων C κάθετων στον κύριο άξονα. Στις ομάδες σημείου D n δεν υπάρχει άλλο στοιχείο συμμετρίας εκτός του C n και των n αξόνων C. Στις ομάδες σημείου D nd υπάρχουν επιπλέον n κατακόρυφα επίπεδα κατοπτρισμού σd, καθώς και άξονας στροφοκατοπτρισμού S n. Στις ομάδες σημείου D nh υπάρχουν επιπλέον n κατακόρυφα επίπεδα κατοπτρισμού σ v,d και ένα επίπεδο κατοπτρισμού σ h και συνεπώς άξονας στροφοκατοπτρισμού S n. Όταν το n είναι άρτιο υπάρχει και κέντρο αναστροφής i. Η ομάδα σημείου D h, στην οποία ανήκουν τα κεντροσυμμετρικά γραμμικά μόρια, περιέχει άξονα περιστροφής C φ, άπειρους άξονες περιστροφής C κάθετους στον κύριο άξονα C φ, άξονα στροφοκατοπτρισμού S φ, άπειρα επίπεδα κατοπτρισμού σ v και κέντρο αναστροφής i. 7. Κοινό χαρακτηριστικό των κυβικών και των εικοσαεδρικών ομάδων σημείου είναι η ύπαρξη πολλαπλών αξόνων περιστροφής Cn υψηλής τάξης (n>). Περιέχουν επίσης πλήθος άλλων στοιχείων και διεργασιών συμμετρίας. Σε αυτές τις ομάδες σημείου ανήκουν τα πέντε πλατωνικά στερεά: τετράεδρο, κύβος, οκτάεδρο, δωδεκάεδρο και εικοσάεδρο. 8. Η σφαιρική ομάδα σημείου Κh περιέχει ως γενεσιουργές διαδικασίες άπειρες κατάλληλες περιστροφές απειροστής τάξης, C φ φ, άπειρες ακατάλληλες περιστροφές απειροστής τάξης, S, άπειρα επίπεδα κατοπτρισμού σ και την αναστροφή i. 9. Όλες οι ομάδες σημείου εκτός των παραπάνω γενεσιουργών διεργασιών συμμετρίας περιέχουν την ταυτότητα, καθώς και όλες τις παράγωγες διεργασίες, οι οποίες προκύπτουν από τις δυνάμεις και τους συνδυασμούς των γενεσιουργών διεργασιών. 10. Η εύρεση της ομάδας σημείου ενός μορίου διευκολύνεται σημαντικά από τη συστηματική μέθοδο Zeldin. Σύμφωνα με αυτήν ακολουθώντας μια σειρά από λογικά βήματα αναζητούνται κάποια χαρακτηριστικά στοιχεία συμμετρίας στο υπό μελέτη μόριο και η ύπαρξη ή μη αυτών οδηγεί στην εύρεση της ομάδας σημείου του μορίου. Βιβλιογραφία Βιβλία Bishop, D., Group Theory and Chemistry, Clarendon Press, Oxford, 197. Carter, R. L., Molecular Symmetry and Group Theory, Wiley, New York, Cotton, F., Chemical Applications of Group Theory, rd Ed., Wiley, New York, Dmitriev, I. S., Symmetry in the World of Molecules, Mir Publishers, Moscow, Dorain, P., Symmetry in Inorganic Chemistry, Addison-Wesley, New York, 196. Hollas, J., Symmetry in Molecules, Chapman and Hall, 197. Jaffé, H. H. and Orchin, M., Symmetry in Chemistry, Wiley, New York, 196. Kettle, S. F. K., Symmetry and Structure, nd Ed., Wiley, New York, 199. Lesk, A.M., Introduction to Symmetry and Group Theory for Chemists, Kluwer, New York, 004. Odgen, J. S., Introduction to Molecular Symmetry, Oxford University Press, Oxford, 001. Vincent, A., Molecular Symmetry and Group Theory, nd Edn, Wiley, New York,

25 Worrall, I. J., Molecular Symmetry, Royal Institute of Chemistry Lecture Series, no., Διευθύνσεις στο Διαδίκτυο Point Group Symmetry: Symmetry and Point Groups: Εκπαιδευτικό Λογισμικό DMolSym: Symmetry Resources at Otterbein College: 6

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου 4. Ομάδες Σημείου ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o ορίζετε την έννοια της ομάδας σημείου ενός μορίου o διακρίνετε τις βασικές κατηγορίες ομάδων σημείου

Διαβάστε περισσότερα

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχές Κβαντικής Χημείας και Φασματοσκοπίας Ενότητα # (3): Ομάδες Σημείου Σιγάλας Μιχάλης Τμήμα Χημείας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΕΠΙΣΤΜΙΟ ΘΕΣΣΑΛΟΙΚΣ ΑΟΙΚΤΑ ΑΚΑΔΜΑΪΚΑ ΜΑΘΜΑΤΑ Αρχές Κβαντικής Χημείας και Φασματοσκοπίας Ενότητα # (): Στοιχεία και Διεργασίες Συμμετρίας Σιγάλας Μιχάλης Τμήμα Χημείας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχές Κβαντικής Χημείας και Φασματοσκοπίας Ενότητα # (4): Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων Σιγάλας Μιχάλης Άδειες

Διαβάστε περισσότερα

8 Βασικές Αρχές και Τεχνικές για την Εφαρμογή της Θεωρίας Ομάδων στη Χημεία

8 Βασικές Αρχές και Τεχνικές για την Εφαρμογή της Θεωρίας Ομάδων στη Χημεία 8 Βασικές Αρχές και Τεχνικές για την Εφαρμογή της Θεωρίας Ομάδων στη Χημεία Διδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε: - Na καταστρώνετε τις εκπροσωπήσεις χαρακτήρων

Διαβάστε περισσότερα

3 Στοιχεία και Διεργασίες Συμμετρίας

3 Στοιχεία και Διεργασίες Συμμετρίας 3 Στοιχεία και Διεργασίες Συμμετρίας Διδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε: - Να διακρίνετε την έννοια του στοιχείου και της διεργασίας συμμετρίας. - Να αναγνωρίζετε

Διαβάστε περισσότερα

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχές Κβαντικής Χημείας και Φασματοσκοπίας Ενότητα # (1): Συμμετρία και Χημεία Σιγάλας Μιχάλης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

3. Στοιχεία και ιεργασίες Συμμετρίας

3. Στοιχεία και ιεργασίες Συμμετρίας 3. Στοιχεία και ιεργασίες Συμμετρίας ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o διακρίνετε την έννοια του στοιχείου και της διεργασίας συμμετρίας o αναγνωρίζετε

Διαβάστε περισσότερα

ΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ. Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας.

ΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ. Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας. ΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας. Παρατηρούμε ότι τα μόρια μπορούν να κατηγοριοποιηθούν σύμφωνα με τη συμμετρία τους. Στοιχεία συμμετρίας

Διαβάστε περισσότερα

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 7 Συμμετρία Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins Physical

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Αρβανίτη Μαρία Ελένη Κρυσταλλίδης Περικλής. Μάθημα : «Θέμα» Επιβλέπουσα : Λαμπροπούλου Σοφία ΣΕΜΦΕ

Αρβανίτη Μαρία Ελένη Κρυσταλλίδης Περικλής. Μάθημα : «Θέμα» Επιβλέπουσα : Λαμπροπούλου Σοφία ΣΕΜΦΕ Αρβανίτη Μαρία Ελένη Κρυσταλλίδης Περικλής Μάθημα : «Θέμα» Επιβλέπουσα : Λαμπροπούλου Σοφία ΣΕΜΦΕ 2016-2017 ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ Εισαγωγή Τα Πλατωνικά στερεά Τα Πλατωνικά στερεά και τα στοιχεία της φύσης Η

Διαβάστε περισσότερα

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων 5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o προβλέπετε με βάση τη συμμετρία αν ένα μόριο έχει μόνιμη

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΕΦΑΡΜΟΓΩΝ ΡΟΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του Γεωργίου Π. Νίνη «Η Θεωρία Ομάδων και

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο

Διαβάστε περισσότερα

1 Dodecaeder 3 7 5 11 9. 2 12 4 10 6. 8 Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Dodecaeder Copyright 1998-2005 Gijs Korthals

Διαβάστε περισσότερα

τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή

τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή Η ιδέα, ότι όλα τα υλικά πράγµατα συντίθενται από αυτά τα τέσσερα πρωταρχικά στοιχεία, αποδίδεται στον προγενέστερό Εµπεδοκλή, Έλληνα φιλόσοφο, ποιητή και πολιτικό [493-433 π.χ.] που γεννήθηκε στον Ακράγαντα

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

6 Εκπροσωπήσεις Ομάδων Σημείου

6 Εκπροσωπήσεις Ομάδων Σημείου 6 Εκπροσωπήσεις Ομάδων Σημείου Διδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε: - Να καταστρώνετε τις μήτρες εκπροσώπησης των ομάδων σημείου χρησιμοποιώντας διάφορες βάσεις.

Διαβάστε περισσότερα

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αρχιτεκτόνων Μηχανικών Τομέας III : Αρχιτεκτονικής Γλώσσας, Επικοινωνίας & Σχεδιασμού ntua ACADEMIC OPEN COURSES Ανθή Μαρία Κουρνιάτη Επίκουρη Καθηγήτρια, Σχολή Αρχιτεκτόνων

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 3. ΟΙ 32 ΚΡΥΣΤΑΛΛΙΚΕΣ ΤΑΞΕΙΣ Ταξινόμηση των κρυστάλλων σαν στερεά σχήματα και οι συμμετρίες Ηλίας Χατζηθεοδωρίδης,

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x 1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο

Διαβάστε περισσότερα

Μοριακή Συμμετρία και Θεωρία Ομάδων Θεωρία και Εφαρμογές

Μοριακή Συμμετρία και Θεωρία Ομάδων Θεωρία και Εφαρμογές i Μοριακή Συμμετρία και Θεωρία Ομάδων Θεωρία και Εφαρμογές Συγγραφή Μιχάλης Π. Σιγάλας Νικόλας Δ. Χαριστός Λεμονιά Δ. Αντώνογλου Κριτικός αναγνώστης Ανδρέας Δ. Γιαννακουδάκης ISBN: 978-960-603-66-0 Copyright

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του ΣΤΕΡΕΑ ΜΑΘΗΜΑ 10 Δίεδρες γωνίες Δύο επίπεδα α και β που τέμνονται, χωρίζουν τον χώρο σε τέσσερα μέρη, που λέγονται τεταρτημόρια. Ορίζουν επίσης σχήματα ανάλογα των γωνιών που ορίζουν δύο τεμνόμενες ευθείες

Διαβάστε περισσότερα

Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + 2). Την εποχή της Στερεομετρίας.

Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + 2). Την εποχή της Στερεομετρίας. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Παράρτημα Κέρκυρας Χαράλαμπος Δημητριάδης Μαθηματικός Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + ). Την εποχή της Στερεομετρίας. Μέγιστο γινόμενο,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΛΙΚΥ ΒΙΒΛΙΥ Σχολικό βιβλίο: Απαντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΜΑΔΑΣ Έχουμε: = 4 i = 6 = + = + = = Άρα, η λύση του συστήματος

Διαβάστε περισσότερα

9 Εφαρμογές Συμμετρίας και Θεωρίας Ομάδων στην Κβαντική Χημεία και τη Φασματοσκοπία

9 Εφαρμογές Συμμετρίας και Θεωρίας Ομάδων στην Κβαντική Χημεία και τη Φασματοσκοπία 9 Εφαρμογές Συμμετρίας και Θεωρίας Ομάδων στην Κβαντική Χημεία και τη Φασματοσκοπία Διδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε: - Να προβλέπετε το πλήθος των μοριακών

Διαβάστε περισσότερα

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το

Διαβάστε περισσότερα

Η ΔΗΜΙΟΥΡΓΙΑ ΤΩΝ ΠΟΛΛΑΠΛΩΝ ΚΟΣΜΩΝ

Η ΔΗΜΙΟΥΡΓΙΑ ΤΩΝ ΠΟΛΛΑΠΛΩΝ ΚΟΣΜΩΝ Η ΔΗΜΙΟΥΡΓΙΑ ΤΩΝ ΠΟΛΛΑΠΛΩΝ ΚΟΣΜΩΝ Του Αλέκου Χαραλαμπόπουλου Όπως διατυπώθηκε στην κοσμοθεωρία μας ΤΟ ΙΔΙΟΝ, ο κόσμος μας, το σύμπαν μας είναι μία ολογραφία, περίπου ένα επίπεδο τετράγωνο. Υπάρχουν έξι

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

6 Γεωμετρικές κατασκευές

6 Γεωμετρικές κατασκευές 6 Γεωμετρικές κατασκευές 6.1 Γενικά Στα σχέδια εφαρμόζουμε γεωμετρικές κατασκευές, προκειμένου να επιλύσουμε προβλήματα που απαιτούν μεγάλη σχεδιαστική και κατασκευαστική ακρίβεια. Τα γεωμετρικά - σχεδιαστικά

Διαβάστε περισσότερα

Εισαγωγή στην Θεωρία Οµάδων Συµµετρίας

Εισαγωγή στην Θεωρία Οµάδων Συµµετρίας Εισαγωγή στην Θεωρία Οµάδων Συµµετρίας Τι µας χρειάζεται; Προβλέπει τη φασµατοσκοπία και τη συµπεριφορά ατόµων και µορίων Πράξεις Συµµετρίας: κινήσεις του µορίου κατά τις οποίες η τελική γεωµετρία του

Διαβάστε περισσότερα

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας.

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας. ΣΤΕΡΕΑ ΜΑΘΗΜΑ 12 ΑΝΑΚΕΦΑΛΑΙΩΣΗ 1. Αν τυχαία πυραμίδα τμηθεί με επίπεδο παράλληλο στη βάση της, έχουμε: KA/KA' = KB/KB' = ΚΓ/ΚΓ' = ΚΗ/Κ'Η' = λ και ΑΒΓ Α'Β'Γ' με λόγο ομοιότητας λ. 2. Μέτρηση κανονικής πυραμίδας:

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

Εφαπτομένη γραφικής παράστασης συνάρτησης

Εφαπτομένη γραφικής παράστασης συνάρτησης Εφαπτομένη Γραφικής Παράστασης Συνάρτησης 1 Στοιχεία Θεωρίας Εφαπτομένη γραφικής παράστασης συνάρτησης Αν η f συνάρτηση είναι παραγωγίσιμη στο 0, τότε η εφαπτομένη ε της γραφικής παράστασης της συνάρτησης

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ

ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΣΥΝΟΛΑ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ «ΣΩΣΤΟ ΛΑΘΟΣ». {,3,5,7,... } { / = ν +, ν Ν} =. = {} 0 3. Αν Α Β τότε Α Β = Α 4. 5 {,3,5,7 } 5. Αν Α= {, 3,7} και Β= {,3} 7, τότε Α=Β 6.

Διαβάστε περισσότερα

Ασκήσεις. Γράψτε μια δομή Lewis για καθένα από τα παρακάτω μόρια και βρείτε τα τυπικά φορτία των ατόμων. (α) CΟ (β) ΗΝO 3 (γ) ClΟ 3 (δ) ΡΟCl 3

Ασκήσεις. Γράψτε μια δομή Lewis για καθένα από τα παρακάτω μόρια και βρείτε τα τυπικά φορτία των ατόμων. (α) CΟ (β) ΗΝO 3 (γ) ClΟ 3 (δ) ΡΟCl 3 Ασκήσεις Γράψτε μια δομή Lewis για καθένα από τα παρακάτω μόρια και βρείτε τα τυπικά φορτία των ατόμων. (α) CΟ (β) ΗΝO 3 (γ) ClΟ 3 (δ) ΡΟCl 3 Γεωμετρία Μορίων Θεωρία VSEPR Μοριακή γεωμετρία: είναι η διάταξη

Διαβάστε περισσότερα

Κατασκευή ρόμβων. Μέθοδος 1: Ιδιότητες: Μέθοδος 2: Ιδιότητες: Μέθοδος 3: Ιδιότητες: Μέθοδος 4: Ιδιότητες: Ονοματεπώνυμο(α):

Κατασκευή ρόμβων. Μέθοδος 1: Ιδιότητες: Μέθοδος 2: Ιδιότητες: Μέθοδος 3: Ιδιότητες: Μέθοδος 4: Ιδιότητες: Ονοματεπώνυμο(α): Κατασκευή ρόμβων Ονοματεπώνυμο(α): Πόσους τρόπους μπορείτε να σκεφτείτε για την κατασκευή ενός ρόμβου; Εξετάστε μεθόδους που χρησιμοποιούν το μενού Κατασκευή, το μενού Μετασχηματισμός ή συνδυασμούς αυτών.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας 81 ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας Εισαγωγή Σε πολλά προβλήματα της Χαρτογραφίας, της Ανώτερης Γεωδαισίας, της Γεωδαιτικής Αστρονομίας και της Δορυφορικής Γεωδαισίας εμφανίζονται γεωμετρικά

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας 81 ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας Εισαγωγή Σε πολλά προβλήματα της Χαρτογραφίας, της Ανώτερης Γεωδαισίας, της Γεωδαιτικής Αστρονομίας και της Δορυφορικής Γεωδαισίας εμφανίζονται γεωμετρικά

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

Γεωμετρία Μορίων Θεωρία VSEPR

Γεωμετρία Μορίων Θεωρία VSEPR Γεωμετρία Μορίων Θεωρία VSEPR Γεωμετρία Μορίων Θεωρία VSEPR Γεωμετρία Μορίων Θεωρία VSEPR Μεθοδολογία για την πρόβλεψη της μοριακής γεωμετρία: Γράφουμε τον ηλεκτρονιακό τύπο κατά Lewis. Μετρούμε το συνολικό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D 1 Φύλλο 2 Δράσεις με το λογισμικό Cabri-geometry 3D Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο με το αντίστοιχο λογισμικό του Cabri II. Περιέχει γενικές εντολές και εικονίδια που συμπεριλαμβάνουν

Διαβάστε περισσότερα

ΔΙΑΘΛΑΣΗ ΚΑΙ ΦΟΡΤΙΟ. ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΟΙ ΟΥΡΑΝΟΙ. Του Αλέκου Χαραλαμπόπουλου

ΔΙΑΘΛΑΣΗ ΚΑΙ ΦΟΡΤΙΟ. ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΟΙ ΟΥΡΑΝΟΙ. Του Αλέκου Χαραλαμπόπουλου ΔΙΑΘΛΑΣΗ ΚΑΙ ΦΟΡΤΙΟ. ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΟΙ ΟΥΡΑΝΟΙ Του Αλέκου Χαραλαμπόπουλου Όσοι διαβάσατε «ΤΟ ΙΔΙΟΝ» www.omas-e.gr, θα διαπιστώσατε ότι στο κέντρο των συμπάντων υπάρχει η φυσαλίδα που στέλνει

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις στην Αναλυτική Γεωμετρία

Επαναληπτικές Ασκήσεις στην Αναλυτική Γεωμετρία Επαναληπτικές Ασκήσεις στην Αναλυτική Γεωμετρία (Από παλαιά bac και prebac) 1) Θεωρούμε το σημείο Α(3, 2, 0) και το επίπεδο α: 3x+2y+pz=3, όπου το p είναι ένας πραγματικός αριθμός. Να βρεθεί η τιμή του

Διαβάστε περισσότερα

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 4 Φάσματα περιστροφής πολυατομικών μορίων Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58].

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. Η συνεισφορά του Kepler στα Αρχιµήδεια ήταν µεγάλη, γιατί αυτός απέδειξε

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

συµµετρίες που αντιστοιχούν σε έναν από τους άξονες συµµετρίας του τετράεδρου.

συµµετρίες που αντιστοιχούν σε έναν από τους άξονες συµµετρίας του τετράεδρου. συµµετρίες που αντιστοιχούν σε έναν από τους άξονες συµµετρίας του τετράεδρου. Σε κάθε άξονα αντιστοιχούν 3 κατοπτρισµοί, οπότε έχουµε 4 * 3 = 12 κατοπτρισµούς συνολικά. Συνολικά, η οµάδα των συµµετριών

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ

2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 013-014 ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΥΠΕΡΒΟΛΗ ΟΡΙΣΜΟΣ: Έστω Ε και Ε δύο σημεία του

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

Μεθοδολογία Υπερβολής

Μεθοδολογία Υπερβολής Μεθοδολογία Υπερβολής Υπερβολή ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερή και μικρότερη από την απόσταση

Διαβάστε περισσότερα

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( Κανονικά πολύγωνα ) Δραστηριότητα 1 : Θεωρούμε ένα κύκλο κέντρου Ο και ακτίνας ρ ( τυχαίο μήκος ) και πάνω σε σ αυτόν παίρνουμε 5 διαδοχικά ίσα τόξα τα: AB, B Γ, ΓΔ, ΔΕ, ΕΑ. Στην συνέχεια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές

Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Εργαστηριακή άσκηση 01 Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Ηλίας Χατζηθεοδωρίδης Οκτώβριος / Νοέμβριος 2004 Τι περιλαμβάνει η άσκηση Θα μάθετε τα 7 κρυσταλλογραφικά συστήματα και πως

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 1. ΓΕΝΙΚΑ Από τις καταστάσεις της ύλης τα αέρια και τα υγρά δεν παρουσιάζουν κάποια τυπική διάταξη ατόμων, ενώ από τα στερεά ορισμένα παρουσιάζουν συγκεκριμένη διάταξη ατόμων

Διαβάστε περισσότερα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 3 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : Μία ώρα για την κατανόηση της μορφής και των απλών ιδιοτήτων των κανονικών

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Κύλινδρος κοιμώμενος εντός κώνου

Κύλινδρος κοιμώμενος εντός κώνου Κύλινδρος κοιμώμενος εντός κώνου Γιώργος Μπαλόγλου gbaloglou@gmail.com 7 η Μαθηματική Εβδομάδα, 18- Μαρτίου 015, Θεσσαλονίκη Εισαγωγή Περίληψη: Υπολογίζεται ο μέγιστος όγκος οριζοντίου κυλίνδρου εγγεγραμμένου

Διαβάστε περισσότερα

ιαχειριστής Έργου ΣΟΥΓΑΡΗΣ ΙΩΑΝΝΗΣ Ιούνιος 14

ιαχειριστής Έργου ΣΟΥΓΑΡΗΣ ΙΩΑΝΝΗΣ Ιούνιος 14 ΟΓΚΟΣ ΣΤΕΓΗΣ ιαχειριστής Έργου ΣΟΥΓΑΡΗΣ ΙΩΑΝΝΗΣ Περιεχόμενα 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 4 I. ΠΥΡΑΜΙΔΑ 4 II. ΤΕΤΡΑΕΔΡΟ 5 III. ΟΓΚΟΣ ΠΥΡΑΜΙΔΑΣ 5 2. ΜΟΡΦΕΣ ΙΣΟΚΛΙΝΟΥΣ ΣΤΕΓΗΣ 6 I. ΔΥΡΙΧΤΗ 6 II. ΤΕΤΡΑΡΙΧΤΗΜΕ ΤΕΤΡΑΓΩΝΗ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 02/12/2017 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις

Διαβάστε περισσότερα

Μάθημα 20 ο. Το σχήμα των μορίων

Μάθημα 20 ο. Το σχήμα των μορίων Μάθημα 20 ο Το σχήμα των μορίων Tα μόρια Μπορεί να είναι μη πολικά έστω και άν οι δεσμοί μεταξύ των ατόμων τους είναι πολωμένοι Δεν είναι επίπεδα (έχουν τρισδιάστατη διάταξη στο χώρο) Γενική και Ανόργανη

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (6): Τροχιακά και υβριδισμός Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.

Διαβάστε περισσότερα

Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο.

Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Καταστάσεις της ύλης Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Υγρά: Τάξη πολύ µικρού βαθµού και κλίµακας-ελκτικές δυνάµεις-ολίσθηση. Τα µόρια βρίσκονται

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Διακριτά Μαθηματικά Εξέταση Ιούλιος 204 Σελ. από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις σας

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

Ειδικά θέματα στη ροπή αδράνειας του στερεού.

Ειδικά θέματα στη ροπή αδράνειας του στερεού. Ειδικά θέματα στη ροπή αδράνειας του στερεού Η συνική ροπή αδράνειας ως άθροισμα επί μέρους ροπών αδράνειας Έστω το τυχαίο στερεό του σχήματος που αποτελείται από επιμέρους τμήματα Α,Β,Γ,Δ Η ροπή αδράνειας

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 0.

ραστηριότητες στο Επίπεδο 0. ραστηριότητες στο Επίπεδο 0. Σε αυτό το επίπεδο περιλαµβάνονται δραστηριότητες ταξινόµησης, αναγνώρισης και περιγραφής διαφόρων σχηµάτων. Είναι σηµαντικό να χρησιµοποιούνται πολλά διαφορετικά και ποικίλα

Διαβάστε περισσότερα

Μοριακά πρότυπα. Σε τι διαφέρουν από τα μεταλλικά συστήματα; Παραδείγματα τύπων ατόμων. Η έννοια του τύπου ατόμου

Μοριακά πρότυπα. Σε τι διαφέρουν από τα μεταλλικά συστήματα; Παραδείγματα τύπων ατόμων. Η έννοια του τύπου ατόμου Τεχνικές προσομοίωσης και σχεδιασμού υλικών σε ΗΥ Σε τι διαφέρουν από τα μεταλλικά συστήματα; Μοριακά πρότυπα Στα μοριακά συστήματα: Η φύση του δεσμού είναι διαφορετική (ομοιοπολικός δεσμός). Υπάρχει συγκεκριμένη

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα