Εισαγωγή στην Θεωρία Οµάδων Συµµετρίας
|
|
- Κασσάνδρα Αλεξίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εισαγωγή στην Θεωρία Οµάδων Συµµετρίας Τι µας χρειάζεται; Προβλέπει τη φασµατοσκοπία και τη συµπεριφορά ατόµων και µορίων Πράξεις Συµµετρίας: κινήσεις του µορίου κατά τις οποίες η τελική γεωµετρία του µορίου είναι ίδια µε την αρχική.. Ταυτότητα E ή C : καµία πράξη. Περιστροφή τάξης n, C n : περιστροφή ως προς άξονα κατά γωνία π/n C η γωνία περιστροφής είναι 8 ο π/ άρα n
2 . Ανάκλαση ως προς επίπεδο σ.. Ανάκλαση ως προς κέντρο συµµετρίας i. 5. S n : Περιστροφή C n που ακολουθείται από ανάκλαση σ ως επίπεδο κάθετο στον άξονα περιστροφής. C σ S
3 Θεωρία Οµάδων Συµµετρίας Οµάδα είναι µία συλλογή πράξεων συµµετρίας που έχει τις εξής ιδιότητες. Ένα µέλος είναι η πράξη της ταυτότητας Ε. Το γινόµενο δύο µελών αποτελεί επίσης µέλος της οµάδας. Η πράξη του πολλαπλασιασµού είναι προσεταιριστική Α*(Β*Γ(Α*Β*Γ ΠΡΟΣΟΧΗ!! Α*Β Β*Α. Για κάθε µέλος (Ζ της οµάδας υπάρχει αντίστροφος (Ζ έτσι ώστε Ζ *Ζ Ζ ΖΕ BCTAGJ B B C T A G J C C B J G A T T T G B J C A A A J G BT C GGTACJ B J J A C T B G Το στοιχείο της ταυτότητας είναι το Β Υπάρχουν αντίστροφοι, π.χ. Για το J είναι το G διότι J*GG*JB Όλα τα γινόµενα είναι στοιχεία της οµάδας Ισχύει C*(T*GC*CB και (C*Τ*GJ*GB άρα C*(T*G (C*Τ*G
4 Μετασχηµατισµός Οµοιότητας ορίζεται ως το γινόµενων τριών πράξεων, δύο εκ των οποίων είναι αντίστροφες Ζ *Χ*ΖΥ Οι πράξεις Χ και Υ που συνδέονται µε µετασχηµατισµό οµοιότητας ονοµάζονται συζυγείς πράξεις. Η τάξη είναι το σύνολο των συζυγών πράξεων µιας οµάδας π.χ. BCTAGJ B B C T A G J C C B J G A T T T G B J C A A A J G BT C GGTACJ B J J A C T B G J *C*JG*(C*JG*TA J *T*JG*(T*JG*AC J *A*JG*(A*JG*CT Εποµένως τα Α, C, Τ ανήκουν στην ίδια τάξη (lss
5 Βαθµός (order µιας οµάδας είναι ο αριθµός των στοιχείων συµµετρίας που περιέχει BCTAGJ Βαθµός BBCTAGJ C C B J G A T T T G B J C A A A J G BTC GGTACJ B J J A C T B G Υποοµάδα είναι ένα υποσύνολο των πράξεων µιας οµάδας που αποτελούν µικρότερη οµάδα {Β,C} βαθµός {Β,G,J} βαθµός BCTAGJ BBCTAGJ C C B J G A T T T G B J C A A A J G BTC GGTACJ B J J A C T B G BCTAGJ BBCTAGJ C C B J G A T T T G B J C A A A J G BT C GGTACJ B J J A C T B G BGJCTA B B G J C T A GGJBTAC J JBGACT CCATBJG T T C A G B J A A T C J G B ΠΡΟΣΟΧΗ: Ο βαθµός µιας τυχόν υποοµάδας είναι πάντοτε ακέραιος διαιρέτης του βαθµού της κύριας οµάδας π.χ. ** δηλ ή ή 5
6 Οµάδες Σηµειακής Συµµετρίας (point( groups C : Ανήκουν µόρια µε µόνη πράξη συµµετρίας την ταυτότητα Ε Cl N F C i : Ανήκουν µόρια µε πράξεις συµµετρίας Ε και i (κέντρο συµµετρίας F Cl Cl F
7 C n : Ανήκουν µόρια µε πράξεις συµµετρίας Ε και C n (άξονας συµµετρίας C C nv : Ανήκουν µόρια µε πράξεις συµµετρίας E, C n και n σ v (κατακόρυφα επίπεδα δηλ. επίπεδα συµµετρίας που περιέχουν τον κύριο άξονα C n v επίπεδα σ v ' σ v C v C άξονας 7
8 Πίνακας γινοµένων της οµάδας C v C v E C σ v σ v ' E E C σ v σ v ' C C E σ v σ v σ v ' σ v ' C *C E C C E C v E C σ v σ v ' E E C σ v σ v ' C C σ v σ v C σ v ' σ v ' σ v ' σ v σ v *σ v 'C C C v E C σ v σ v ' E E C σ v σ v ' C C E σ v ' σ v σ v σ v σ v ' E C σ v ' σ v ' σ v C E 8
9 C nh : Ανήκουν µόρια µε πράξεις συµµετρίας E, C n και ένα σ h (οριζόντιο δηλ. επίπεδο συµµετρίας κάθετο στον κύριο άξονα C n C h C h 9
10 C C C C κύριος άξονα περιστροφής είναι κάθετος στο επίπεδο της διαφάνειας και περνάει από το κέντρο του δακτυλίου. Παρατηρούµε ότι υπάρχουν ΥΟ ( C άξονες!
11 D n : Ανήκουν µόρια µε πράξεις συµµετρίας E, C n και n C άξονες κάθετους στον κύριο άξονα C n D nd : Ανήκουν µόρια µε πράξεις συµµετρίας E, C n, n C άξονες κάθετους στον κύριο άξονα C n και n σ d (κατακόρυφα δίεδρα επίπεδα δηλ. επίπεδα συµµετρίας που περιέχουν τον κύριο άξονα C n D d
12 C κύριος άξονα περιστροφής είναι κάθετος στο επίπεδο της διαφάνειας και ακολουθεί την διεύθυνση το δεσµού C-C C C Υπάρχουν και C άξονες κάθετοι στον C και περνούν από το µέσο του δεσµού C-C C C C
13 C C C C
14 D nh : Ανήκουν µόρια µε πράξεις συµµετρίας E, C n, n C άξονες κάθετους στον κύριο άξονα C n και σ h (οριζόντιο επίπεδο δηλ. επίπεδο συµµετρίας κάθετο στον κύριο άξονα C n C C C Το οριζόντιο επίπεδο σ h ορίζετε από τους τρεις άνθρακες
15 Ιδιαίτερες Οµάδες D h : Ανήκουν γραµµικά µόρια µε άξονα συµµετρίας κάθετο στο δεσµό. C v : Όλα τα υπόλοιπα γραµµικά µόρια Τ d : Ανήκουν τα τετραεδρικά µόρια Ο h : Ανήκουν τα οκταεδρικά µόρια Ι h : Ανήκουν τα εικοσαεδρικά µόρια Κ h : Σφαιρική συµµετρία ανήκουν τα άτοµα 5
16 ιάγραµµα Ροής για αναγνώριση Σηµειακής Οµάδες Συµµετρίας Ιδιαίτερη Οµάδα; XI NAI C v, D h, T d, h, I h? C n (n> XI? σ NAI XI NAI? C NAI? σ h NAI XI D nh C s? i? σ h NAI XI NAI C i C C nh XI XI D nd NAI? σ v? σ v NAI C nv XI XI D n C n
17 Αλλ.ένιο C. Ιδιαίτερη οµάδα? ΟΧΙ. Cn (n>? NAI C κατά µήκος των δεσµών CCC. C? ΝΑΙ C. σ h? XI 5. σ v? NAI σ v Το µόριο έχει D d συµµετρία 7
18 F? C v CC (γραµµικό D h Cl Cl C s (επίπεδο C C σ h D h 8
19 9 Πράξεις Συµµετρίας και Πίνακες Πράξεις Συµµετρίας και Πίνακες (,, (',',' Μια πράξη συµµετρίας, µετακινεί κάποιο άτοµο από κάποια θέση (,, σε κάποια άλλη (',','. Με µεταβολή αυτή της γεωµετρίας µπορεί να περιγραφή µε κάποιον πίνακα R R R R R R R R R RB A!! Πίνακας Ταυτότητας E Πίνακας Ανάκλασης Επιπέδου xy σ z x y
20 5 C C 5 Επειδή, όσο αυξάνεται ο αριθµός των ατόµων, τόσο το µέγεθος των πινάκων µεγαλώνει, για να απλουστεύσουµε τις πράξεις µετασχηµατίζουµε τους πίνακες που περιγράφουν τις πράξεις συµµετρίας ώστε οι νέοι πίνακες να είναι ηµιδιγώνειοι ( τετραγωνικώς διαγώνιοι N M L K J I G F E D C B A f e d f e d f e d f e d f e d f e d Οι απλουστεύσεις αυτές επιτυγχάνονται µε µετασχηµατισµούς οµοιότητας Ζ *Χ*ΖΥ Η πράξεις (πίνακες Χ και Υ που συνδέονται µε µετασχηµατισµό οµοιότητας ονοµάζονται συζυγείς πράξεις. Η τάξη είναι το σύνολο των συζυγών πράξεων µιας οµάδας Οι µικροί τετραγωνικοί πίνακες κατά µήκος της διαγωνίου ονοµάζονται µηαναγωγήσιµες παραστάσεις (ΜΑΠ
21 Το ίχνος ή χαρακτήρας ενός πίνακα ορίζεται από το άθροισµα των στοιχείων τις διαγωνίου N M L K J I G F E D C B A f e d f e d f e d f e d f e d f e d Χ Υ ( ( ( ( ( X Tr EX Tr ZX Z Tr XZ Z Tr Y Tr Ιδιότητα : Τr(ABTr(BA Απόδειξη: j jj j i ij ji j i ji ij i j ji ij i ii BA Tr BA A B B A B A AB AB Tr ( ( Ιδιότητα : Εάν, Χ καί Υ συζυγείς, τότε Τr(ΧTr(Υ Απόδειξη:
22 Πράξεις Συµµετρίας Πίνακες Χαρακτήρων C v E C C σ v σ d A z z z ΜΑΠ A R z B x y x(x y B xy xyz E (x,y, (Rx,Ry (xz, yz (xz, yz, [x(x y, y(x y ] Γ x,y,z χαρακτήρες A(Σ : µονοδιάστατες ΜΑΠ συµµετρικές ΜΑΠ ως προς C n B : µονοδιάστατες ΜΑΠ µη-συµµετρικές ΜΑΠ ως προς C n Ε (Π, T ( : δισδιάστατες και τρισδιάστατες ΜΑΠ, : συµµετρικές και µη-συµµετρικές ΜΑΠ ως προς C ','' : συµµετρικές και µη-συµµετρικές ΜΑΠ ως προς σ h (+, ( : συµµετρικές και µη-συµµετρικές ΜΑΠ ως προς σ υ g, u : συµµετρικές και µη-συµµετρικές ΜΑΠ ως προς i
23 C v E C C σ v σ d A z x +y, z z A R z B x y x(x y Βάσεις Ατοµικών Τροχιακών x, y, z : αντιστοιχούν σε ατοµικά p-τροχιακά (p x, p y, p z z, x -y : αντιστοιχούν σε ατοµικά d- τροχιακά (d z, d x-y z : αντιστοιχούν σε ατοµικά f- τροχιακά Λέµε ότι οι ΜΑΠ µετασχηµατίζονται όπως και τα αντίστοιχα ατοµικά τροχιακά κάτω από τις αντίστοιχες πράξεις συµµετρίας Π.χ. Το p z είναι πλήρως συµµετρικό ως προς κάθε πράξη συµµετρίας στην οµάδα C v εποµένως αντιστοιχεί στο Α Ε, C, C, σ h, σ v
24 C v E C C σ v σ d A z x +y, z z A R z B x y x(x y y x Ε Χαρακτήρας + C y x C + Ίδιοι Χαρακτήρες µε Β σ v + σ d
25 Προσδιορισµός ΜΑΠ C v E C σ v (xy σ v (yz A A - - B - - B - - Γ R R ( Γi χ χ ( Γi C l R α(γ i : # των ΜΑΠ Γ i l : Ο βαθµός της οµάδας χ R : χαρακτήρας της ΑΠ χ R (Γ i : χαρακτήρας της ΜΑΠ C R : Ο βαθµός της τάξης (συντελεστής της πράξης συµµετρίας R ( A χ( χ( E C ( + ( χ(σvxz χ(σv yz + ( + ( 8 ( A ( B ( B ( + + ( + ( ( + ( + + ( ( + ( + ( + Οι ΜΑΠ είναι Α και Β 5
26 C v E C σ v A A - E - Γ ( A ( A ( E χ( χ( χ(σ E C v ( + ( ( + ( ( ( + + ( ( + + ( + 8 Οι ΜAΠ είναι Α, Α και Ε
27 Ευθέα Γινόµενα ΜΑΠ D E C C A A - E - A x A A A x A - A A x E - E A x A A A x E - E E x E A+A+E Το ευθύ γινόµενο δύο ΜΑΠ είναι µία αναγωγήσιµη παράσταση που µπορεί να αναχθεί σε γραµµικό συνδυασµό ΜΑΠ Η αναγωγήσιµη παράσταση του ευθέως γινοµένου προσδιορίζεται από το γινόµενο των χαρακτήρων κάθε τάξης (πράξης συµµετρίας ΠΡΟΣΟΧΗ! Οβαθµός της τάξης δεν χρησιµοποιείτε στο ευθύ γινόµενο 7
ΦΥΣΙΚΟΧΗΜΕΙΑ Ι (ΧΗΜ-048) ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ. 5. Θεωρία Ομάδων Μοριακή συμμετρία. ΦΥΣΙΚΟΧΗΜΕΙΑ Ι : ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ (Γ εξ.
ΦΥΣΙΚΟΧΗΜΕΙΑ Ι (ΧΗΜ-48) ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ 5. Θεωρία Ομάδων Μοριακή συμμετρία ΦΥΣΙΚΟΧΗΜΕΙΑ Ι : ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ (Γ εξ. 26) Μοριακή Συμμετρία Θεωρία Ομάδων I. Βασικά στοιχεία θεωρίας ομάδων II.
Διαβάστε περισσότεραΦΥΣΙΚΟΧΗΜΕΙΑ Ι (ΧΗΜ-048) ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ. 5. Θεωρία Ομάδων Μοριακή συμμετρία. ΦΥΣΙΚΟΧΗΜΕΙΑ Ι : ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ (Γ εξ.
ΦΥΣΙΚΟΧΗΜΕΙΑ Ι (ΧΗΜ-48) ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ 5. Θεωρία Ομάδων Μοριακή συμμετρία ΦΥΣΙΚΟΧΗΜΕΙΑ Ι : ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ (Γ εξ. 27) Μοριακή Συµµετρία Θεωρία Οµάδων I. Βασικά στοιχεία θεωρίας οµάδων II.
Διαβάστε περισσότεραΣυμμετρία μορίων και θεωρία ομάδων
Συμμετρία μορίων και θεωρία ομάδων Συμμετρία πολυατομικών μορίων Τι μας χρειάζεται; Προβλέπει τη φαματοκοπία και τη υμπεριφορά ατόμων και μορίων Πράξεις Συμμετρίας: κινήεις του μορίου κατά τις οποίες η
Διαβάστε περισσότεραΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ. Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας.
ΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας. Παρατηρούμε ότι τα μόρια μπορούν να κατηγοριοποιηθούν σύμφωνα με τη συμμετρία τους. Στοιχεία συμμετρίας
Διαβάστε περισσότεραΜοριακά Τροχιακά ιατοµικών Μορίων
Μοριακά Τροχιακά ιατοµικών Μορίων Για την περιγραφή της ηλεκτρονικής δοµής των µορίων θα χρησιµοποιήσουµε µοριακά τροχιακά που θα είναι γραµµικοί συνδυασµοί ατοµικών τροχιακών. Τα µοριακά τροχιακά θα αποτελούν
Διαβάστε περισσότερα, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j
Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Διαβάστε περισσότεραΕφαρμογές της θεωρίας ομάδων
Εφαρμογές της θεωρίας ομάδων Ατομικά τροχιακά 4v E 4 σ v σ d +, 3 R B ( ) Βάσεις Ατομικών Τροχιακών,, : αντιστοιχούν σε ατομικά p-τροχιακά (p, p, p ), - : αντιστοιχούν σε ατομικά d- τροχιακά (d, d - )
Διαβάστε περισσότερα6 Εκπροσωπήσεις Ομάδων Σημείου
6 Εκπροσωπήσεις Ομάδων Σημείου Διδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε: - Να καταστρώνετε τις μήτρες εκπροσώπησης των ομάδων σημείου χρησιμοποιώντας διάφορες βάσεις.
Διαβάστε περισσότερα4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου
4. Ομάδες Σημείου ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o ορίζετε την έννοια της ομάδας σημείου ενός μορίου o διακρίνετε τις βασικές κατηγορίες ομάδων σημείου
Διαβάστε περισσότεραΕργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 3: Θεωρία του Ligand Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας
Διαβάστε περισσότεραπραγματικών (μιγαδικών αριθμών) σε m γραμμές και n στήλες. Αν m= πίνακας Α είναι ένας τετραγωνικός πίνακας τάξης n.
Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010-2011 ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΙΝΑΚΑΣ Ένας πίνακας Α με στοιχεία από το σύνολο F (συνήθως θεωρούμε τα σύνολα
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου
Διαβάστε περισσότεραΤαξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.
Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και
Διαβάστε περισσότεραΟρισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
Διαβάστε περισσότεραΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017
ΜΑΣ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο 07-08, Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: ώρες 8 Νοεμβρίου, 07 Δίνονται 4 προβλήματα που αντιστοιχούν σε 0 μονάδες με άριστα το 00! ΟΝΟΜΑ: Αρ.
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
Διαβάστε περισσότεραΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό
Διαβάστε περισσότεραΒασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
Διαβάστε περισσότερα7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)
77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί εξιόστροφο σύστημα Θετικές περιστροφές ως προς τους άξονες συντεταγμένων x, y, z Αριστερόστροφο Σύστημα Αναπαράσταση
Διαβάστε περισσότεραΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ
Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai208/lai208html Παρασκευή 2 Οκτωβρίου 208 Ασκηση Να γράψετε
Διαβάστε περισσότεραΚεφάλαιο 2 Πίνακες - Ορίζουσες
Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να
Διαβάστε περισσότεραΔιανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
Διαβάστε περισσότεραΣτ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότερα1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ
. A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
Διαβάστε περισσότεραΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ
ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ ή ΜΗΤΡΩΝ Η άλγεβρα πινάκων μας επιτρέπει: Να γράψουμε με περιεκτικό τρόπο ένα μεγάλο σύστημα γραμμικών εξισώσεων Να ελέγξουμε την ύπαρξη λύσης σε ένα σύστημα γραμμικών εξισώσεων με τη χρησιμοποίηση
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
Διαβάστε περισσότεραΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Διαβάστε περισσότερα1 Η εναλλάσσουσα ομάδα
Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις
Διαβάστε περισσότεραΣτροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.
Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Διαβάστε περισσότεραΑσκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.
.. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός
Διαβάστε περισσότεραΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 7 Συμμετρία Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins Physical
Διαβάστε περισσότερα1,y 1) είναι η C : xx yy 0.
ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.
Διαβάστε περισσότερα( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.
http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.
Διαβάστε περισσότερα3 Στοιχεία και Διεργασίες Συμμετρίας
3 Στοιχεία και Διεργασίες Συμμετρίας Διδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε: - Να διακρίνετε την έννοια του στοιχείου και της διεργασίας συμμετρίας. - Να αναγνωρίζετε
Διαβάστε περισσότεραιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012
ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.
Διαβάστε περισσότεραΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ
ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.
Διαβάστε περισσότεραΙ. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.
Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,
ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii09/laii09.html Παρασκευή 0 Μαίου
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii08/laii08.html Παρασκευή 4 Μαίου
Διαβάστε περισσότεραΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
Διαβάστε περισσότεραΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ ΚΕΦ. 1 ο (ΠΙΘΑΝΟΤΗΤΕΣ) Ο ρ ι σ µ ο ί Πείραµα τύχης (π.τ.) είναι το πείραµα για το οποίο δεν µπορούµε εκ των προτέρων να προβλέψουµε το αποτέλεσµά του αν και επαναλαµβάνεται
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons
Διαβάστε περισσότεραΑπαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)
Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά
Διαβάστε περισσότερα1 η Εργασία Ηµεροµηνία αποστολής: 19 Νοεµβρίου 2006
η Εργασία Ηµεροµηνία αποστολής: 9 Νοεµβρίου 6. α. Να βρεθεί η γωνία µεταξύ των διανυσµάτων a = i + j k και b = 6 i j + k. β. Να δείξετε ότι τα διανύσµατα a, b, c είναι ορθογώνια και µοναδιαία. a = ( i
Διαβάστε περισσότεραΣύνολα. Γνωστά µας σύνολα: Ν σύνολο φυσικών αριθµών Q σύνολο ρητών αριθµών Ζ σύνολο ακεραίων αριθµών R σύνολο πραγµατικών αριθµών
Σύνολα Σελ. 40 Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ
Tel. 10 361653-103617784 - Fax: 10 364105 B ΓΥΜΝΑΣΙΟΥ 1. Να υπολογίσετε την τιμή της παράστασης: 3 Α= 4 5 + 008: 4 + (3 5 ) 49 10 4. Στο διπλανό σχήμα η ευθεία A y είναι παράλληλη προς την πλευρά ΒΓ του
Διαβάστε περισσότερα4 Ομάδες Σημείου. - Ευχέρεια στην εκτέλεση των αντίστοιχων διεργασιών συμμετρίας περιστροφής, στροφοκατοπτρισμού, κατοπτρισμού και αναστροφής.
4 Ομάδες Σημείου Διδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε: - Να ορίζετε την έννοια της ομάδας σημείου ενός μορίου. - Να διακρίνετε τις βασικές κατηγορίες ομάδων
Διαβάστε περισσότεραΚεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς
Διαβάστε περισσότεραProapaitoÔmenec gn seic.
ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία
Διαβάστε περισσότερα0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,
I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +
Διαβάστε περισσότεραΣυνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f
Συνάρτηση f, λέγεται η διαδικασία µε βάση την οποία σε κάθε στοιχείο χ ενός συνόλου Α αντιστοιχούµε ακριβώς ένα στοιχείο ενός άλλου συνόλου Β. Το σύνολο Α λέγεται πεδίο ορισµού ( ή σύνολο ορισµού ) της
Διαβάστε περισσότεραΣημειώσεις Μαθηματικών 1
Σημειώσεις Μαθηματικών 1 Διανύσματα Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Διανύσματα 3.1 Έννοια διανύσματος Ορισμός 1 Ονομάζουμε Διάνυσμα ΑΒ ένα προσανατολισμένο ευθύγραμμο τμήμα ΑΒ με αρχή το Α και πέρας
Διαβάστε περισσότεραΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 2004 Θέμα 1 ο. 4
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 00 Θέμα 1 ο Έστω U ο υπόχωρος του που παράγεται από τα στοιχεία (1-11α) (10β) (5-γ) και (-δ) (I) Να προσδιορίσετε τις αναγκαίες
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Διαβάστε περισσότεραΗ γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός
ΕΥΘΕΙΑ Να προσέχεις ότι: Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός Ax+By+Γ=0, με κάποιο Η εξίσωση της ευθείας που διέρχεται από ένα σημείο Α(x 0,y 0 ) και έχει συντελεστή
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ A u B Μέτρο Διεύθυνση Κατεύθυνση (φορά) Σημείο Εφαρμογής Διανυσματικά Μεγέθη : μετάθεση, ταχύτητα, επιτάχυνση, δύναμη Μονόμετρα Μεγέθη : χρόνος, μάζα, όγκος, θερμοκρασία,
Διαβάστε περισσότεραAB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται
ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος
Διαβάστε περισσότεραΣυναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι
ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων
Διαβάστε περισσότερα8 Βασικές Αρχές και Τεχνικές για την Εφαρμογή της Θεωρίας Ομάδων στη Χημεία
8 Βασικές Αρχές και Τεχνικές για την Εφαρμογή της Θεωρίας Ομάδων στη Χημεία Διδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε: - Na καταστρώνετε τις εκπροσωπήσεις χαρακτήρων
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας
Διαβάστε περισσότεραΤάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε
Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;
Διαβάστε περισσότεραΜερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Διαβάστε περισσότεραΡητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1 ΠΡΑΞΕΙΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ Οι αριθμοί 0,1,,,4, είναι οι Φυσικοί αριθμοί. Οι Φυσικοί αριθμοί μαζί με τους αντίθετούς τους αποτελούν τους Ακέραιους αριθμούς. Δηλαδή ακέραιοι είναι οι αριθμοί,-,-,-1,0,1,,,
Διαβάστε περισσότεραραστηριότητες στο Επίπεδο 1.
ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε
Διαβάστε περισσότερα1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.
1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. ( Καρτεσιανή ) επιλέχθηκε για το σχήµα. Ο αριθµός a δεν επιρρεάζει
Διαβάστε περισσότεραΦροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να
Διαβάστε περισσότεραn. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:
Η ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ καθώς είναι από τα σημαντικότερα κομμάτια της Άλγεβρας με τις περισσότερες εφαρμογές ΔΕΝ πρέπει να αποστηθίζεται και κυρίως ΔΕΝ πρέπει να γίνεται αντιπαθητική. Για τη σωστή εκμάθηση
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε
Διαβάστε περισσότερα2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ
ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 013-014 ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΥΠΕΡΒΟΛΗ ΟΡΙΣΜΟΣ: Έστω Ε και Ε δύο σημεία του
Διαβάστε περισσότεραx 2 + y 2 x y
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 014-15 Τμήμα Μαθηματικών και Διδάσκων: Χρήστος Κουρουνιώτης Εφαρμοσμένων Μαθηματικών ΜΕΜ0 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Φυλλάδιο Προβλημάτων Κύκλος, Ελλειψη, Υπερβολή, Παραβολή
Διαβάστε περισσότερα(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα
Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες
Διαβάστε περισσότερα3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ
3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότεραΜεθοδολογία Έλλειψης
Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση
Διαβάστε περισσότεραΦΥΣΙΚΟΧΗΜΕΙΑ Ι (ΧΗΜ-048) - ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ (ΧΗΜ-305)
ΦΥΣΙΚΟΧΗΜΕΙΑ Ι (ΧΗΜ-048) - ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ (ΧΗΜ-305) MOΡIAKH ΦΑΣΜΑΤΟΣΚOΠΙΑ Επίλυση προβλημάτων μοριακής συμμετρίας (θεωρίας ομάδων) Άσκηση 1 [2 η πρόοδος, Χ2015-16] Να θεωρήσετε το μόριο τριχλωρομεθάνιο,
Διαβάστε περισσότερα