STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM"

Transcript

1 STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM Autor: Ivan Volarić, struč. spec. ing. aedif. Zagreb, Siječanj 2017.

2 TEHNIČKI OPIS KONSTRUKCIJE OPIS PROJEKTNOG ZADATKA Projektni zadatak prema kojem je izrađen projekt sadrži nekoliko bitnih dijelova. Izabran materijal je masivno drvo, maksimalna visina krovišta iznosi 5 metara, raspon 10 metara, a lokacija za koju je projekt previđen je Zagreb (Hrvatska). DIMENZIJE OBJEKTA Tlocrtne dimenzije objekta su metara X metara. Visina krovne konstrukcije je 4.31 metar. POKROV Projektirani pokrov objekta je crijep tipa Biber. GLAVNA NOSIVA KONSTRUKCIJA Glavna nosiva konstrukcija projektirana je kao sustav dvostruke stolice. Rogovi koje je potrebno ugraditi su dimenzija poprečnog presjeka 16cm x 10cm, a na podrožnice naliježu pomoću zasjeka od cca. 3cm. Podrožnice su projektirane sa dimenzijom poprečnog presjeka 12cm x 24cm, ruke 12cm x 12cm dok je kosnike potrebno ugraditi poprečnog presjeka 12cm x 18cm kako bi imali istu širinu kao i stupovi koji su također projektirani dimenzija poprečnog presjeka 12cm x 18cm. U nosivu strukturu još je potrebno ubrojiti veznu gredu koja mora biti dimenzija poprečnog presjeka 12cm x 18cm, te kliješta koja povezuju rogove, a koja moraju biti poprečnog presjeka 14cm x 10cm. Svi elementi koji tvore nosivu strukturu moraju biti od masivnog punog drveta klase C24, izuzev podrožnica koje su projektirane klase C30. ZAŠTITA KONSTRUKCIJE Drvene elemente konstrukcije potrebno je prije montaže zaštiti od nametnika te utjecaja vlage. Drvo je materijala kod kojeg se nosivost smanjuje povećanjem vlažnosti, te elemente ne smijemo prije montaže položiti izravno na zemlju, beton, ili ih ostaviti nezaštićene na kiši. Prije montaže drvene elemente je potrebno premazati impregnacijom tipa Belinka Belles kako bi se zaštitili od nametnika, nakon toga napraviti - 1 -

3 dva premaza tankoslojnom lazurom tipa Belinka Belton, te na kraju jedan finalni premaz debeloslojnom lazurom tipa Belinka Beltop. Moguće je koristiti i premaze drugih proizvođača koji imaju jednakovrijedna svojstva. Spajala moraju biti vruće pocinčana, te nisu potrebni naknadni premazi

4 STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM Slika 1 3D model krovišta sa dvostrukom stolicom Analiza opterećenja Stalno opterećenje Crijep biber 0.90 kn/m 2 Letva 3/5 [ /0.15] 0.05 kn/m 2 Kontra letva 3/5 [ /1] 0.01 kn/m 2 Folija 0.01 kn/m 2 Daščana oplata 2.4 cm [ ] 0.12 kn/m 2 Termoizolacija 0.05 kn/m 2 Instalacije 0.10 kn/m kn/m 2-3 -

5 Promjenjivo opterećenje Snijeg Lokacija objekta Zagreb 158 metara nad morem Formula za izračun: s=μ i c e c t s k sk=karakteristična vrijednost opterećenja snijega na tlo prema karti III zona sk=1.25 kn/m 2 ce=koeficijent izloženosti ce=1 ct=koeficijent topline ct=1 μi=koeficijent oblika za dvostrešna krovišta Slika 2 Varijante koeficijenta oblika kod dvostrešnih krovišta - 4 -

6 Tablica 1 Koeficijenti oblika opterećenja snijegom Nagib dvostrešnog simetričnog krovišta: α=30º Koeficijent oblika μ1 μ1=0.8 Koeficijent oblika μ2 μ2= x(30-15)/30=1.1 Djelovanje snijega po m 2 tlocrtno: s I =0.5x =0.50 kn/m 2 s II =0.5x =0.50 kn/m 2 s III,lijevo = =1.00 kn/m 2 s III,desno = =1.38 kn/m 2 s IV,lijevo = =1.38 kn/m 2 s IV,desno = =1.00 kn/m 2 Vjetar Vanjski tlak Formula za izračun pritiska vjetra na vanjsku oblogu konstrukcije: w e =q p c e (z) c pe - 5 -

7 qp=vršni tlak srednje brzine vjetra vb,0=osnovna brzina vjetra (očitano iz karte) vb,0=20 m/s ρ= gustoća zraka ρ=1.25 kn/m 2 q p = ρ 2 v b,0 2 = =0.25 kn/m 2 ce(z)=koeficijent izloženosti II kategorija zemljišta z=visina objekta z=8.00 m Koeficijent izloženosti određuje se pomoću dijagrama: Dijagram 1 Ovisnost koeficijenta izloženosti o visini objekta te vrsti terena ce(z)=2.20 (očitano iz dijagrama) - 6 -

8 Koeficijent vanjskog tlak na krovnu površinu Slika 3 Zone kod koeficijenta vanjskog tlaka za dvostrešne krovove Transverzalni smjer djelovanja vjetra Φ=0⁰ e=min(b,2h)= min (12.2;16) =16 Longitudinalni smjer djelovanja vjetra Φ=90⁰ emin(b,2h)= min (12.2;16) =16 Krovne površine Površina (m 2 ) C pe w (kn/m 2 ) Krovne površine Površina (m 2 ) C pe w (kn/m 2 ) F G H I F G H I J

9 Unutarnji pritisak Formula za izračun pritiska vjetra na unutarnju oblogu konstrukcije: qp=vršni tlak srednje brzine vjetra vb,0=osnovna brzina vjetra (očitano iz karte) vb,0=20 m/s ρ= gustoća zraka ρ=1.25 kn/m 2 w i =q p c e (z) c pi q p = ρ 2 v b,0 2 = =0.25 kn/m 2 ce(z)=koeficijent izloženosti - II kategorija zemljišta z=visina objekta z=8.00 m ce(z)=2.2 (očitano iz dijagrama 1) cpi=koeficijent unutarnjeg tlaka cpi1= 0.35 cpi2= Iznosi koeficijenta unutarnjeg tlaka (cpi) odabrani najnepovoljniji kako bi bili na strani sigurnosti. Pritisak vjetra na unutarnje površine qp (kn/m 2 ) ce(z) cpi w e =q p c e (z) c pi (kn/m 2 )

10 Napomena: Analiza utjecaja vjetra na vertikalne i zabatne zidove nije uzeta u obzir, jer se ulazi sa pretpostavkom da su isti izvedeni od armiranog betona te nemaju utjecaja na krovnu konstrukciju. Odabir najnepovoljnijih kombinacija za dimenzioniranje. Nastavak proračuna se provodi sa tri kombinacija opterećenja za koje se pretpostavlja da će dati najnepovoljnija djelovanja unutar nosivih elemenata. Prvu kombinaciju sačinjava Stalno + Snijeg III, drugu kombinaciju sačinjava Stalno + Vjetar u longitudinalnom smjeru (zona F,G) + Unutarnji tlak, dok treću kombinaciju sačinjava Stalno + Snijeg III + Vjetra u transverzalnom smjeru (zona G,H,J,I) + Unutarnji podtlak. Dimenzioniranje Rog Slika 4 Nd dijagram za kombinaciju djelovanja Stalno + Snijeg III + Vjetar + Unutarnji podtlak (sve u kn) Slika 5 My,d za kombinaciju djelovanja Stalno + Snijeg III + Vjetra + Unutarnji podtlak (sve u knm) - 9 -

11 Dimenzije poprečnog presjeka 100 mm x 160 mm Napomena: U proračun se ulazi sa dimenzijom poprečnog presjeka 100 mm x 130 mm poradi zasijecanja rogova kod nalijeganja na podrožnice od cca. 3cm A= =13000 mm 2 W Y = =281666mm 2 6 W z = =216666mm 2 6 Duljina izvijanja Y lef,y=2450 mm Duljina izvijanja Z lef,z=2450 mm Srednji modul posmika za drvo C24 Gmean=690 N/mm 2 Srednji modul elastičnosti za drvo C24 E0,mean=11000 N/mm 2 Karakteristični modul elastičnosti za drvo C24 E0,05=7400 N/mm 2 Karakteristična čvrstoća na savijanje za drvo C24 fm,k=24 N/mm 2 Karakteristična čvrstoća na tlak paralelno sa vlakancima za drvo C24 fc,0,k=21 N/mm

12 Koeficijent sigurnosti za materijal γm=1.3 Koeficijent kodifikacije za 1 klasu srednje trajno djelovanje kmod=0.80 Izrazi kod djelovanja savijanja sa bočnim izvijanjem i tlakom paralelno sa vlakancima: σ m,y,d ( σ c,0,d ) + ( ) 1 k c,y f c,0,d k crit,y f m,y,d σ m,y,d ( σ c,0,d ) + (k k c,z f m ) 1 c,0,d k crit,y f m,y,d Savijanje Y + bočno izvijanje σ m,crit,y = π b2 E 0,05 G mean = N/mm 2 l efy h E 0,mean f m,k λ rel,m = =0.36 σ m,crit,y 0.75 λ rel,m k crit,y =1.00 f m,d =k mod f m,k γ m =14.77 N/mm 2 σ m,y,d = M y,d W y =10.61 N/mm 2 Tlak paralelno sa vlakancima + izvijanje Z σ c,0,d = N d A =0.66 N/mm2 f c,0,d =k mod f c,0,k γ m =12.92 N/mm 2 λ z = l ef,z i min =

13 σ c,crit,z = π2 E 0,05 λ z 2 =10.17 N/mm 2 λ rel,z = f c,o,k σ c,crit,z =1.44 β c =0.2 za masivno drvo 2 k z =0.5 [1+β c (λ rel,z -0.5)+λ rel,z ]= =k k z + k 2 2 z -λ rel,z =2.39 c,z k c,z =0.42 Tlak paralelno sa vlakancima + izvijanje Y σ c,0,d = N d A =0.66 N/mm2 f c,0,d =k mod f c,0,k γ m =12.92 N/mm 2 λ y = l ef,y i min =65.17 σ c,crit,y = π2 E 0,05 λ y 2 =17.18 N/mm 2 λ rel,y = f c,o,k σ c,crit,y =1.12 β c =0.2 za masivno drvo 2 k y =0.5 [1+β c (λ rel,y -0.5)+λ rel,y ]= =k k y + k 2 2 y -λ rel,y =1.59 c,y k c,y =

14 Dokaz nosivosti σ m,y,d ( σ c,0,d ) + ( ) 1 k c,y f c,0,d k crit,y f m,y,d 0.66 ( ) + ( ) Koeficijent pravokutnog poprečnog presjeka Km=0.7 σ m,y,d ( σ c,0,d ) + (k k c,z f m ) 1 c,0,d k crit,y f m,y,d 0.66 ( ) + ( ) Presjek zadovoljava iskoristivost 79 %

15 Podrožnica Slika 6 Nd dijagram za kombinaciju djelovanja Stalno + Snijeg III + Vjetar + Unutarnji podtlak (sve u kn) Slika 7 Mz,d za kombinaciju djelovanja Stalno + Snijeg III + Vjetra + Unutarnji podtlak (sve u knm) Slika 8 My,d za kombinaciju djelovanja Stalno + Snijeg III + Vjetra + Unutarnji podtlak (sve u knm)

16 Dimenzije poprečnog presjeka 120 mm x 240 mm A= =28800 mm 2 W Y = = mm 2 6 W z = =576000mm 2 6 Duljina izvijanja Y lef,y=2000 mm Duljina izvijanja Z lef,z=4000 mm Srednji modul posmika za drvo C30 Gmean=750 N/mm 2 Srednji modul elastičnosti za drvo C30 E0,mean=12000 N/mm 2 Karakteristični modul elastičnosti za drvo C30 E0,05=8000 N/mm 2 Karakteristična čvrstoća na savijanje za drvo C30 fm,k=30 N/mm 2 Karakteristična čvrstoća na tlak paralelno sa vlakancima za drvo C30 fc,0,k=23 N/mm

17 Koeficijent sigurnosti za materijal γm=1.3 Koeficijent kodifikacije za 1 klasu srednje trajno djelovanje kmod=0.80 Izrazi kod djelovanja savijanja sa bočnim izvijanjem i tlakom paralelno sa vlakancima: σ m,y,d σ m,z,d ( σ c,0,d ) + ( ) + (k k c,y f c,0,d k crit,y f m ) 1 m,y,d k crit,z f m,z,d σ m,y,d σ m,z,d ( σ c,0,d ) + (k k c,z f m ) + ( ) 1 c,0,d k crit,y f m,y,d k crit,z f m,z,d Savijanje Y + bočno izvijanje σ m,crit,y = π b2 E 0,05 l efz h G mean E 0,mean =94.20 N/mm 2 f m,k λ rel,m = =0.56 σ m,crit,y 0.75 λ rel,m k crit,y =1.00 f m,d =k mod f m,k γ m =18.46 N/mm 2 σ m,y,d = M y,d W y =5.53 N/mm 2 Savijanje Z + bočno izvijanje σ m,crit,z = π h2 E 0,05 G mean = N/mm 2 l efy b E 0,mean f m,k λ rel,m = =0.14 σ m,crit,z

18 0.75 λ rel,m k crit,z =1.00 f m,d =k mod f m,k γ m =18.46 N/mm 2 σ m,z,d = M z,d W z =10.03 N/mm 2 Tlak paralelno sa vlakancima + izvijanje Z σ c,0,d = N d A =0.24 N/mm2 f c,0,d =k mod f c,0,k γ m =14.15 N/mm 2 λ z = l ef,z i min = σ c,crit,z = π2 E 0,05 λ z 2 =5.94 N/mm 2 λ rel,z = f c,o,k σ c,crit,z =1.96 β c =0.2 za masivno drvo 2 k z =0.5 [1+β c (λ rel,z -0.5)+λ rel,z ]= =k k z + k 2 2 z -λ rel,z =4.21 c,z k c,z =0.24 Tlak paralelno sa vlakancima + izvijanje Y σ c,0,d = N d A =0.24 N/mm2 f c,0,d =k mod f c,0,k γ m =14.15 N/mm

19 λ y = l ef,y i min =28.82 σ c,crit,y = π2 E 0,05 λ y 2 =94.96 N/mm 2 λ rel,y = f c,o,k σ c,crit,y = λ rel,y k c,y =1.00 Dokaz nosivosti Koeficijent pravokutnog poprečnog presjeka Km=0.7 σ m,y,d σ m,z,d ( σ c,0,d ) + ( ) + (k k c,y f c,0,d k crit,y f m ) 1 m,y,d k crit,z f m,z,d 0.24 ( ) + ( ) + ( ) Koeficijent pravokutnog poprečnog presjeka Km=0.7 σ m,y,d σ m,z,d ( σ c,0,d ) + (k k c,z f m ) + ( ) 1 c,0,d k crit,y f m,y,d k crit,z f m,z,d 0.24 ( ) + ( ) + ( ) Presjek zadovoljava iskoristivost 82 %

20 Stup Slika 9 Nd dijagram za kombinaciju djelovanja Stalno + Snijeg III + Vjetar + Unutarnji podtlak (sve u kn) Slika 10 Mz,d za kombinaciju djelovanja Stalno + Snijeg III + Vjetra + Unutarnji podtlak (sve u knm) Slika 11 My,d za kombinaciju djelovanja Stalno + Snijeg III + Vjetra + Unutarnji podtlak (sve u knm)

21 Dimenzije poprečnog presjeka 180 mm x 120 mm Napomena: U proračun se ulazi sa dimenzijom poprečnog presjeka 120 mm x 120 mm poradi zasijecanja stupova od cca. 6 cm kako bi se mogle izvesti ruke A= =14400 mm 2 W Y = =288000mm 2 6 W z = =288000mm 2 6 Duljina izvijanja Y lef,y=2800mm Duljina izvijanja Z lef,z=2000 mm Srednji modul posmika za drvo C24 Gmean=690 N/mm 2 Srednji modul elastičnosti za drvo C24 E0,mean=11000 N/mm 2 Karakteristični modul elastičnosti za drvo C24 E0,05=7400 N/mm 2 Karakteristična čvrstoća na savijanje za drvo C24 fm,k=24 N/mm 2 Karakteristična čvrstoća na tlak paralelno sa vlakancima za drvo C24 fc,0,k=21 N/mm

22 Koeficijent sigurnosti za materijal γm=1.3 Koeficijent kodifikacije za 1 klasu srednje trajno djelovanje kmod=0.80 Izrazi kod djelovanja savijanja sa bočnim izvijanjem i tlakom paralelno sa vlakancima: σ m,z,d ( σ c,0,d ) + (k k c,y f m ) 1 c,0,d k crit,z f m,z,d σ m,z,d ( σ c,0,d ) + ( ) 1 k c,z f c,0,d k crit,z f m,z,d Savijanje Z + bočno izvijanje k crit,z =1.00 f m,d =k mod f m,k γ m =14.77 N/mm 2 σ m,z,d = M z,d W z =1.56 N/mm 2 Tlak paralelno sa vlakancima + izvijanje Z σ c,0,d = N d A =4.36 N/mm2 f c,0,d =k mod f c,0,k γ m =12.92 N/mm 2 λ z = l ef,z i min =57.63 σ c,crit,z = π2 E 0,05 λ z 2 =21.97 N/mm 2 λ rel,z = f c,o,k σ c,crit,z =

23 β c =0.2 za masivno drvo 2 k z =0.5 [1+β c (λ rel,z -0.5)+λ rel,z ]= =k k z + k 2 2 z -λ rel,z =1.35 c,z k c,z =0.74 Tlak paralelno sa vlakancima + izvijanje Y σ c,0,d = N d A =4.36 N/mm2 f c,0,d =k mod f c,0,k γ m =12.92 N/mm 2 λ y = l ef,y i min =80.68 σ c,crit,y = π2 E 0,05 λ y 2 =11.21 N/mm 2 λ rel,y = f c,o,k σ c,crit,y =1.36 β c =0.2 za masivno drvo 2 k y =0.5 [1+β c (λ rel,y -0.5)+λ rel,y ]= =k k y + k 2 2 y -λ rel,y =2.17 c,y k c,y =0.46 Dokaz nosivosti σ m,z,d ( σ c,0,d ) + (0.7x ) 1 k c,y f c,0,d k crit,z f m,z,d 4.36 ( ) + (0.7x )

24 Koeficijent pravokutnog poprečnog presjeka Km=0.7 σ m,z,d ( σ c,0,d ) + ( ) 1 k c,z f c,0,d k crit,z f m,z,d 4.36 ( ) + ( ) Presjek zadovoljava iskoristivost 81 % Potrebna količina materijala Za krovište iz statičkog proračuna tlocrtne površine cca. 120m 2 potrebno cca. 6 m 3 drveta klase C24 i C30 što iznosi 0.05 m 3 drveta po 1m 2 tlocrta

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ

OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ 1 OSNOVE PRORAČUNA KONSTRUKCIJA... 2 2 DJELOVANJA NA KONSTRUKCIJE... 6 2.1 Klasifikacija djelovanja... 7 2.2 Vlastita težina... 8 2.3 Uporabna opterećenja

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

6. Plan armature prednapetog nosača

6. Plan armature prednapetog nosača 6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti

Διαβάστε περισσότερα

Proračun toplotne zaštite

Proračun toplotne zaštite Proračun toplotne zaštite za objekat Stambeni objekat urađen prema JUS U.J5.600 iz 1998 i JUS U.J5.510 iz 1987 godine. Sadržaj - analiza konstrukcija - analiza linijskih gubitaka - proračun toplotnih transmisionih

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE I. Predavanja

BETONSKE KONSTRUKCIJE I. Predavanja BETONSKE KONSTRUKCIJE I Predavanja Zagreb, 010. Igor Gukov SADRŽAJ 1. UVOD...3. FIZIKALNO-MEHANIČKA SVOJSTVA MATERIJALA...6.1. Beton...7.1.1 Računska čvrstoća betona...11.1. Višeosno stanje naprezanja...11.1.3

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

je zidni element I razreda namijenjen za oblaganja. obujamska masa (u suhom stanju) srednja vrijednost tlačne čvrstoće ρ b razred požarne otpornosti

je zidni element I razreda namijenjen za oblaganja. obujamska masa (u suhom stanju) srednja vrijednost tlačne čvrstoće ρ b razred požarne otpornosti PLOČA - P 5 je zidni element I razreda namijenjen za oblaganja. Zbog male debljine, a velike površine, ploča je idealna za završne radove u interijerima građevina, prije svega kod oblaganja kupaonskih

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

FEDRA-τοιχοποιία ιαστασιολόγηση Στέγης µε Ευρωκώδικα 5 σελ-1

FEDRA-τοιχοποιία ιαστασιολόγηση Στέγης µε Ευρωκώδικα 5 σελ-1 FEDRA-τοιχοποιία ιαστασιολόγηση Στέγης µε Ευρωκώδικα 5 σελ-1 2 2 4 5 6 7 1.50 1 8 9 3 1 5 4 6 3 1.50 6.00 Τεχνική Περιγραφή Τρόπος Κατασκευής Ξύλινη στέγη, από ζευκτά ξυλεία C14. Τύπος ζευκτού όπως το

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

CIGLA - tehnički priručnik

CIGLA - tehnički priručnik CIGLA - tehnički priručnik SADRŽAJ TERMO PROGRAM KLASIČNI PROGRAM STROPNI PROGRAM TROŠKOVNIK ZA UGRADNJU PROIZVODA 04 13 16 21 Proizvodi Građevinska fizika Prednosti termo bloka Proizvodi Proizvodi Tehničke

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ. http://www.luckyweek.eu/civil.teipir Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ http://www.luckyweek.eu/civil.teipir Άσκηση Σελίδα Υποστύλωμα Δοκός Πλακοδοκός Άλλο Κάμψη Διάτμηση Λυγισμός Στρέψη Ροπή Σχεδιασμού 01 03 02 07

Διαβάστε περισσότερα

MOSTOVI SA KOSIM ZATEGAMA

MOSTOVI SA KOSIM ZATEGAMA MOSTOVI SA KOSIM ZATEGAMA U toku posljednjih tridesetak godina mostovi sa kosim zategama doživljavaju spektakularan razvoj u cijelom svijetu. Ekonomičnost ovih mostova ne leži samo u odličnom iskorištenju

Διαβάστε περισσότερα

Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica

Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica Tehnički podaci Uležišteni ventili (PN 6) VL 2 prolazni ventil, prirubnica VL 3 troputni ventil, prirubnica Opis VL 2 VL 3 Ventili VL 2 i VL 3 pružaju kvalitetno, isplativo rješenje za većinu primjena

Διαβάστε περισσότερα

Ventili sa dosjedom (PN 16) VF 2 prolazni ventil, prirubnica VF 3 troputni ventil, prirubnica

Ventili sa dosjedom (PN 16) VF 2 prolazni ventil, prirubnica VF 3 troputni ventil, prirubnica Tehnički podaci Ventili sa dosjedom (PN 16) VF 2 prolazni ventil, prirubnica VF 3 troputni ventil, prirubnica Opis VF 2 VF 3 Ventili VF 2 i VF 3 pružaju kvalitetno, isplativo rješenje za većinu primjena

Διαβάστε περισσότερα

KLIMATIZACIJA Tema: - VENTILACIJSKI ZAHTJEVI. Doc.dr.sc. Igor BALEN

KLIMATIZACIJA Tema: - VENTILACIJSKI ZAHTJEVI. Doc.dr.sc. Igor BALEN KLIMATIZACIJA Tema: - VENTILACIJSKI ZAHTJEVI Doc.dr.sc. Igor BALEN Namjena sustava ventilacije Osnovni pojmovi i terminologija Sustav ventilacije Dobavni zrak Prostor s definiranim zahtjevima Odsisni zrak

Διαβάστε περισσότερα

RADIJALNI KLIZNI LEŽAJ

RADIJALNI KLIZNI LEŽAJ FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE ZAVOD ZA STROJARSTVO I BRODOGRADNJU KATEDRA ZA ELEMENTE STROJEVA Damir Jelaska RADIJALNI KLIZNI LEŽAJ (Proračun) Split, srpanj, 2003. O Z N A K E A H

Διαβάστε περισσότερα

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA KONOP ZA ŠKOTE RACE - materijal jezgra dyneema na 16 struka, izvana poliester na 32 struka - za dizanje i spuštanje jedara, otporan na habanje, mala rastezljivost CRVENO/ PlAVO/ TF30 05000 TF33 05000 5

Διαβάστε περισσότερα

Katalog proizvoda s tehničkim podacima

Katalog proizvoda s tehničkim podacima Ytong sustav gradnje Katalog s tehničkim podacima λ 10 DRY = 0,09 Najbolja toplinska izolacija kompletan sustav za energetski učinkovitu gradnju Tehnički podaci Stranice od 16-21 vanjski zidovi Stranice

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE

SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE Visoke građevine VISOKE GRAĐEVINE SADRŽAJ PREDAVANJA (1.dio) Uvodno Povijest i kronologija visokih građevina Nosivi elementi za osnovna opterećenja Mjere

Διαβάστε περισσότερα

ispod 20, što joj daje odlike izvrsne antene za DX rad na 80 m opsegu gdje je optimalni elevacijski kut od 15 do 20.

ispod 20, što joj daje odlike izvrsne antene za DX rad na 80 m opsegu gdje je optimalni elevacijski kut od 15 do 20. Piše: Mladen Petrović, 9A4ZZ GP antena EVA-DX 80 Ground plane antenna EVA-DX 80 Uobičajeno je da se vertikalne antene visine reda λ/4 i više, za donje opsege 40 m, 80 m i 160 m postavljaju neposredno iznad

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ Διάμετρος διατομής υλικά: f (N/mm 2 ) 6 Χάλυβας 2 235 Σκυρόδεμα 2 2 Διατομή Χάλυβα: 12 Χάλυβας Ο/Σ 3 section 355,6x5, συντελεστές ασφαλείας: D (mm) 355,6 γ a = 1, t (mm) 5, γ c = 1,5 A a (cm 2 ) 55,1 γ

Διαβάστε περισσότερα

PRILOG 1 PRAVILNIK BAB 87

PRILOG 1 PRAVILNIK BAB 87 PRILOG 1 PRAVILNIK BAB 87 PRILOG 1.1 PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON I OPŠTE ODREDBE 1 Ovim pravilnikom propisuju se uslovi i zahtevi koji moraju biti ispunjeni pri projektovanju,

Διαβάστε περισσότερα

PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA

PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA d.o.o Radnicka bb 32240 LU ČANI SRBIJA TR: 205-68352-90; MB: 17533606; PIB: 103195754; E-mail:

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE 6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA Doc. dr. sc. Vitomir Komen, dipl. ing. el. 1/14 SADRŽAJ: 6.1 Sigurnosni razmaci i sigurnosne visine

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1 (1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..

Διαβάστε περισσότερα

KORISNOST VJETROENERGIJE

KORISNOST VJETROENERGIJE Karla Srnec Željka Toplek Mentor: Karmena Vadlja-Rešetar, prof. karmena.vadlja-resetar@ck.t-com.hr KORISNOST VJETROENERGIJE Čakovec 11.02.2013. Gimnazija Josipa Slavenskog Čakovec Vladimira Nazora 34 40

Διαβάστε περισσότερα

KGV Šutalo d.o.o. Vukovarska Jakšić, Hrvatska OIB VAT ID: HR

KGV Šutalo d.o.o. Vukovarska Jakšić, Hrvatska OIB VAT ID: HR KGV Šutalo d.o.o. Vukovarska 14 34308 Jakšić, Hrvatska +385 34 257 734 info@kgv-sutalo.hr OIB VAT ID: HR06692893248 grijač za bojler 1 1/4 ravni / water heating element 1 1/4 straight RTS12 1200W/230V

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

UREĐAJU NA SKUPU REALNIH BROJEVA

UREĐAJU NA SKUPU REALNIH BROJEVA **** MLADEN SRAGA **** 00. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE UREĐAJU NA SKUPU REALNIH BROJEVA JEDNADŽBE NEJEDNADŽBE APSOLUTNE JEDNADŽBE APSOLUTNE NEJEDNADŽBE

Διαβάστε περισσότερα

TEHNIČKI PRIRUČNIK REBRASTIH POLETILENSKIH CIJEVI ZA GRADSKU I INDUSTRIJSKU ODVODNJU I KANALIZACIJU

TEHNIČKI PRIRUČNIK REBRASTIH POLETILENSKIH CIJEVI ZA GRADSKU I INDUSTRIJSKU ODVODNJU I KANALIZACIJU TEHNIČKI PRIRUČNIK REBRASTIH POLETILENSKIH CIJEVI ZA GRADSKU I INDUSTRIJSKU ODVODNJU I KANALIZACIJU Italiana Corugatti zahvaljuje svim dobavljačima i inženjerima koji su sudjelovali u realizaciji ovog

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE ENERGIJE

REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE ENERGIJE REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE ENERGIJE Zadržano pravo na tehničke izmene Važi od januara 2007 www.rehau.com Građevinarstvo Automotivi Industija 2 REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE

Διαβάστε περισσότερα

Masivni mostovi DJELOVANJA NA MOSTOVE

Masivni mostovi DJELOVANJA NA MOSTOVE Masivni mostovi DJELOVANJA NA MOSTOVE Povezanost europskih normi za proračun konstrukcija EN 1990 Općenito Osnove o Eurocodovima proračuna EN 1991 Djelovanja na konstrukcije Sigurnost, uporabljivost i

Διαβάστε περισσότερα

unutrašnja opterećenja

unutrašnja opterećenja * Ravnoteža u deformabilnom tijelu Koncentrisana sila (idealizacija) Površinska sila Spoljašnja opterećenja: površinske i zapreminske sile Reakcije oslonaca Jednačine ravnoteže Linearna raspodjela opterećenja

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

1 T 3015 EN. Samostalni regulator serije 42 Regulator protoka tip Aplikacija Regulator za sisteme daljinskog grejanja i velike grejne sisteme.

1 T 3015 EN. Samostalni regulator serije 42 Regulator protoka tip Aplikacija Regulator za sisteme daljinskog grejanja i velike grejne sisteme. Samostalni regulator serije 42 Regulator protoka tip 42-36 Aplikacija Regulator za sisteme daljinskog grejanja i velike grejne sisteme. Ventili su nominalne veličine DN 15 do 250 1). Nominalni pritisak

Διαβάστε περισσότερα

PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti-

PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti- PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti- Prenos toplote preko poda (temelja) koji je u kontaktu

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΥΠΟΥΡΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΙΑ (Ι) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΜΗΧΑΝΙΚΗ ΚΑΙ ΚΑΤΑΣΚΕΥΕΣ ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA ANALIZA NOSEĆIH STRUKTURA 11 Predavanje br TRANSPORT I LOGISTIKA 006/007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA Dimenzionisanje čeličnih konstrukcija se izvodi na bazi poznavanja rasporeda spoljašnjih

Διαβάστε περισσότερα

ВИШЕСТЕПЕНИ РЕДУКТОР

ВИШЕСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila

Διαβάστε περισσότερα

PRSKALICA - LELA 12 L / LELA16 L

PRSKALICA - LELA 12 L / LELA16 L PRSKALICA - LELA 12 L / LELA16 L UPUTSTVO ZA UPOTREBU 1 Prskalica je pogodna za raspršivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Uredjaj je namenjen za kućnu,

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

Kontrola kvaliteta betona Projekat betona

Kontrola kvaliteta betona Projekat betona Kontrola kvaliteta betona Projekat betona Predavanje, 08.01.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Kontrola kvaliteta betona: Opće postavke Partije betona Kontrola

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

='5$9.2 STRUJNI IZVOR

='5$9.2 STRUJNI IZVOR . STJN KGOV MŽ.. Strujni krug... zvori Skup elektrotehničkih elemenata koji su preko električnih vodiča međusobno spojeni naziva se električna mreža ili elektrotehnički sklop. električnoj mreži, kada su

Διαβάστε περισσότερα

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) Zavarivanje = spajanje dijelova koji su na mjestu spoja dovođenjem topline omekšani ili rastopljeni, uz dodavanje dodatnog materijala ili bez

Διαβάστε περισσότερα

0, 75R(σε σχέση με το άξονα y-y,όπου η πλευρική στρεπτική αστάθεια λόγω κάμψης δεν

0, 75R(σε σχέση με το άξονα y-y,όπου η πλευρική στρεπτική αστάθεια λόγω κάμψης δεν 1 Περιεχόμενα 1. ΕΙΣΑΓΩΓΗ.... 5 1.1.ΓΕΝΙΚΑ.... 5 1.1.1.ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΔΕΝΤΡΩΝ... 6 1.1.2.Η ΥΓΡΑΣΙΑ ΤΟΥ ΞΥΛΟΥ... 6 1.1.3.ΕΡΠΥΣΜΟΣ ΤΟΥ ΞΥΛΟΥ... 8 1.1.4.ΤΑΞΙΝΟΜΗΣΗ ΚΑΙ ΔΙΑΒΑΘΜΙΣΗ ΤΗΣ ΞΥΛΕΙΑΣ.... 9 1.1.5.ΤΑ

Διαβάστε περισσότερα

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Ξύλο Σελ. 1

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Ξύλο Σελ. 1 Διαστασιολόγηση κατασκευής από Ξύλο Σελ. 1 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Κόμβοι κατασκευής Κόμβος x [m] y[m] 1 0.000 0.000 2 0.000 3.100 3 4.400 3.100 4 4.400 0.000 5 0.000 1.900 6 4.400 1.900

Διαβάστε περισσότερα

SOLARNI KOLEKTOR KATALOG

SOLARNI KOLEKTOR KATALOG SOLARNI KOLEKTOR KATALOG Odlična učinkovitost Najbolje karakteristike Visoki kvalitet The Quality Chooses Quality Solartechnik Prüfung Forschung 1 SOLARNI KOLEKTORI SELEKTIVNI SOLARNI KOLEKTORI - ESK 2.5

Διαβάστε περισσότερα

Odvod dimnih plinova CERACLASS ZW 11/18/24-2 DH AE HR ( ) JS

Odvod dimnih plinova CERACLASS ZW 11/18/24-2 DH AE HR ( ) JS Odvod dimnih plinova CERACLASS ZW 11/18/24-2 DH AE 6 720 608 692 HR (2007.04) JS Sadržaj Sadržaj 1 Upute za siguran rad i simboli 3 1.1 Upute za siguran rad 3 1.2 Objašnjenje simbola 3 2 Primjena 4 2.1

Διαβάστε περισσότερα

KLIMATIZACIJA Tema: - DIMENZIONIRANJE KOMPONENTI GViK SUSTAVA - AUTOMATSKA REGULACIJA. Doc.dr.sc. Igor BALEN

KLIMATIZACIJA Tema: - DIMENZIONIRANJE KOMPONENTI GViK SUSTAVA - AUTOMATSKA REGULACIJA. Doc.dr.sc. Igor BALEN KLIMATIZACIJA Tema: - DIMENZIONIRANJE KOMPONENTI GViK SUSTAVA - AUTOMATSKA REGULACIJA Doc.dr.sc. Igor BALEN Grijač - faktori koje treba razmotriti kod izbora izmjenjivača: Traženi učinak ili kapacitet

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

WELTPLAST d.o.o. Rastovača bb POSUŠJE Bosna i Hercegovina tel: fax:

WELTPLAST d.o.o. Rastovača bb POSUŠJE Bosna i Hercegovina tel: fax: 2 Weltplast d.o.o. WELTPLAST d.o.o. Rastovača bb 88240 POSUŠJE Bosna i Hercegovina tel: ++ 387 39 683 045 fax: ++ 387 39 681 204 weltplast@weltplast.com WELTPLAST SPLIT Weltplast d.o.o. Velebitska 51,

Διαβάστε περισσότερα

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja...

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja... 1 1 S A D R Ž A J 1.0 OPIS SISTEMA 1.1 Opšti podaci... 2 1.2 Čelik za prednaprezanje... 2 1.3 Kotve i kablovi... 2 1.4 Oprema... 3 1.5 Gubici sile prednaprezanja... 3 1.5.1 Uvlačenje klina... 4 1.5.2 Elastično

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη ΤΕΕ Θράκης Κομοτηνή 10.10.2009 Σχεδιασμός φορέων από σκυρόδεμα με βάση τον Ευρωκώδικα 2 Μέρος 1-1 (EN 1992-1-1) Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη Γιαννόπουλος Πλούταρχος Δρ.

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 5 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Εφαρμοσμένη Μηχανική Επιστήμη Ημερομηνία

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

HR Upute za uporabu 2 Ploča za kuhanje EL Οδηγίες Χρήσης 18 Εστίες HU Használati útmutató 36 Főzőlap HK365407XB

HR Upute za uporabu 2 Ploča za kuhanje EL Οδηγίες Χρήσης 18 Εστίες HU Használati útmutató 36 Főzőlap HK365407XB HR Upute za uporabu 2 Ploča za kuhanje EL Οδηγίες Χρήσης 18 Εστίες HU Használati útmutató 36 Főzőlap HK365407XB 2 SADRŽAJ 1. INFORMACIJE O SIGURNOSTI... 3 2. SIGURNOSNE UPUTE... 4 3. OPIS PROIZVODA...

Διαβάστε περισσότερα

Pojednostavljeni postupak proračuna gubitaka topline prema EN12831

Pojednostavljeni postupak proračuna gubitaka topline prema EN12831 3 PRORAČUN GUBITAKA TOPLINE ZIMA Dva postupka proračuna toplinskog opterećenja (toplinskih gubitaka) prostorija i cijele zgrade prema EN12831: pojednostavljen podroban Primjena pojednostavljenog proračuna

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό

2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό Construction Φύλλο Ιδιοτήτων Προϊόντος Έκδοση 04/02/2014 (v1) Κωδικός: 10.01.010 Αριθμός Ταυτοποίησης: 010204030010000144 EN 1504-4:2004 13 0099 2-συστατικών θιξοτροπικό εποξειδικό συγκολλητικό Περιγραφή

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Tehnički opis UREDSKI, SANITARNI I SPOJNI KONTEJNER

Tehnički opis UREDSKI, SANITARNI I SPOJNI KONTEJNER Tehnički opis za UREDSKI, SANITARNI I SPOJNI KONTEJNER SADRŽAJ 1 Opće informacije... 3 1.1 Dimenzije (mm) i težina (kg):... 3 1.2 Kratice... 4 1.3 Standardne izvedbe... 4 1.4 Termoizolacija... 5 1.5 Nosivost...

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

TEMELJI MEHANIKE FLUIDA

TEMELJI MEHANIKE FLUIDA ŽELJKO ANDREIĆ TEMELJI MEHANIKE FLUIDA RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET ZAGREB 2014. SVEUČILIŠNI E-UDŽBENIK MANUALIA UNIVERSITATIS STUDIORUM ZAGRABIENSIS i ii Izdavač: Sveučilište u Zagrebu Rudarsko-geološko-naftni

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Solar 3000 TF / Solar 4000 TF

Solar 3000 TF / Solar 4000 TF 6720616592.00-1.SD Ορθοστάτης για επίπεδους συλλέκτες Solar 3000 TF / Solar 4000 TF GR Οδηγίες συναρμολόγησης για τον ειδικό 2 Περιεχόμενα GR Περιεχόμενα 1 Επεξήγηση συμβόλων και υποδείξεις ασφαλείας 3

Διαβάστε περισσότερα

H R KOTLOVI NA KRUTO GORIVO TEHNIČKE UPUTE ZA MONTAŽU I RUKOVANJE

H R KOTLOVI NA KRUTO GORIVO TEHNIČKE UPUTE ZA MONTAŽU I RUKOVANJE H R KOTLOVI NA KRUTO GORIVO TEHNIČKE UPUTE ZA MONTAŽU I RUKOVANJE SOLIDA - HRVATSKI Sadržaj STRANICA Opis kotla 3 Instalacija 4 Uporaba i održavanje 10 Rukovanje kotlom 10 VAŽNO Prije prvog uključivanja

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

09. 4M -VK ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ & ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ ΒΙΟΛΟΓΙΚΟΥ ΚΑΘΑΡΙΣΜΟΥ

09. 4M -VK ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ & ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ ΒΙΟΛΟΓΙΚΟΥ ΚΑΘΑΡΙΣΜΟΥ ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ & ΠΡΟΓΡΑΜΜΑ ΕΠΙΛΥΣΗΣ ΚΑΙ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΕΞΑΜΕΝΩΝ ΒΙΟΛΟΓΙΚΟΥ ΚΑΘΑΡΙΣΜΟΥ ΕΙΣΑΓΩΓΗ ΕΚΚΙΝΗΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ Έχοντας βεβαιωθεί ότι η εγκατάσταση του προγράµµατος

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα