ATTIECĪBAS. Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme).

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ATTIECĪBAS. Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme)."

Transcript

1 004, Pēteris Daugulis ATTIECĪBAS Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme). Bināra attiecība - īpašība, kas piemīt vai nepiemīt kopas (vai divu dažādu kopu) sakārtotiem elementu pāriem. x, y piemīt šī īpašība, tad Ja elementu pārim teiksim, ka tie ir saistīti ar attiecību (kuru nosauksim vārdā ρ ) un pierakstīsim to formā x ρ y, pretējā gadījumā - x ρ/ y. Tātad attiecība definē kādu apakškopu kopā A B (ja x ρ y, tad ( x, y) ir šajā apakškopā, pretējā gadījumā - nav) DEFINĪCIJA Bināra attiecība starp kopu A un B elementiem ir kāda apakškopa R kopā A B. Ja A = B attiecību kopā A., tad bināru attiecību sauc par bināru Biežāk tiek izmantotas attiecības vienā kopā.

2 004, Pēteris Daugulis R A Attiecību ρ, kas atbilst apakškopai ( R A A ) apzīmēsim ar pierakstu ρ = ( A, R) ( ρ = ( A, R) ). B Kopu R sauksim par attiecības grafiku. Kopu A ar tajā uzdotu attiecību ρ var apzīmēt ar pierakstu ( A, ρ), šis apzīmējums ir izdevīgs, ja attiecību uzdod ar attiecības aprakstu, nevis ar kopu R. ρ un x, y) R Ja = ( A, R) (, tad saka, ka elementi x un y ir saistīti ar attiecību ρ, atrodas attiecībā ρ vai ir salīdzināmi attiecībā ρ (apzīmē ar x ρ y ). Strādājot ar konkrētām attiecībām, burta ρ vietā izmanto dažādus atdalošos simbolus, piemēram <, =,, p, un citus.

3 004, Pēteris Daugulis 3 PIEMĒRI a) reālu skaitļu vienādība (=), šajā gadījumā ρ = ( A, R), kur A ir reālo skaitļu kopa un R = {[ x, y] A x = y} ; b) reālo skaitļu sakārtojums ( ), jeb attiecība mazāks vai vienāds, A ir reālo skaitļu kopa un R = {[ x, y] A x y} ; c) veselo skaitļu dalāmības attiecība ( ), A = Z un R = {[ x, y] A y dalās ar x }; c) kopu ietilpšanas attiecība ( ), A ir visu kopu kopa un R = {[ x, y] A x y} ; d) apakšprogrammu izsaukšanas attiecībair visu dotā programmas apakšprogrammu kopa, R = {( x, y) A y izsauc x} e) cilvēku radniecības attiecība, A ir visu cilvēku kopa, R = {[ x, y] A x un y uzskata sevi par radiniekiem }; f) trijstūru līdzība, A ir visu plaknes trijstūru kopa, R = {[ x, y] A x un y ir līdzīgi }. Jebkuram sakārtotam kopu pārim ( A, B) ir definētas divas speciālas attiecības:

4 004, Pēteris Daugulis 4 a) tukšā attiecība λ = ( A, ) ; b) pilnā attiecība ω = ( A, A B). Jebkurai kopai A ir vēl papildus speciāla attieksme - vienības attiecība kur ε = ( A, diag( A)), diag ( A) = {( x, y) A x = y} ir A apakškopa, ko sauc par A diagonāli. Attiecību var interpretēt kā attēlojuma grafiku, tāpēc pastāv savstarpēji viennozīmīga atbilstība starp attiecībām un attēlojumiem. Attiecībām un attēlojumiem ir dažādas psiholoģiskas nianses, kuras ir lietderīgi izmantot dažādās situācijās: - apakškopu tiešajā reizinājumā A B ir ērti uzskatīt par attēlojuma grafiku, ja iet runa par kopas A elementu pārveidojumiem par kopas B elementiem vai apakškopām;

5 004, Pēteris Daugulis 5 - šo pašu apakškopu ir ērti uzskatīt par attiecību, ja ir svarīgi domāt par šo apakškopu kā par sakārtotu elementu pāru kopu. Attiecības uzdošanas veidi: ) attiecību ρ = ( A, R) var uzdot definējot kopas A un B un pārskaitot visus kopas R elementus, šī metode der, ja kopas A un B ir mazas galīgas kopas, šajā gadījumā bieži izmanto attiecības uzdošanu matricas (tabulas) veidā: ja A = n un B = m, tad konstruē tabulu, kurā ir n kolonnas un m rindas, tabulas kolonnas tiek indeksētas ar kopas A elementiem un rindas ar kopas B elementiem, tabulas rūtiņā, x A un kolonnai y B kas atbilst rindai ieraksta, ja [ x, y] R un 0, ja [ x, y] R, ja ir uzdota attiecības matrica to var vizualizēt matricas grafa vai attiecības grafa veidā: grafa virsotnes ir kopu A un B elementi, starp virsotnēm x un y ir orientēta šķautne (bultiņa no x uz y ) tad un tikai tad, ja [ x, y] R ;

6 004, Pēteris Daugulis 6 ) attiecību var uzdot ar kādu kopas R A B raksturīgu īpašību; 3) attiecību var uzdot ar salīdzināmo elementu pāru raksturojošo īpašību. Attiecību vienādība un salīdzināšana DEFINĪCIJA Divas attiecības ( A, R ) un ρ = ( A, R ) sauc par vienādām ( ρ tad un tikai tad, ja R = R. R ρ = ρ = ) Ja, tad saka, ka attiecības nav vienādas ( ρ ρ ). R Saka, ka attieksme ρ ietilpst attiecībā ρ vai, ka attiecība ρ ir attiecības ρ apakšattiecība ( ρ ρ ), tad un tikai tad, ja R R. ρ un ρ ρ, tad saka, ka attiecība ρ Ja ρ stingri ietilpst attiecībā ρ vai, ka attiecība ρ ir attiecības ρ īsta apakšattiecība. PIEMĒRI

7 004, Pēteris Daugulis 7 Jebkura attiecība ietilpst pilnajā attiecībā un tukšā attiecībā ietilpst jebkurā citā attieksmē. Ja ρ ir attiecība mazāks vai vienāds ( ) un ρ ρ ; ir attiecība =, tad ρ ja ρ ir attiecība būt radiniekiem un ρ ir attiecība būt pazīstamiem, tad ρ ρ (mēs uzskatām, ka radinieki pazīst viens otru). DEFINĪCIJA Operācijas ar attiecībām Ja ir dotas divas attiecības ρ = A, ) un ρ = A, ) ( R ( R, tad par šo attiecību apvienojumu sauc attiecību ρ U ρ = A, R U ) ; ( R par attiecību šķēlumu sauc attiecību ρ I ρ = A, R I ) ; ( R par attiecību starpību sauc attiecību ρ ρ = ( A, R \ ). \ R

8 004, Pēteris Daugulis 8 Par attiecības ρ = ( A, R) papildinājumu jeb papildinošo attiecību sauc attiecību ρ ' = ( A, ( A B) \ R). Par attieksmes ρ = ( A, R) apvērsto attiecību sauc attiecību ρ = ( A, R ), kur R = {( y, x) B A ( x, y) R}. Ja ir dotas divas attiecību ρ = A, ) un ρ = ( C, ) R ( R, tad par šo attiecību kompozīciju vai reizinājumu sauc attiecību ρ ρ = R ( A, C, R ), kur R R = {( x, z) A C eksistē y B tāds, ka ( x, y) R un y, z) R }. ( Attiecību kompozīcija ir saistīta ar attēlojumu kompozīciju: attiecību ρ = ( A, R ) un ρ = C, ) kompozīcijai ( R ρ ρ = R ( A, C, R ) atbilst kopa R R, kas ir vienāda ar kopām R un R atbilstošo attēlojumu kompozīcijas grafiku.

9 004, Pēteris Daugulis 9 PIEMĒRI < TEORĒMA (attiecību īpašības) Ja ρ = ( A, R), σ = ( A, S) un τ = ( A, T ) ir attiecības kopā, tad ir spēkā šādas īpašības ) ερ ρε = ρ = ; λρ ρλ = λ ) ( ρ ') = ( ρ )' ; 3) ( ρ σ ) = ρ σ ; ( ρ σ ) = ρ σ ; 4) ρ( σ τ ) = ρσ ρτ ; ( σ τ ) ρ = σρ τρ ; 5) ρ( σ τ ) ρσ ρτ ; ( σ τ ) ρ σρ τρ ; = ; Attiecību speciālgadījumi

10 004, Pēteris Daugulis 0 DEFINĪCIJA Attiecību ρ = ( A, R) sauksim par refleksīvu, ja katram aρ a. a A izpildās nosacījums Attiecības ρ = ( A, R) refleksivitāte nozīmē, ka ε ρ vai arī, ka ρ = ρ ε, citos terminos, tās grafiks satur kopas A diagonāli, refleksīvas attiecības grafā katrai virsotnei a var atrast šķautni, kuras abi gali pieder a (šādu šķautni sauc par orientētu cilpu). Refleksīvu attiecību piemēri: skaitļu vienādība, ģeometrisku figūru vienādība un līdzība. DEFINĪCIJA Attiecību sauc par antirefleksīvu, ja ja katram a A izpildās nosacījums a ρ ' a. ρ ε' vai arī, ka Antirefleksivitāte nozīmē, ka ρ = ρ \ ε, antirefleksīvas attiecības grafā nav nevienas cilpas. Antirefleksīvu attiecību piemēri: skaitļu nevienādība, taišņu perpendikularitāte.

11 004, Pēteris Daugulis DEFINĪCIJA Attiecību sauksim par simetrisku, ja jebkuriem diviem nosacījums: ja aρ b, tad a A un b A izpildās šāds bρ a. Attiecības simetriskums nozīmē, ka ρ = ρ vai arī, ka ( ρ \ ε) = ( ρ \ ε ) ε, simetriskas attiecības grafā starp jebkurām divām dažādām virsotnēm vai nu nav nevienas šķautnes, vai arī ir divas šķautnes (vērstas pretējos virzienos). Simetrisku attiecību piemēri: skaitļu vienādība, figūru līdzība, cilvēku radniecība. Attiecību sauksim par antisimetrisku, ja jebkuriem diviem aρ b un a A un b A izpildās nosacījums: ja bρ a, tad a = b. Attiecību antisimetriskums nozīmē, ka ρ ρ ε vai arī, ka ( ρ \ ε) = ( ρ \ ε ) \ ε, antisimetriskas attiecības grafā nav virsotņu pāru, starp kuru elementiem ir divas šķautnes. Antisimetrisku attiecību piemēri: skaitļu attiecība mazāks vai vienāds, veselu skaitļu dalāmība.

12 004, Pēteris Daugulis Attieksmi sauc par asimetrisku, ja jebkuriem diviem aρ b, tad a A un b A izpildās nosacījums: ja b ' a ρ. Attieksmes asimetriskums nozīmē, ka ρ ρ = λ vai arī, ka ρ = ρ \ ε, asimetriskas attieksmes grafā nav cilpu un nav virsotņu pāru, starp kuru elementiem ir divas šķautnes. Asimetrisku attieksmju piemēri: skaitļu attieksme mazāks. Attieksmi sauc par tranzitīvu, ja jebkuriem trīs elementiem nosacījums: ja a A, b A un c A izpildās aρ b un bρ c, tad aρ c. Attieksmes tranzitivitāte nozīmē, ka arī, ka ( ρ ε ) = ρ ε. ρ ρ vai Ja ρ ir patvaļīga attieksme, tad attieksmi U = ρ i N sauc par attieksmes ρ tranzitīvo slēgumu (pierādīt patstāvīgi, ka τ ir tranzitīva attieksme!). τ i

13 004, Pēteris Daugulis 3 Tranzitīvu attieksmju piemēri: skaitļu attieksme mazāks (<), skaitļu dalāmības attieksme, ģeometrisku figūru līdzības attieksme. Attieksmi sauc par dihotomisku (aptverošu), ja a A un b A a b izpildās nosacījums: aρ b vai bρ a. jebkuriem diviem, tādiem, ka Attieksmes dihotomiskums nozīmē, ka ε ' ρ ρ. Dihotomisku attieksmju piemēri: skaitļu attieksme mazāks vai vienāds. Sakārtojumi DEFINĪCIJA Attiecību sauc par daļēju sakārtojumu, ja tā ir ) refleksīva, ) antisimetriska, 3) tranzitīva. Daļēju sakārtojumu sauc par pilnu (lineāru) sakārtojumu, ja tas ir dihotomisks. Attiecību sauc par stingru (pilnu) sakārtojumu, ja tā ir antirefleksīva, antisimetriska un tranzitīva (un dihotomiska).

14 004, Pēteris Daugulis 4 Refleksīvu un tranzitīvu attiecību sauc par pirmsakārtojumu vai kvazisakārtojumu. Kopu ar tajā uzdotu daļēju sakārtojumu sauc par daļēji sakārtotu kopu, kopu ar pilnu sakārtojumu sauc par pilnīgi sakārtotu kopu vai ķēdi. Daļēja un pilna sakārtojuma attieksmes parasti apzīmē ar izteikti nesimetriskiem, orientētiem atdalošiem simboliem, piemēram <,, p, <,,,, u un citiem. Mēs apzīmēsim vispārīgu sakārtojumu ar. Duālo DSK iegūst no dotās mainot uz pretējo salīdzināšanas kārtību. PIEMĒRS Vienības attiecība ε acīmredzami ir daļējs sakārtojums, to sauc par triviālo vai diskrēto sakārtojumu. Daži klasiski sakārtojumu piemēri: (, ),( N, ), ( P( A), ) N, Elementus x un y sauksim par salīdzināmiem, ja x y (x ir mazāks vai vienāds kā y) vai x y (x ir lielāks vai vienāds kā y), pretējā gadījumā tos sauksim par nesalīdzināmiem.

15 004, Pēteris Daugulis 5 Ja uzdota daļēji sakārtota kopa ( A, ), tad apakškopu B A sauc par ķēdi, ja ( B, ) ir pilnīgi sakārtota kopa, apakškopu B sauc par antiķēdi, ja ( B, ) ir triviāli sakārtota kopa. Ķēdi (attiecīgi, antiķēdi) B sauc par maksimālu, ja a A \ B apakškopa {a} jebkuram ķēde (attiecīgi, antiķēde). B nav Saka, ka daļēji sakārtotas kopas garums (attiecīgi, platums) ir n, ja tajā eksistē ķēde (attiecīgi, antiķēde), kas satur n elementus un neeksistē ķēde (attiecīgi, antiķēde), kas satur n + elementu. DSK, kuras garums ir, sauksim par divdaļīgu DSK. Elementu x A sauc par vislielāko (attiecīgi, a A izpildās a x x a ). vismazāko), ja katram (attiecīgi, Ja DSK eksistē vislielākais (vismazākais) elements, tad to sauc par ierobežotu no augšas (apakšas).

16 004, Pēteris Daugulis 6 x A sauc par maksimālu (attiecīgi, x a seko, ka x = a a x seko, ka x Elementu minimālu), ja no tā, ka (attiecīgi, no tā, ka a = ). Grafi sakārtojumu vizualizēšanai Salīdzināmības orientētais grafs grafs kā vispārīgai attiecībai. Salīdzināmības (neorientētais) grafs - dažādi elementi tiek savienoti ar neorientētu šķautni tad un tikai tad, ja tie ir salīdzināmi. Izmanto arī nesalīdzināmības grafu. Hasses grafs Vizualizējot daļējus sakārtojumus grafu veidā, ir lietderīgi nedaudz modificēt attieksmes grafa jēdzienu: ja ir dots daļējs sakārtojums ( A, ), tad no sākumā konstruē šī sakārtojuma grafu parastajā nozīmē un pēc tam izdzēš visas cilpas un visas šķautnes, kuru eksistence ir tranzitivitātes sekas. Šādu grafu sauc par sakārtojuma (vai Hasses) grafu.

17 004, Pēteris Daugulis 7 Ja kopa A ir galīga, tad šī definīcija nozīmē, ka starp dažādiem elementiem a un b ir šķautne ( a b ) tad un tikai tad, ja a b un neeksistē c A tāds, ka c a, c b, a c un c b. Saka, ka b nosedz a. Papildus DSK īpašības Par DSK ( A, ) apakšattiecību sauksim DSK ( B), kur B A un b B b tad un tikai tad, ja b b (kopā A). Par intervālu [x,y] sauksim apakšattiecību, kas satur visus z: x z y. A un ( B) tad Ja ir dotas divas DSK (, A) funkciju f : A B sauksim par izotonu (tādu, kas saglabā kārtību), ja no tā, ka f ( a) B f ( a'). a A a' seko, ka Divas DSK ( A, A) un ( B) sauksim par izomorfām, ja eksistē bijektīva funkcija

18 004, Pēteris Daugulis 8 f f : A B tāda, ka a a' ( a) f ( a') B. A tad un tikai tad, ja Var definēt arī antiizomorfisma jēdzienu, kad eksistē bijektīva funkcija f : A B tāda, ka a A a' tad un tikai tad, ja f ( a) B f ( a' ). Par DSK kēžu sadalījumu sauksim tās elementu kopas sadalījumu apakškopās, kurām atbilstošās apakšdsk ir ķēdes. TEORĒMA (Dilvorts) Galīgai DSK platums ir vienāds ar minimālo ķēžu sadalījuma elementu skaitu (minimālo skaitu ķēžu, kurās var sadalīt doto DSK). PIERĀDĪJUMS Patstāvīgi, izmantot matemātisko indukciju pēc platuma. Operācijas ar DSK: ) apvienojums - ja dotas DSK D = ( A, R ) un D = ( A, R) un A I A =, tad D + D = A U A, R U ) ( R ) lineārā summa - ja dotas DSK D = A, ) un D = A, ) un ( R ( R

19 004, Pēteris Daugulis 9 A I A =, tad D D = A A, R U R U A ) ( A U, visi viena kopas elementi ir mazāki nekā visi otrās kopas elementi; 3) Dekarta reizinājums - ja dotas DSK D = ( A, R ) un D = ( A, R), tad D D = ( A A, ), kur elementi S ( a, a ) un ( b, b ) a b a b R R ir salīdzināmi tad un tikai tad, ja un. PIEMĒRI Kēde ir viena elementa DSK iterētā lineārā summa. Antiķēde ir viena elementa DSK iterēts apvienojums. Ja ir dotas divas DSK D = ( A, R ) un D = ( A, R), tad var definēt leksikogrāfisko A sakārtojumu (kopu) Dekarta reizinājumā šādi: ( a, a) ( b, b ) tad un tikai tad, ja a b vai a = b un a b. A PIEMĒRS Ja ir dota pilnīgi sakārtota kopa ( A, ), n tad katram n N kopā A var definēt pilnu sakārtojumu, ko sauc par sakārtojumam atbilstošo leksikogrāfisko sakārtojumu, kuru mēs

20 004, Pēteris Daugulis 0 apzīmēsim ar p, šādā veidā: ( a,..., an ) p ( b,..., bn ) tad un tikai tad, ja mazākajam indeksam i, tādam, ka a i b i izpildās nosacījums ai bi. DSK sauc par graduētu, ja visām maksimālām ķēdēm ir vienāds garums. Par graduētas kopas rangu sauc jebkuras tās maksimālas ķēdes garumu. Par DSK ranga funkciju sauc funkciju r, kas katram elementam piekārto veselu skaitli tā, ka ja y nosedz x, tad r(y)=r(x)+. DSK, kurai eksistē ranga funkciju sauc par ranžētu DSK. Par k-tā ranga kopu sauc DSK apakškopu, kuras elementi rangs vienāds ar k. DSK ( B ) ir DSK ( A, A ) paplašinājums, ja ( A) ( B ). Ja B ir lineārs sakārtojums, to sauc par lineāru paplašinājumu. Topoloģiskās šķirošanas problēma: atrast dotās DSK lineāro paplašinājumu. Par DSK A realizatoru sauc visu tādu tās lineāro paplašinājumu kopu, kuru šķēlums ir A. Par DSK A dimensiju sauc minimāli iespējamo elementu skaitu tās realizatorā.

21 004, Pēteris Daugulis PIEMĒRS DSK pielietojumi šķirošanā. Šķirošanas uzdevuma mērķis ir sakārtot dotos skaitļus (vispārīgā gadījumā, lineāri sakārtotas kopas elementus) pieaugošā kārtībā veicot vairākkārtīgi divu elementu salīdzināšanas operācijas. Tādējādi, jebkurā laika momentā uzkrāto zināšanu apjoms ir DSK, kas apraksta visu salīdzināšanu rezultātus. Algoritms ir jāizstrādā tā, lai katra nākamā salīdzināšana pēc iespējas samazinātu DSK dimensiju. Ekvivalence DEFINĪCIJA Attiecību sauc par ekvivalenci, ja tā ir ) refleksīva; ) simetriska; 3) tranzitīva. Ekvivalences parasti apzīmē ar simboliem, kas ir izteikti simetriski attiecība pret vertikālo asi, piemēram, =,,. Klasiski ekvivalenču piemēri: skaitļu un, vispārīgāk, matemātisku objektu vienādība vai izomorfisms, ģeometrisku figūru līdzība.

22 004, Pēteris Daugulis TEORĒMA Jebkurai kopai A pastāv bijekcija starp ekvivalencēm, kas uzdotas kopā A un kopas A sadalījumiem. PIERĀDĪJUMS Ja ir dots kopas A sadalījums AI = { A } α α I, tad definēsim tam atbilstošu ekvivalenci šādā veidā: a b tad un tikai tad, ja a un b pieder vienai un tai pašai sadalījuma apakškopai A x, apzīmēsim šo attēlojumu no kopas A sadalījumu kopas uz kopas A attieksmju kopu ar ϕ. Pierādīsim, ka katram sadalījumam definētā attieksme tiešām ir ekvivalence: refleksivitāte - katram a A izpildās a a, a b, tad { a, b} A x kādai b a, a un b c, tad simetrija - ja apakškopai A x un tranzitivitāte - ja b { a, b} A x un { b, c} Ay, tātad A x = Ay un a c. No otras puses, pieņemsim, ka ir dota ekvivalence un parādīsim, ka šādai attieksmes var viennozīmīgi piekārtot kopas A sadalījumu,

23 004, Pēteris Daugulis 3 apzīmēsim šo attēlojumu no kopas A ekvivalenču kopas uz kopas A sadalījumu kopu ar ψ. a A definēsim A a { x A x a} a A a Aa, tātad a Katram =. Katram A un U Aa = A, tātad kopa { Aa } a A ir kopas A a A pārklājums. Pierādīsim vēl, ka ja Aa Ab, tad Aa I A b =. Ja Aa I A b, tad eksistē c A tāds, ka c A, c, no kā seko, ka a c c b a b. a A b, un x tāds, ka Pieņemsim, ka eksistē A x A, x, tad iegūstam, ka a a A b x 'b. Tā kā a b x b tranzitivitātes seko, ka x un, tad no attieksmes, kas ir pretruna. Līdzīgā veidā iegūsim pretrunu, ja pieņemsim, ka eksistē x A tāds, ka x Ab, x Aa. No funkciju ϕ un ψ konstrukcijām seko, ka to kompozīcijas jebkurā kārtībā ir vienādas ar

24 004, Pēteris Daugulis 4 vienības attēlojumiem attiecīgajās kopās, tātad abas šīs funkcijas ir bijekcijas.

PREDIKĀTU LOĢIKA. Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem.

PREDIKĀTU LOĢIKA. Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem. 005, Pēteris Daugulis PREDIKĀTU LOĢIKA Izteikumu sauc par predikātu, ja tas ir izteikums, kas ir atkarīgs no mainīgiem lielumiem. Par predikātiem ir jādomā kā par funkcijām, kuru vērtības apgabals ir patiesumvērtību

Διαβάστε περισσότερα

Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība

Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 nodabība piemēs pēķināt vektoa a gaumu un viziena kosinusus, ja a = 5 i 6 j + 5k Vektoa a koodinātas i dotas: a 5 ; a =

Διαβάστε περισσότερα

LATVIJAS RAJONU 43. OLIMPIĀDE

LATVIJAS RAJONU 43. OLIMPIĀDE Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5-5) kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 43 OLIMPIĀDE ATRISINĀJUMI 43 Pārlokot

Διαβάστε περισσότερα

Mehānikas fizikālie pamati

Mehānikas fizikālie pamati 1.5. Viļņi 1.5.1. Viļņu veidošanās Cietā vielā, šķidrumā, gāzē vai plazmā, tātad ikvienā vielā starp daļiņām pastāv mijiedarbība. Ja svārstošo ķermeni (svārstību avotu) ievieto vidē (pieņemsim, ka vide

Διαβάστε περισσότερα

Gaismas difrakcija šaurā spraugā B C

Gaismas difrakcija šaurā spraugā B C 6..5. Gaismas difrakcija šaurā spraugā Ja plakans gaismas vilnis (paralēlu staru kūlis) krīt uz šauru bezgalīgi garu spraugu, un krītošās gaismas viļņa virsma paralēla spraugas plaknei, tad difrakciju

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

LATVIJAS RAJONU 39. OLIMPIĀDE

LATVIJAS RAJONU 39. OLIMPIĀDE Materiāls ņemts o grāmatas:adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (-) kārtas (rajou) uzdevumi u atrisiājumi" LATVIJAS RAJONU 9 OLIMPIĀDE ATRISINĀJUMI 9 Ir jāaprēķia 00-ais

Διαβάστε περισσότερα

"Profesora Cipariņa klubs" 2005./06. m.g. 1. nodarbības uzdevumu atrisinājumi. A grupa

Profesora Cipariņa klubs 2005./06. m.g. 1. nodarbības uzdevumu atrisinājumi. A grupa "Profesora Cipariņa klubs" 005./06. m.g.. nodarbības udevumu atrisinājumi A grupa. Viegli pārbaudīt, ka 3 4=44. Tātad meklējamie skaitļi var būt ; 3; 4. Pierādīsim, ka tie nevar būt citādi. Tiešām, ivēloties

Διαβάστε περισσότερα

Logatherm WPS 10K A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPS 10K A ++ A + A B C D E F G A B C D E F G. kw kw /2013 51 d 11 11 10 kw kw kw d 2015 811/2013 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst S regulu 811/2013, 812/2013, 813/2013 un 814/2013 prasībām, ar ko papildina

Διαβάστε περισσότερα

1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G

1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G 1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G 3. Īss raksturojums Imunoglobulīnu G veido 2 vieglās κ vai λ ķēdes un 2 smagās γ ķēdes. IgG iedalās 4 subklasēs: IgG1, IgG2, IgG3,

Διαβάστε περισσότερα

2. PLAKANU STIEŅU SISTĒMU STRUKTŪRAS ANALĪZE

2. PLAKANU STIEŅU SISTĒMU STRUKTŪRAS ANALĪZE Ekspluatācijas gaitā jebkura reāla būve ārējo iedarbību rezultātā kaut nedaudz maina sākotnējo formu un izmērus. Sistēmas, kurās to elementu savstarpējā izvietojuma un izmēru maiņa iespējama tikai sistēmas

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma

Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma Gaisa vertikāla pārvietošanās Zemes atmosfērā nosaka daudzus procesus, kā piemēram, mākoħu veidošanos, nokrišħus un atmosfēras

Διαβάστε περισσότερα

MULTILINGUAL GLOSSARY OF VISUAL ARTS

MULTILINGUAL GLOSSARY OF VISUAL ARTS MULTILINGUAL GLOSSARY OF VISUAL ARTS (GREEK-ENGLISH-LATVIAN) Χρώματα Colours Krāsas GREEK ENGLISH LATVIAN Αυθαίρετο χρώμα: Χρϊμα που δεν ζχει καμία ρεαλιςτικι ι φυςικι ςχζςθ με το αντικείμενο που απεικονίηεται,

Διαβάστε περισσότερα

Lielumus, kurus nosaka tikai tā skaitliskā vērtība, sauc par skalāriem lielumiem.

Lielumus, kurus nosaka tikai tā skaitliskā vērtība, sauc par skalāriem lielumiem. 1. Vektori Skalāri un vektoriāli lielumi Lai raksturotu kādu objektu vai procesu, tā īpašības parasti apraksta, izmantojot dažādus skaitliskus raksturlielumus. Piemēram, laiks, kas nepieciešams, lai izlasītu

Διαβάστε περισσότερα

ELEKTROĶĪMIJA. Metāls (cietā fāze) Trauks. Elektrolīts (šķidrā fāze) 1. att. Pirmā veida elektroda shēma

ELEKTROĶĪMIJA. Metāls (cietā fāze) Trauks. Elektrolīts (šķidrā fāze) 1. att. Pirmā veida elektroda shēma 1 ELEKTROĶĪMIJA Elektroķīmija ir zinātnes nozare, kura pēta ķīmisko un elektrisko procesu savstarpējo sakaru ķīmiskās enerģijas pārvēršanu elektriskajā un otrādi. Šie procesi ir saistīti ar katra cilvēka

Διαβάστε περισσότερα

Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolēniem

Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolēniem Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolēniem Dr. oec, docente, Silvija Kristapsone 29.10.2015. 1 I. Zinātniskās pētniecības

Διαβάστε περισσότερα

Būvfizikas speckurss. LBN Ēku norobežojošo konstrukciju siltumtehnika izpēte. Ūdens tvaika difūzijas pretestība

Būvfizikas speckurss. LBN Ēku norobežojošo konstrukciju siltumtehnika izpēte. Ūdens tvaika difūzijas pretestība Latvijas Lauksaimniecības universitāte Lauku inženieru fakultāte Būvfizikas speckurss LBN 002-01 Ēku norobežojošo konstrukciju siltumtehnika izpēte. difūzijas pretestība Izstrādāja Sandris Liepiņš... Jelgava

Διαβάστε περισσότερα

Testu krājums elektrotehnikā

Testu krājums elektrotehnikā iļānu 41.arodvidusskola Sergejs Jermakovs ntons Skudra Testu krājums elektrotehnikā iļāni 2007 EOPS SOCĀLS FONDS zdots ar ESF finansiālu atbalstu projekta Profesionālās izglītības programmas Elektromontāža

Διαβάστε περισσότερα

Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004

Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004 Αριθμός 2204 Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004 (Παράρτημα Παράγραφοι 1 και 2) Δηλοποιηση Κατασχέσεως Αναφορικά με τους ZBIGNIEW και MAKGORZATA EWERTWSKIGNIEWEK, με αριθμούς διαβατηρίων Πολωνίας

Διαβάστε περισσότερα

Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts

Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts www.videszinatne.lv Saules enerģijas izmantošanas iespējas Latvijā / Seminārs "Atjaunojamo

Διαβάστε περισσότερα

Elektromagnētisms (elektromagnētiskās indukcijas parādības)

Elektromagnētisms (elektromagnētiskās indukcijas parādības) atvijas Uiversitāte Fizikas u matemātikas fakutāte Fizikas oaļa Papiiājums ekciju kospektam kursam vispārīgajā fizikā ektromagētisms (eektromagētiskās iukcijas parāības) Asoc prof Aris Muižieks Noformējums

Διαβάστε περισσότερα

Interferometri

Interferometri 6..6. Interferometri Interferometri ir optiskie aparāti, ar kuriem mēra dažādus fizikālus lielumus, izmantojot gaismas interferences parādības. Plānās kārtiņās koherentie interferējošie stari atrodas relatīvi

Διαβάστε περισσότερα

Ievads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar

Ievads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar Ievads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar likumu (tās piekopšanai nepieciešama licence un reģistrēšanās).

Διαβάστε περισσότερα

Palīgmateriāli gatavojoties centralizētajam eksāmenam ėīmijā

Palīgmateriāli gatavojoties centralizētajam eksāmenam ėīmijā Palīgmateriāli gatavojoties centralizētajam eksāmenam ėīmijā CE ietverto tēmu loks ir Ĝoti plašs: ėīmijas pamatjautājumi (pamatskolas kurss), vispārīgā ėīmija, neorganiskā ėīmija, organiskā ėīmija, ėīmija

Διαβάστε περισσότερα

P A atgrūšanās spēks. P A = P P r P S. P P pievilkšanās spēks

P A atgrūšanās spēks. P A = P P r P S. P P pievilkšanās spēks 3.2.2. SAITES STARP ATOMIEM SAIŠU VISPĀRĪGS RAKSTUROJUMS Lai izprastu materiālu fizikālo īpašību būtību jābūt priekšstatam par spēkiem, kas darbojas starp atomiem. Aplūkosim mijiedarbību starp diviem izolētiem

Διαβάστε περισσότερα

IEVADS KĻŪDU TEORIJĀ

IEVADS KĻŪDU TEORIJĀ RĪGAS TEHNISKĀS KOLEDŽA I.Klotņa IEVADS KĻŪDU TEORIJĀ 011. 1 1. FIZIKĀLO LIELUMU MĒRĪŠANA Peredze apstprna, ka dažādus tpskus objektus var savā starpā salīdznāt tka pēc tādām īpašībām, kuras raksturo ar

Διαβάστε περισσότερα

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ

Διαβάστε περισσότερα

4. APGAISMOJUMS UN ATTĒLI

4. APGAISMOJUMS UN ATTĒLI 4. APGAISMJUMS UN ATTĒLI ptisko mikroskopu vēsture un nākotne Gaismas avota stiprums. Gaismas plūsma Apgaismojums Elektriskie gaismas avoti. Apgaismojums darba vietā Ēnas. Aptumsumi Attēla veidošanās.

Διαβάστε περισσότερα

6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi

6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi 6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi 1. uzdevums Vai tu to vari? Gāzes Ķīmisko reakciju vienādojumi Ūdeņradis, oglekļa dioksīds,

Διαβάστε περισσότερα

ELEKTROTEHNIKA UN ELEKTRĪBAS IZMANTOŠANA

ELEKTROTEHNIKA UN ELEKTRĪBAS IZMANTOŠANA Ieguldījums tavā nākotnē Ieguldījums tavā nākotnē Profesionālās vidējās izglītības programmu Lauksaimniecība un Lauksaimniecības tehnika īstenošanas kvalitātes uzlabošana 1.2.1.1.3. Atbalsts sākotnējās

Διαβάστε περισσότερα

6.4. Gaismas dispersija un absorbcija Normālā un anomālā gaismas dispersija. v = f(λ). (6.4.1) n = f(λ). (6.4.2)

6.4. Gaismas dispersija un absorbcija Normālā un anomālā gaismas dispersija. v = f(λ). (6.4.1) n = f(λ). (6.4.2) 6.4. Gaismas dispersija un absorbcija 6.4.1. Normālā un anomālā gaismas dispersija Gaismas izplatīšanās ātrums vakuumā (c = 299 792,5 ±,3 km/s) ir nemainīgs lielums, kas nav atkarīgs no viļņa garuma. Vakuumā

Διαβάστε περισσότερα

3.2. Līdzstrāva Strāvas stiprums un blīvums

3.2. Līdzstrāva Strāvas stiprums un blīvums 3.. Līdzstrāva Šajā nodaļā aplūkosim elektrisko strāvu raksturojošos pamatlielumus un pamatlikumus. Nodaļas sākumā formulēsim šos likumus, balstoties uz elektriskās strāvas parādības novērojumiem. Nodaļas

Διαβάστε περισσότερα

Uzlabotas litija tehnoloģijas izstrāde plazmas attīrīšanas iekārtu (divertoru) aktīvo virsmu aizsardzībai

Uzlabotas litija tehnoloģijas izstrāde plazmas attīrīšanas iekārtu (divertoru) aktīvo virsmu aizsardzībai EIROPAS REĢIONĀLĀS ATTĪSTĪBAS FONDS Uzlabotas litija tehnoloģijas izstrāde plazmas attīrīšanas iekārtu (divertoru) aktīvo virsmu aizsardzībai Projekts Nr. 2DP/2.1.1.0/10/APIA/VIAA/176 ( Progresa ziņojums

Διαβάστε περισσότερα

Bioloģisko materiālu un audu mehāniskās īpašības. PhD J. Lanka

Bioloģisko materiālu un audu mehāniskās īpašības. PhD J. Lanka Bioloģisko materiālu un audu mehāniskās īpašības PhD J. Lanka Mehāniskās slodzes veidi: a stiepe, b spiede, c liece, d - bīde Traumatisms skriešanā 1 gada laikā iegūto traumu skaits (dažādu autoru dati):

Διαβάστε περισσότερα

Isover tehniskā izolācija

Isover tehniskā izolācija Isover tehniskā izolācija 2 Isover tehniskās izolācijas veidi Isover Latvijas tirgū piedāvā visplašāko tehniskās izolācijas (Isotec) produktu klāstu. Mēs nodrošinām efektīvus risinājumus iekārtām un konstrukcijām,

Διαβάστε περισσότερα

6< 7 4) ==4>)? ) >) ) Α< = > 6< 7<)Β Χ< Α< = > ) = ) 6 >) 7<)Ε > 7 ) ) ) ; + ; # % & () & :,% 3 + ;; 7 8 )+, ( ! # % & % ( )! +, % & &.

6< 7 4) ==4>)? ) >) ) Α< = > 6< 7<)Β Χ< Α< = > ) = ) 6 >) 7<)Ε > 7 ) ) ) ; + ; # % & () & :,% 3 + ;; 7 8 )+, ( ! # % & % ( )! +, % & &. 6< 7 4) ==4>)? ) >) )Α< = > 6< 7 )= )6 >) 7 7 ) ) ) ; + ; # % & () 4 5 6 & 7 8 9 & :,% 3+ ;;7 8 )+, (! # % & % ( )! +, % & &. /0 121, 3 &./012 34,51 65 57.8,57 9,(% #85% :;

Διαβάστε περισσότερα

r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ

r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Ο Ε Υ Τ Ι Κ Ο Ι Ο Ρ Υ Μ Α Κ Α Β Α Λ Α Σ Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ν Ε Φ Α Ρ Μ Ο Γ Ώ Ν Τ Μ Η Μ Α Η Λ Ε Κ Τ Ρ Ο Λ Ο Γ Ι Α Σ i l t r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ ΑΥΤΟΜΑΤ

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ

Διαβάστε περισσότερα

( ) = ( ) Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ. Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες

( ) = ( ) Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ. Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες Ανάλυση Πινάκων και Εφαρμογές Σελίδα 1 από 6 Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες Έστω A είναι μ ν πίνακας. Τότε 1. ranka= ranka

Διαβάστε περισσότερα

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6 # % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν

Διαβάστε περισσότερα

Kontroldarba varianti. (II semestris)

Kontroldarba varianti. (II semestris) Kontroldarba varianti (II semestris) Variants Nr.... attēlā redzami divu bezgalīgi garu taisnu vadu šķērsgriezumi, pa kuriem plūst strāva. Attālums AB starp vadiem ir 0 cm, I = 0 A, I = 0 A. Aprēķināt

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

Projekts Tālākizglītības programmas Bioloăijas skolotāja profesionālā pilnveide izstrāde un aprobācija (Nr. VPD1/ESF/PIAA/05/APK/

Projekts Tālākizglītības programmas Bioloăijas skolotāja profesionālā pilnveide izstrāde un aprobācija (Nr. VPD1/ESF/PIAA/05/APK/ C Praktisko darbu modulis 1. laboratorijas darbs Nodarbība. Mikroskopēšanas pamatprincipi augu uzbūves pētīšanā Priekšstatu veidošanās par mikroskopiju Mikroskopēšana ir viena svarīgākajām bioloăijā pielietojamām

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Ārsienu siltināšana. Apmetamās un vēdināmās fasādes

Ārsienu siltināšana. Apmetamās un vēdināmās fasādes Rockwool LATVIJA Ārsienu siltināšana Apmetamās un vēdināmās fasādes Apmetamo fasāžu siltināšana Akmens vates izstrādājumiem, kurus izmanto ēku fasāžu siltināšanai, raksturīga izmēru noturība (tā nedeformējas

Διαβάστε περισσότερα

Latvijas Universitāte Fizikas un matemātikas fakultāte datorzinātņu nodaļa

Latvijas Universitāte Fizikas un matemātikas fakultāte datorzinātņu nodaļa Latvijas Univesitāte Fizikas un matemātikas fakultāte datozinātņu nodaļa Eksāmena biļešu atbildes Fizikā (Teoētiskā mehānika, elektomagnētisms, optika) NEPABEIGTS Rīga,. Šis dabs i nācis no http://datzb.intelctuals.net/

Διαβάστε περισσότερα

J. Dravnieks Matemātiskās statistikas metodes sporta zinātnē

J. Dravnieks Matemātiskās statistikas metodes sporta zinātnē J. Dravieks Matemātiskās statistikas metodes sporta ziātē Mācību grāmata LSPA studetiem, maģistratiem, doktoratiem RĪGA - 004 Juris Dravieks, 004. Matemātiskās statistikas metodes sporta ziātē SATURS IEVADS...

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Norādījumi par dūmgāzu novadīšanas sistēmu

Norādījumi par dūmgāzu novadīšanas sistēmu Norādījumi par dūmgāzu novadīšanas sistēmu Kondensācijas tipa gāzes apkures iekārta 6 720 619 607-00.1O ogamax plus GB072-14 GB072-20 GB072-24 GB072-24K Apkalpošanas speciālistam ūdzam pirms montāžas un

Διαβάστε περισσότερα

# % % % % % # % % & %

# % % % % % # % % & % ! ! # % % % % % % % # % % & % # ( ) +,+.+ /0)1.2(3 40,563 +(073 063 + 70,+ 0 (0 8 0 /0.5606 6+ 0.+/+6+.+, +95,.+.+, + (0 5 +//5: 6+ 56 ;2(5/0 < + (0 27,+/ +.0 10 6+ 7 0, =7(5/0,> 06+?;, 6+ (0 +9)+ 5+ /50

Διαβάστε περισσότερα

Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī

Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī Atrisināt dotos sešus uzdevumus, laiks 3 stundas. Uzdevumu tēmas: 1) tests vispārīgajā ķīmijā; 2) ķīmisko reakciju kinētika;

Διαβάστε περισσότερα

Irina Vdoviča. Praktisko darbu materiāls Vispārīgā ķīmija Uzdevumi un vingrinājumi

Irina Vdoviča. Praktisko darbu materiāls Vispārīgā ķīmija Uzdevumi un vingrinājumi Irina Vdoviča Praktisko darbu materiāls Vispārīgā ķīmija Uzdevumi un vingrinājumi Saturs 1. ATOMA UZBŪVE UN PERIODISKAIS LIKUMS... 2 2. VIELU UZBŪVE... 6 3. OKSIDĒŠANAS REDUCĒŠANAS REAKCIJAS... 7 4. ELEKTROLĪTISKĀ

Διαβάστε περισσότερα

Elektronikas pamati 1. daļa

Elektronikas pamati 1. daļa Egmonts Pavlovskis Elektronikas pamati 1. daļa Mācību līdzeklis interešu izglītības elektronikas pulciņu audzēkņiem un citiem interesentiem Mācību līdzeklis tapis Eiropas reģionālās attīstības fonda projekta

Διαβάστε περισσότερα

SKICE. VĪTNE SATURS. Ievads Tēmas mērķi Skice Skices izpildīšanas secība Mērinstrumenti un detaļu mērīšana...

SKICE. VĪTNE SATURS. Ievads Tēmas mērķi Skice Skices izpildīšanas secība Mērinstrumenti un detaļu mērīšana... 1 SKICE. VĪTNE SATURS Ievads... 2 Tēmas mērķi... 2 1. Skice...2 1.1. Skices izpildīšanas secība...2 1.2. Mērinstrumenti un detaļu mērīšana...5 2. Vītne...7 2.1. Vītņu veidi un to apzīmējumi...10 2.1.1.

Διαβάστε περισσότερα

M.Jansone, J.Blūms Uzdevumi fizikā sagatavošanas kursiem

M.Jansone, J.Blūms Uzdevumi fizikā sagatavošanas kursiem DINAMIKA. Dinmik prkst pātrinājum ršnās cēloħus un plūko tā lielum un virzien noteikšns pħēmienus. Spēks (N) ir vektoriāls lielums; ts ir ėermeħu vi to dĝiħu mijiedrbībs mērs. Inerce ir ėermeħu īpšīb sglbāt

Διαβάστε περισσότερα

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) ϕ = ϕ 1 + C(t) dt 2 ϕ = 0

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) ϕ = ϕ 1 + C(t) dt 2 ϕ = 0 u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = 0 C(t) ϕ = ϕ 1 + C(t) dt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ + ϕ

Διαβάστε περισσότερα

Rīgas Tehniskās universitātes Būvniecības fakultāte. Metāla konstrukcijas

Rīgas Tehniskās universitātes Būvniecības fakultāte. Metāla konstrukcijas Rīgas Tehniskās universitātes Būvniecības fakultāte Metāla konstrukcijas Studiju darbs Ēkas starpstāvu pārseguma nesošo tērauda konstrukciju projekts Izpildīja: Kristaps Kuzņecovs Stud. apl. Nr. 081RBC049

Διαβάστε περισσότερα

1. Ievads bioloģijā. Grāmatas lpp

1. Ievads bioloģijā. Grāmatas lpp 1. Ievads bioloģijā Grāmatas 6. 37. lpp Zaļā krāsa norāda uz informāciju, kas jāapgūst Ar dzeltenu krāsu izcelti īpaši jēdzieni, kas jāapgūst Ar sarkanu krāsu norādīti papildus informācijas avoti vai papildus

Διαβάστε περισσότερα

Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolotājiem

Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolotājiem Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolotājiem Dr. oec, docente, Silvija Kristapsone 29.10.2015. 1 I. Zinātniskās pētniecības

Διαβάστε περισσότερα

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς 9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1

Διαβάστε περισσότερα

6. Pasaules valstu attīstības teorijas un modeļi

6. Pasaules valstu attīstības teorijas un modeļi 6. Pasaules valstu attīstības teorijas un modeļi Endogēnās augsmes teorija (1980.-jos gados) Klasiskās un neoklasiskās augsmes teorijās un modeļos ir paredzēts, ka ilgtermiņa posmā ekonomiskā izaugsme

Διαβάστε περισσότερα

Kā radās Saules sistēma?

Kā radās Saules sistēma? 9. VISUMS UN DAĻIŅAS Kā radās Saules sistēma? Planētas un zvaigznes Galaktikas un Visums Visuma evolūcija. Habla likums Zvaigžņu evolūcija Visuma apgūšanas perspektīvas Lielu ātrumu un enerģiju fizika

Διαβάστε περισσότερα

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! #!! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! # % & (! ) & (! (! + & (!, % (! +.! / 0 1 0 2 3 4 1 0 5 6 % 7 8!, %! + 0! # % 0 1 9. 2! 1. 2 8 2 5 : ; 0 % &! & ( ) ; < =2 8 0 ; 0/ =2 8 0 8 2 8 & 8 2 0 8

Διαβάστε περισσότερα

Elektrozinību teorētiskie pamati

Elektrozinību teorētiskie pamati LTVJS LKSMNEĪS NVESTĀTE TEHNSKĀ FKLTĀTE Lauksainiecības enerăētikas institūts.galiħš Elektrozinību teorētiskie paati Elektrisko ėēžu aprēėini Jelgava 8 LTVJS LKSMNEĪS NVESTĀTE TEHNSKĀ FKLTĀTE Lauksainiecības

Διαβάστε περισσότερα

Η Ομάδα SL(2,C) και οι αναπαραστάσεις της

Η Ομάδα SL(2,C) και οι αναπαραστάσεις της SL(2, C) SO(3, 1) D : Λ D(Λ) SO(3, 1) 2 1 D : ±A D(π(±A)) SL(2, C) SL(2, C) SO(3, 1) SL(2, C) SO(3, 1) ξ i (, ) K i x µ p µ J µν T µν A µ ψ α J i = J i, () K i = K i, ( ) K i M 0i = (iξ i K i ) A i = 1

Διαβάστε περισσότερα

Šis dokuments ir izveidots vienīgi dokumentācijas nolūkos, un iestādes neuzņemas nekādu atbildību par tā saturu

Šis dokuments ir izveidots vienīgi dokumentācijas nolūkos, un iestādes neuzņemas nekādu atbildību par tā saturu 2011R0109 LV 24.02.2015 002.001 1 Šis dokuments ir izveidots vienīgi dokumentācijas nolūkos, un iestādes neuzņemas nekādu atbildību par tā saturu B KOMISIJAS REGULA (ES) Nr. 109/2011 (2011. gada 27. janvāris),

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

5 ml iekšķīgi lietojamas suspensijas (1 mērkarote) satur 125 mg vai 250 mg amoksicilīna, amoksicilīna trihidrāta veidā (Amoxicillinum).

5 ml iekšķīgi lietojamas suspensijas (1 mērkarote) satur 125 mg vai 250 mg amoksicilīna, amoksicilīna trihidrāta veidā (Amoxicillinum). 1. ZĀĻU NOSAUKUMS HICONCIL 125 mg/5 ml pulveris iekšķīgi lietojamas suspensijas pagatavošanai HICONCIL 250 mg/5 ml pulveris iekšķīgi lietojamas suspensijas pagatavošanai 2. KVALITATĪVAIS UN KVANTITATĪVAIS

Διαβάστε περισσότερα

! #! # # % & % # # # # %!! ( &) & #& % %!! # # # # +,! % # )! #! ) # # # ( # % # # + ) # + # ( ( & ) # &! #!. % #! /! # ) & #! & # # ) ) # + # % # ( # ) & #!! # + & % # / # + # & #! ) 0. & ( %.1! 2 2 #

Διαβάστε περισσότερα

5. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMI

5. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMI WWW.BIOSAN.LV 5. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMI Atrisināt tālāk dotos uzdevumus un atbildes ierakstīt MS Word atbilžu datnē, ko kā pievienoto dokumentu

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Χαρακτηριστική Εξίσωση Πίνακα

Χαρακτηριστική Εξίσωση Πίνακα Έστω ο n nτετραγωνικός πίνακας A της μορφής a L a M O M an L a όπου aij, i n, j n πραγματικές σταθερές Ονομάζουμε χαρακτηριστική εξίσωση του πίνακα A την εξίσωση A λi, όπου I ο n n μοναδιαίος πίνακας και

Διαβάστε περισσότερα

! # %& # () & +( (!,+!,. / #! (!

! # %& # () & +( (!,+!,. / #! (! ! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /

Διαβάστε περισσότερα

Everfocus speciālais cenu piedāvājums. Spēkā, kamēr prece ir noliktavā! Videonovērošanas sistēma

Everfocus speciālais cenu piedāvājums. Spēkā, kamēr prece ir noliktavā! Videonovērošanas sistēma Analogās 520TVL krāsu kameras EQ350 Sensors: 1/3 SONY CCD Izšķirtspēja: 752 x 582 (PAL) 520 TVL Gaismas jūtība: 0.5 lux (F=1.2) S/N attiecība: > 48 db (AGC izslēgts) Lēca: nav Nominālais spriegums: EQ

Διαβάστε περισσότερα

RĪGAS TEHNISKĀ UNIVERSITĀTE ENERĢĒTIKAS UN ELEKTROTEHNIKAS FAKULTĀTE INDUSTRIĀLĀS ELEKTRONIKAS UN ELEKTROTEHNIKAS INSTITŪTS

RĪGAS TEHNISKĀ UNIVERSITĀTE ENERĢĒTIKAS UN ELEKTROTEHNIKAS FAKULTĀTE INDUSTRIĀLĀS ELEKTRONIKAS UN ELEKTROTEHNIKAS INSTITŪTS RĪGAS TEHNSKĀ NVERSTĀTE ENERĢĒTKAS N ELEKTROTEHNKAS FAKLTĀTE NDSTRĀLĀS ELEKTRONKAS N ELEKTROTEHNKAS NSTTŪTS VARS RAŅĶS, NNA BŅNA (RODONOVA) ENERGOELEKTRONKA TREŠAS ATKĀRTOTAS ZDEVMS RĪGA 007 DK 6.34 Lekciju

Διαβάστε περισσότερα

+ (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# # # # 6! 9 # ( 6 & # 6

+ (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# # # # 6! 9 # ( 6 & # 6 # % ( + (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# 2 + + 3 + 4 5 # 6 5 7 + 8 # # 6 (! 9 # ( 6 & 0 6 ) 1 5 + # 6 2 # # + 6 # # 6 # + # # + 6 + # #! 5 # # 6 & # : # # : 6 0 ) 5 + 6 1 # # 2 + # + # # 4 + # 6

Διαβάστε περισσότερα

Pārsprieguma aizsardzība

Pārsprieguma aizsardzība www.klinkmann.lv Pārsprieguma aizsardzība 1 Pārsprieguma aizsardzība Pēdējo gadu laikā zibensaizsardzības vajadzības ir ievērojami palielinājušās. Tas ir izskaidrojams ar jutīgu elektrisko un elektronisko

Διαβάστε περισσότερα

Informācija lietotājam 08/2009. Montāžas un lietošanas instrukcija. Dokaflex

Informācija lietotājam 08/2009. Montāžas un lietošanas instrukcija. Dokaflex 08/2009 Informācija lietotājam 999776029 LV Montāžas un lietošanas instrukcija Dokaflex 1-2-4 9720-337-01 Ievads Informācija lietotājam Dokaflex 1-2-4 Ievads by Doka Industrie GmbH, -3300 mstetten 2 999776029-08/2009

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

! # % &! ( )! % +,.! / 0 1 )2 3

! # % &! ( )! % +,.! / 0 1 )2 3 ! !! # % &! ( )! % +,.! / 0 1 )2 3 ) 4 5! 5 ) 6 2 2 ) 2 3 #! 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 83 % ) 1

Διαβάστε περισσότερα

Vides veselība ir zinātnes nozare, kas pēta cilvēka veselību un dzīves kvalitāti ietekmējošos ārējos faktorus:

Vides veselība ir zinātnes nozare, kas pēta cilvēka veselību un dzīves kvalitāti ietekmējošos ārējos faktorus: Vides veselība ir zinātnes nozare, kas pēta cilvēka veselību un dzīves kvalitāti ietekmējošos ārējos faktorus: ķīmiskos fizikālos bioloģiskos sociālos psiho-sociālos kā arī šo faktoru īstermiņa un ilgtermiņa

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Aļģes sistemātika, bioloģija, izplatība un izmantošana

Aļģes sistemātika, bioloģija, izplatība un izmantošana Aļģes sistemātika, bioloģija, izplatība un izmantošana Kursu vada: Egita Zviedre Biologi, 1. kurss, 2. semestris Aļģes Aļģes (latīņu: Algae) ir gan vienšūnu, gan daudzšūnu, retāk - bezšūnu organismi; Aļģes

Διαβάστε περισσότερα

Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ γ

Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ γ Ε ο ζ δ μ ΝΝ λ Α σ λ Π Ι Λ Ρ υ λ δ ο Ρ β ε Δ Ο υ Π ο π λ ρ υ Ι ξ ρ ρ Ν μ υ β γ α ρ δ ψ λ ε Δ υ λ Π Κ Ο υ ξ δ Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ± Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper

Διαβάστε περισσότερα

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần

Διαβάστε περισσότερα

NADPH vai FADH 2. vai arī reducējot tādus koenzīmus kā NADH, savienojumus iegūst, importējot kompleksas

NADPH vai FADH 2. vai arī reducējot tādus koenzīmus kā NADH, savienojumus iegūst, importējot kompleksas Vielas un enerăijas maiħa citoplazmā 11. tēma Vielu un enerăijas maiħa Lizosomas Heterofāgija Autofāgija Mikroėermenīši Olbaltumvielu imports peroksisomās Vakuolas Proteosomas RNāze Glikolīze Šūnās gandrīz

Διαβάστε περισσότερα

ENERGOSTANDARTS VĒJAGREGĀTU SISTĒMAS

ENERGOSTANDARTS VĒJAGREGĀTU SISTĒMAS LATVIJA ENERGOTANDART LEK 1400-21 Pirmais izdevums 2006 VĒJAGREGĀTU ITĒMA 21. DAĻA TĪKLĀ LĒGTU VĒJAGREGĀTU ITĒMA ĢENERĒTĀ ELEKTROENERĢIJA KVALITĀTE PARAMETRU MĒRĪŠANA UN NOVĒRTĒŠANA Latvijas Eletrotehisā

Διαβάστε περισσότερα

Επίσημη Εφημερίδα C 360

Επίσημη Εφημερίδα C 360 Επίσημη Εφημερίδα C 360 της Ευρωπαϊκής Ένωσης 57ο έτος Έκδοση στην ελληνική γλώσσα Ανακοινώσεις και Πληροφορίες 11 Οκτωβρίου 2014 Περιεχόμενα IV Πληροφορίες ΠΛΗΡΟΦΟΡΙΕΣ ΠΡΟΕΡΧΟΜΕΝΕΣ ΑΠΟ ΤΑ ΘΕΣΜΙΚΑ ΚΑΙ

Διαβάστε περισσότερα

Latvijas 44. Nacionālā ķīmijas olimpiāde (2003. gads) Teorētiskie uzdevumi.

Latvijas 44. Nacionālā ķīmijas olimpiāde (2003. gads) Teorētiskie uzdevumi. Latvijas 44. Nacionālā ķīmijas olimpiāde (2003. gads) Teorētiskie uzdevumi. 1. 9 5 p. Pilnībā izkarsēja 5,0g kalcija karbonāta, kas saturēja 3,0% piemaisījumu. Izdalīto gāzi saistīja ar iepriekš nosvērtu

Διαβάστε περισσότερα

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π Δ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) 3Νο ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1 Να μελετήσετε

Διαβάστε περισσότερα

v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β

v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o α Α Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β Μονάδες 4 Β Να αποδείξετε ότι το εσωτερικό γινόµενο

Διαβάστε περισσότερα