Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei"

Transcript

1 01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei 1. Varam pieņemt, ka visos darbos Kristiāna strāda piecu darba dienu nedēļu, tātad 40 stundas nedēļā (drīkst arī pieņemt, ka Kristiāna strādā nedēļas nogalēs). Attiecīgi, ja nedēļā kopā ir 7 4 = 168 stundas, tad Kristiāna strādā, 5 40 = 10 stundas un guļ = 48 stundas.. Skudra apmeklēja visas 8 kuba virstones. Tā kā no katras virsotnes līdz nakamajai jānorāpo pa vienu škautni (t.i., jānorāpo 1 sprīdis) un savu gājienu jau sāka no virsotnes, tad skudra kopā norāpoja 7 sprīžus. 3. Tika iepirktas 15.84/0.0 = 79 uzlīmes. Skapīšiem 1 9 pietiek ar vienu ciparu, tātad 9 uzlīmes. Skapīšiem vajag katram uzlīmes, kopā 90 = 180 uzlīmes. Skapīšiem katram nepieciešamas 3 uzlīmes, bet no nopirktajām vēl palikušas = 603 uzlīmes, t.i. 01 skapītis. Tātad kopumā klubā ir = 300 skapīši. 4. Ar X apzīmētas atbilstošās atbildes. Nosacījums Nepieciešams Pietiekams a) Dotais skaitlis dalās ar 3. X b) Dotais skaitlis dalās ar 1. X c) Dotais skaitlis ir 18. X d) Dotais skaitlis dalās ar un 3. X X e) Dotais skaitlis dalās ar 4 un 9. X gads bija garais gads ar 366 dienām, tātad nākamajos 50 gados būs vēl 50 4 = (noapaļojot) 1 garie gadi. Tātad zelta kāzas bus pēc = 186 dienām. Dalot ar 7, 186 dod atlikumā 6, tātad pēc 50 gadiem bez vienas dienas būs apritējis pilns skaits nedēļu, kas ļauj mums secināt, ka zelta kāzas tiks svinētas vienu dienu pirms sestdienas - piektdien. Neaizmirsīsim viņus apsveikt! 6. Ar tējas daudzumu ir vienkāršāk. Pirms katras iemalkošanas, tējas daudzums tasītē ir attiecīgi 1, 1 /, 1 /4, 1 /8, 1 /16, 1 /3 (šajā brīdī rituāls tiek pārtraukts, jo 1 /3 < 1 /0 = 5%). Tātad neizdzerta paliek 1 /3 tējas, un izdzertais tējas daudzums ir 31 /3 tasītes. Piena īpatsvars savukārt ir attiecīgi 0, 1 /, 3 /4, 7 /8, 15 /16 un katrā reizē tiek izdzerta pustasīte, tātad kopumā ( )/16/=49/3 tasītes piena. Var arī aprēķināt no kopējā daudzuma: piecreiz tiek izdzerta pustasīte, t.i. 5/ = 80/3 tasītes dzēriena, no kura 31/3 ir tēja, tātad pārējās 49/3 ir piens. 7. Varam pārliecināties, ka uzdevumu nosacījumiem atbildīs šādas atzīmes uz centimetru iedaļām: 0, 1, 4, 9, 11 0, 3, 4, 9, 11 un to atbilstošie spoguļattēli: 0,, 7, 10, 11 1

2 0,, 7, 8, 11 Apskatīsim, kādēļ neder citi atzīmēšanas veidi. Lai atvieglotu pierakstu, turpmāk ar skaitļiem apzīmēsim attālumu starp mūsu izvēlētajām iedaļām, tas ir, (0, 1, 4, 9, 11) apzīmēsim ar (1, 3, 5, ) utt. Šādi attālumi 1,, 3, 4 starp atzīmēm nederēs nekādās kombinācijās, jo: 1 nedrīkst but blakus, jo tad to summa (attālums starp pirmo un trešo iedaļu) sakritīs ar 3 jeb attālumu starp trešo un ceturto iedaļu 1 nedrīkst but blakus 3, jo tad to summa sakritīs ar 4 1 nedrīkst but blakus 4, jo tad to summa sakritīs ar un 3 summu, kuri pilnīgi noteikti atradīsies viens otram blakus, jo 1 un 4 abi kopā varēs atrasties tikai pirmajās vai pēdējās pozīcijās. Tātad pie šādām attālumiem 1 nav nekādi iespējams iekombinēt. Atliek pārbaudīt 1,, 3, 5 iespējamās kombinācijas: ievērosim, ka un 1 nedrīkst būt blakus, jo tad to summa sakritīs ar 3 analogi nedrīkstēs būt blakus 3, jo tad to summa sakritīs ar 5 tātad drīkst būt blakus tikai 5, turklāt esot tikai virknes sākumā vai beigās Varam viegli pārliecināties ka uzrādītie 4 atrisinājumi (atvieglotajā pierakstā: (1,3,5,) (3,1,5,) (,5,3,1) (,5,1,3)) būs vienīgās kombinācijas, kurām izpildīsies augstākminētie 3 nosacījumi. 8. Pieņemsim pretējo, ka nebūs tādu divu brāļu, kuri spēlēs vienā komandā. Tad, tā kā ir 5 komandas, kurā katrā nespēlēs vairāk par vienu brāli, turnīrā nepiedalīsies vairāk par 5 brāļiem, kas nav iespējams, jo turnīrā piedalās visi 7 brāļi. Tātad būs tāda komanda, kurā spēlēs vismaz divi no brāļiem. 9. Ievērosim, ka sākotnēji uz tāfeles uzrakstīto skaitļu summa ir nepāra skaitlis. Mārtiņš katru gājienu diviem skaitļiem pieskaita 5, tātad skaitļu summu uz tāfeles palielina par 10 un nemaina tās paritāti. Tātad pēc katra Mārtiņa gājiena skaitļu summa uz tāfeles paliks nepāra skaitlis, un attiecīgi Mārtiņš nevar panākt, ka visi skaitļi būs vienādi, jo tad uz tāfeles esošo skaitļu summai būtu jābut pāra skaitlim. 10. Ja nav tādu divus skolēnu, kam būtu vienāds draugu skaits, tad draugu skaits katram skolēnam ir atšķirīgs. Pieņemsim, ka skolēnu skaits klasē ir x, tad minimālais draugu skaits kādam skolēnam var būtu 0, savukārt lielākais skaits x 1. Tātad kopā x dažādas vērtības, kas nozīmē, ka starp skolēniem būs kāds, kuram nav neviena drauga un kāds kuram visi parējie skolēni ir draugi (x 1 draugi). Tas acīmredzot nav iespējams, tādēļ kāds skolēns ir samelojis par savu draugu skaitu vai arī ir nepareizi novērtējis to! 11. Ir jāizpildās šādiem nosacījumiem: autobusi brauc ar vienādu un vienmērīgu ātrumu, starp pieturām ir vienādi attālumi pieturu skaits ir pāra skaitlis autobusu skaits sakrīt ar pieturu skaitu un starp tiem ir vienāds attālums. (Var pieņemt, ka autobusam ir gala pietura, uz kuru neattiecas uzdevumu nosacījumi, jo tai pretim

3 nav nevienas pieturas. Tad autobusu var būtu arī divreiz mazāk par pieturām - autobusi periodiski satiekas nepāra pieturās un pāra pieturās.) starp pēdejo un pirmo pieturu pretējā virzienā ir tāds pats attālums kā starp pieturām Grafiska skice maršuta izskatam: 1. Zirdziņš, kurš stāvēs uz baltā lauciņa apdraudēs tikai melnos lauciņus, un otrādi zirdziņš uz melnā lauciņā apdraudēs tikai baltos lauciņus. Tātad, uzliekot 3 zirdziņus katru uz sava baltā lauciņa, tie viens otru neapdraudēs. Pierādīsim, ka vairāk par 3 zirdziņiem, tiem vienam otru nepadraudot, uz šaha laukuma nav iespējams uzlikt. Pieņemsim, ka to var izdarīt un uz laukuma ir vismaz 33 zirdziņi. Tad, ņemot vērā, ka 8 8 laukumu var sadalīt astoņos 4 (skat. attēlu zemāk) taisnstūros, pēc Dirihlē principa uz vizmaz viena no šādiem taisnstūriem atradīsies vismaz 5 zirdziņi. Tas savukārt nozīmē, ka vismaz divi zirdziņi stāvēs uz lauciņa ar vienādu numuru un viens otru apdraudēs. Pretruna, kas pierāda, ka vairāk par 3 uz laukuma izvietot neizdosies. 13. Maksimālais daudzums, ko var atlikt ir 136 (visu atsvaru summa). Apskatīsim gadījumu, kad uz kreisā svaru kausa stāv visi atsvari un tiek noņemti atsvari ar svaru k. Tad kreisajā pusē atsvaru svars bus 136 k, bet labajā k un tiks nosvērts svars 136 k. Tātad varēs nosvērt tikai pāra skaitļa svarus. Varam sakombinēt jebkādu k intervālā no 1 līdz 68, tādējādi uzrādot, ka ar šo atsvaru komplektu var nosvērt visus pāra skaitļa svarus no līdz 136: izvēlamies vienu atsvaru ar svaru intervālā (1,... 16), iegūstam k intervālā (1,... 16) izvēlamies divus atsvarus - 16 un svaru no intervāla (1,... 15), iegūstam k intervālu (17, ) izvēlamies trīs atsvarus - 16, 15 un svaru no intervāla (1,... 14), iegūstam k intervālu (3, ) izvēlamies četrus atsvarus - 16, 15, 14 un svaru no intervāla (1,... 13), iegūstam k intervālu (46, ) izvēlamies piecus atsvarus - 16, 15, 14, 13 un svaru no intervāla (1,... 10), iegūstam k intervālu (59, ) 3

4 14. No dotajām formulām un to nosaukumiem varam novērot šādas sakarības Sakne but- prop- et- hept- C skaits Galotne -īns -ēns -āns Skaita sakarība H= (C-1) H= C H= (C+1) Attiecīgi: a) C H 4 - etēns, C H 6 - etāns, C 7 H 1 - heptīns. b) propēns - C 3 H 6, butāns - C 4 H Apzīmēsim ar n rūķīšu skaitu, un ar k - cik nabagākajam ruķītim sākumā monētu. Tātad pirmajam rūķītim sākumā ir n + k 1 monēta. Katrs rūķītis dod par 1 monētu vairāk nekā saņēmis, tātad pirmais, kuram izbeigsies nauda būs pēdējais, nabagākais rūķītis (pēc k pilniem apļiem). Taču process turpinās vēl vienu apli, kurā priekšpēdējais rūķītis līdz ar saņemtajām monētām padod tālāk savu pēdējo monētu. Tā kā pēdējam rūķītim vairs nav savas monētas, ko pielikt, process apstājas. Tajā brīdī visiem kaimiņiem ir 1 monētas starpība, izņemot pēdējam rūķītim ar viņa kaimiņiem. Viņam ir n(k + 1) 1 monēta, bet viņa kaimiņiem attiecīgi 0 un n + k 1 (k + 1) = n. Iegūstam vienādojumu: n(k + 1) 1 = 4(n ), pārkārtojot iegūstam n(k 3) = 7. Kā reizinājumu to var izteikt vai nu kā 7 1, vai 7 ( 1). Tā kā n un k ir pozitīvi, der tikai otrais variants, tātad ir n = 7 rūķīši un nabagākajam bija k = monētas. 4

5 01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 8. klasei 1. Varam pieņemt, ka visos darbos Kristiāna strāda piecu darba dienu nedēļu, tātad 40 stundas nedēļā (drīkst arī pieņemt, ka Kristiāna strādā nedēļas nogalēs). Attiecīgi, ja nedēļā kopā ir 7 4 = 168 stundas, tad Kristiāna strādā, 5 40 = 10 stundas un guļ = 48 stundas.. a) 31967/0.144 = iedz. b) Krievi nepilsoņi = 10078; krievi Latvijā 10078/0.346 = c) pilsoņi krievi: = ; nepilsoņi baltkrievi: = 43101; kopumā baltkrievi 43101/0.553 = 77940; pilsoņi baltkrievi = 34839; nepilsoņi ukraiņi = 30649; kopumā ukraiņi 30649/0.563 = 54439; pilsoņi ukraiņi = d) Pilsoņi Latvijā = Krievi, baltkrievi, ukraiņi pilsoņi procentuāli no visiem pilsoņiem: ( )/ = 4.0%. 3. a) var salikt (skat. attēlu) b) nē, šādu taisnstūri nav iespējams salikt. Ievērosim, ka abu tipu figūras sastāv no 4 rūtiņām, tādēļ rūtiņu skaitam figūrā, kas salikta no šīm divām figurām, jādalās ar 4. Prasītajam taisnstūrim rūtiņu skaits nedalās ar Tika iepirktas 15.84/0.0 = 79 uzlīmes. Skapīšiem 1 9 pietiek ar vienu ciparu, tātad 9 uzlīmes. Skapīšiem vajag katram uzlīmes, kopā 90 = 180 uzlīmes. Skapīšiem katram nepieciešamas 3 uzlīmes, bet no nopirktajām vēl palikušas = 603 uzlīmes, t.i. 01 skapītis. Tātad kopumā klubā ir = 300 skapīši gads bija garais gads ar 366 dienām, tātad nākamajos 50 gados būs vēl 50 4 = (noapaļojot) 1 garie gadi. Tātad zelta kāzas bus pēc = 186 dienām. Dalot ar 7, 186 dod atlikumā 6, tātad pēc 50 gadiem bez vienas dienas būs apritējis pilns skaits nedēļu, kas ļauj mums secināt, ka zelta kāzas tiks svinētas vienu dienu pirms sestdienas - piektdien. Neaizmirsīsim viņus apsveikt! 6. Pieņemsim pretējo, ka nebūs tādu divu brāļu, kuri spēlēs vienā komandā. Tad, tā kā ir 5 komandas, kurā katrā nespēlēs vairāk par vienu brāli, turnīrā nepiedalīsies vairāk par 5 brāļiem, kas nav iespējams, jo turnīrā piedalās visi 7 brāļi. Tātad būs tāda komanda, kurā spēlēs vismaz divi no brāļiem. 1

6 7. Apskatīsim visas trīs iespējas, kāds var būt skaitļa n atlikums, dalot ar trīs. Ja tas ir 0, tad n jau dalās ar 3. Ja tas ir 1, tad n + dalīsies ar 3, un, ja atlikums ir, tad n + 4 dalīsies ar Ievērosim, ka sākotnēji uz tāfeles uzrakstīto skaitļu summa ir nepāra skaitlis. Mārtiņš katru gājienu diviem skaitļiem pieskaita 5, tātad skaitļu summu uz tāfeles palielina par 10 un nemaina tās paritāti. Tātad pēc katra Mārtiņa gājiena skaitļu summa uz tāfeles paliks nepāra skaitlis, un attiecīgi Mārtiņš nevar panākt, ka visi skaitļi būs vienādi, jo tad uz tāfeles esošo skaitļu summai būtu jābut pāra skaitlim. 9. Kamēr iet gar daudzstūra malu, noietais attālums neatšķiras. Bet uz stūriem Eva iet pa riņķa līnijas (rādiuss 1m) segmentu, šie segmenti kopumā veidu pilnu riņķa līniju, tātad viņa noies par π metriem vairāk. 10. Pārveidosim sākotnējo vienādību: z + r + zr + 1 = (z + 1)(r + 1) = 013 (z + 1) = 013 (r + 1) z + 1 ir izrēķināms, zinot r + 1. Atliek atrast visas iespējamās r + 1 vērtības. Skaitlim 013 ir trīs pirmreizinātāji, proti, 3, 11 un 61. Tātad r + 1 var saturēt vai nu nevienu, vienu, divus, vai visus trīs no šiem reizinātājiem. Visas šīs iespējas un izrietošās z + r vērtības ir apkopotas tabulā. r z z + r Kopā ir 4 dažādās z + r vērtības: 9, 19, 67, (100 a)(100 b) = 100 (100 (a + b)) + ab Tādēļ pirmos divus ciparus reizinājumā var aprēķināt kā 100 (a + b) un pēdējos divus kā ab. Metode strādā bez pārnešanas pie nosacījuma ab < Zirdziņš, kurš stāvēs uz baltā lauciņa apdraudēs tikai melnos lauciņus, un otrādi zirdziņš uz melnā lauciņā apdraudēs tikai baltos lauciņus. Tātad, uzliekot 3 zirdziņus katru uz sava baltā lauciņa, tie viens otru neapdraudēs. Pierādīsim, ka vairāk par 3 zirdziņiem, tiem vienam otru nepadraudot, uz šaha laukuma nav iespējams uzlikt. Pieņemsim, ka to var izdarīt un uz laukuma ir vismaz 33 zirdziņi. Tad, ņemot vērā, ka 8 8 laukumu var sadalīt astoņos 4 (skat. attēlu zemāk) taisnstūros, pēc Dirihlē principa uz vizmaz viena no šādiem taisnstūriem atradīsies vismaz 5 zirdziņi. Tas savukārt nozīmē, ka vismaz divi zirdziņi stāvēs uz lauciņa ar vienādu numuru un viens otru apdraudēs. Pretruna, kas pierāda, ka vairāk par 3 uz laukuma izvietot neizdosies.

7 13. Der atrisinājums r =, a =, e = 1, m = 5. Bezgalīgi daudz atrisinājumu mēs varam konstruēt sekojoši: r = k 3, a = k 4, e = k 6, m = 5k 6, kur k ir jebkurš naturāls skaitlis. Tad (k 3 ) 4 + (k 4 ) 3 + (k 6 ) = (5k 6 ) 16k 1 + 8k 1 + k 1 = 5k 1 5k 1 = 5k No dotajām formulām un to nosaukumiem varam novērot šādas sakarības Sakne but- prop- et- hept- C skaits Galotne -īns -ēns -āns Skaita sakarība H= (C-1) H= C H= (C+1) Attiecīgi: a) C H 4 - etēns, C H 6 - etāns, C 7 H 1 - heptīns. b) propēns - C 3 H 6, butāns - C 4 H a) Var sasēsties puikas, meitenes utt., tad nav tāda bērna. b) Sanumurējam vietas no 1 līdz. Vai nu nepāra, vai ari pāra numura vietās sēdes vismaz 6 meitenes (nevar būt abās mazāk par 6, jo kopā ir 11 meitenes). Taču, sasēdinot 6 meitenes, piem., pāra numura vietās, būs divas meitenes, kas sēdēs secīgās pāra vietās, tātad abpus kādam bērnam (kas sēž nepāra vietā). 3

8 01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 9. klasei 1. Tika iepirktas 15.84/0.0 = 79 uzlīmes. Skapīšiem 1 9 pietiek ar vienu ciparu, tātad 9 uzlīmes. Skapīšiem vajag katram uzlīmes, kopā 90 = 180 uzlīmes. Skapīšiem katram nepieciešamas 3 uzlīmes, bet no nopirktajām vēl palikušas = 603 uzlīmes, t.i. 01 skapītis. Tātad kopumā klubā ir = 300 skapīši.. a) var salikt (skat. attēlu) b) nē, šādu taisnstūri nav iespējams salikt. Ievērosim, ka abu tipu figūras sastāv no 4 rūtiņām, tādēļ rūtiņu skaitam figūrā, kas salikta no šīm divām figurām, jādalās ar 4. Prasītajam taisnstūrim rūtiņu skaits nedalās ar Ar X apzīmētas atbilstošās atbildes. Nosacījums Nepieciešams Pietiekams a) Dotais skaitlis dalās ar 3. X b) Dotais skaitlis dalās ar 1. X c) Dotais skaitlis ir 18. X d) Dotais skaitlis dalās ar un 3. X X e) Dotais skaitlis dalās ar 4 un 9. X 4. Ar tējas daudzumu ir vienkāršāk. Pirms katras iemalkošanas, tējas daudzums tasītē ir attiecīgi 1, 1 /, 1 /4, 1 /8, 1 /16, 1 /3 (šajā brīdī rituāls tiek pārtraukts, jo 1 /3 < 1 /0 = 5%). Tātad neizdzerta paliek 1 /3 tējas, un izdzertais tējas daudzums ir 31 /3 tasītes. Piena īpatsvars savukārt ir attiecīgi 0, 1 /, 3 /4, 7 /8, 15 /16 un katrā reizē tiek izdzerta pustasīte, tātad kopumā ( )/16/=49/3 tasītes piena. Var arī aprēķināt no kopējā daudzuma: piecreiz tiek izdzerta pustasīte, t.i. 5/ = 80/3 tasītes dzēriena, no kura 31/3 ir tēja, tātad pārējās 49/3 ir piens. 5. Lai nebūtu jāraksta %, lietosim p = p/100 un q = q/100. Tad pareizā formula ir nevis p + q, bet gan (1 + p )(1 + q ) 1 = p + q + p q. Tātad Ritvars piemirsis pieskaitīt p q. Gadījumā, ja p un q absolūtā vērtība ir maza (piemēram, zem 0.10) tad to reizinājums ir krietni mazāks par p + q, (attiecīgi, 0.01 ir krietni mazāks par 0.0). Konkrētajā piemērā Ritvars iegūtu 0.p 0.8(p ), tātad paaugstinot cenu par vairāk nekā 5%, ieņēmumi samazinātos. No ekonomikas viedokļa gan elastības koeficients ir definēts tikai mazām cenu izmaiņām. 6. Ja nav tādu divus skolēnu, kam būtu vienāds draugu skaits, tad draugu skaits katram skolēnam 1

9 ir atšķirīgs. Pieņemsim, ka skolēnu skaits klasē ir x, tad minimālais draugu skaits kādam skolēnam var būtu 0, savukārt lielākais skaits x 1. Tātad kopā x dažādas vērtības, kas nozīmē, ka starp skolēniem būs kāds, kuram nav neviena drauga un kāds kuram visi parējie skolēni ir draugi (x 1 draugi). Tas acīmredzot nav iespējams, tādēļ kāds skolēns ir samelojis par savu draugu skaitu vai arī ir nepareizi novērtējis to! 7. Apzīmēsim kopējo distanci ar d km un meklēto ātrumu ar v km /h. Ceļā pavadītais laiks ir t = d/ + d/ bet vidējam ātrumam jābūt d/t = v km /h. Atrisinām: d d ( 1 + 1) = v v = 90 1 v = = v = 70 7 = km /h = Veicam vieglus pārveidojumus: a 3 + b 3 + c 3 6abc = (a + b + c)(a + b + c ab bc ac) a 3 + b 3 + c 3 3abc = (a + b + c)(a + b + c ab bc ac) a 3 + b 3 + c 3 3abc = (a 3 + ab + ac a b abc a c + a b + b 3 + bc ab b c abc... + a c + b c + c 3 abc bc ac ) Savelkot līdzīgos locekļus, iegūstam prasīto: a 3 + b 3 + c 3 3abc = a 3 abc + b 3 abc + c 3 abc a 3 + b 3 + c 3 3abc = a 3 + b 3 + c 3 3abc 9. Ievērosim, ka sākotnēji uz tāfeles uzrakstīto skaitļu summa ir nepāra skaitlis. Mārtiņš katru gājienu diviem skaitļiem pieskaita 5, tātad skaitļu summu uz tāfeles palielina par 10 un nemaina tās paritāti. Tātad pēc katra Mārtiņa gājiena skaitļu summa uz tāfeles paliks nepāra skaitlis, un attiecīgi Mārtiņš nevar panākt, ka visi skaitļi būs vienādi, jo tad uz tāfeles esošo skaitļu summai būtu jābut pāra skaitlim. 10. a) jebkuru 4 pēc kārtas ņemtu veselu skaitļu summu, kur pirmais skaitlis ir patvaļīgs n, varam izteikt kā n + (n + 1) + (n + ) + (n + 3) = 4n + 6. Tātad 4 pēc kārtas ņemtu veselu skaitļu summa nedalās ar 4, b) analogi kā gadījumā ar 4 skaitļiem, jebkuru 5 pēc kārtas ņemtu skaitļu summa būs n + (n + 1) + (n + ) + (n + 3) + (n + 4) = 5n + 10 = 5(n + ) un tā dalīsies ar 5, c) attiecīgi neeksistē tādi pēc kārtas ņemti skaitļu, kuru summa dalās ar 6, jo (5n + 10) + (n + 6) = 6n + 16 = 6(n + ) Jā, tās ir iespējams. Pirmajos 11 mēnešos ikmēneša peļņa latos ir 600 Ls un LVL/USD maiņas kurss ir 0.6. Tātad kopējā peļņa par 11 mēnešiem latos būs 6600 Ls un dolāri. Pedējā mēnesī būs zaudējumi Ls un gada peļņa 100 Ls. Varam viegli izrēkināt, kādam bija jābūt latu maiņas kursam pēdējā mēnesī, lai gadā kopā sanāktu 100 dolāru zaudējumi: = 100 (kur x ir meklētais maiņas kurss), un x = x = Kamēr iet gar daudzstūra malu, noietais attālums neatšķiras. Bet uz stūriem Eva iet pa riņķa līnijas (rādiuss 1m) segmentu, šie segmenti kopumā veidu pilnu riņķa līniju, tātad viņa noies par π metriem vairāk.

10 13. Maksimālais daudzums, ko var atlikt ir 136 (visu atsvaru summa). Apskatīsim gadījumu, kad uz kreisā svaru kausa stāv visi atsvari un tiek noņemti atsvari ar svaru k. Tad kreisajā pusē atsvaru svars bus 136 k, bet labajā k un tiks nosvērts svars 136 k. Tātad varēs nosvērt tikai pāra skaitļa svarus. Varam sakombinēt jebkādu k intervālā no 1 līdz 68, tādējādi uzrādot, ka ar šo atsvaru komplektu var nosvērt visus pāra skaitļa svarus no līdz 136: izvēlamies vienu atsvaru ar svaru intervālā (1,... 16), iegūstam k intervālā (1,... 16) izvēlamies divus atsvarus - 16 un svaru no intervāla (1,... 15), iegūstam k intervālu (17, ) izvēlamies trīs atsvarus - 16, 15 un svaru no intervāla (1,... 14), iegūstam k intervālu (3, ) izvēlamies četrus atsvarus - 16, 15, 14 un svaru no intervāla (1,... 13), iegūstam k intervālu (46, ) izvēlamies piecus atsvarus - 16, 15, 14, 13 un svaru no intervāla (1,... 10), iegūstam k intervālu (59, ) 14. Apzīmēsim ar n rūķīšu skaitu, un ar k - cik nabagākajam ruķītim sākumā monētu. Tātad pirmajam rūķītim sākumā ir n + k 1 monēta. Katrs rūķītis dod par 1 monētu vairāk nekā saņēmis, tātad pirmais, kuram izbeigsies nauda būs pēdējais, nabagākais rūķītis (pēc k pilniem apļiem). Taču process turpinās vēl vienu apli, kurā priekšpēdējais rūķītis līdz ar saņemtajām monētām padod tālāk savu pēdējo monētu. Tā kā pēdējam rūķītim vairs nav savas monētas, ko pielikt, process apstājas. Tajā brīdī visiem kaimiņiem ir 1 monētas starpība, izņemot pēdējam rūķītim ar viņa kaimiņiem. Viņam ir n(k + 1) 1 monēta, bet viņa kaimiņiem attiecīgi 0 un n + k 1 (k + 1) = n. Iegūstam vienādojumu: n(k + 1) 1 = 4(n ), pārkārtojot iegūstam n(k 3) = 7. Kā reizinājumu to var izteikt vai nu kā 7 1, vai 7 ( 1). Tā kā n un k ir pozitīvi, der tikai otrais variants, tātad ir n = 7 rūķīši un nabagākajam bija k = monētas. 15. Ja n ir pāra skaitlis, tad doto kubu summu varam sadalīt pa pāriem un pārveidot (n ) + ((n 1) ) + ((n ) ) +... ((n/ + 1) 3 + (n/) 3 ) Izmantojot kubu summas formulu a 3 + b 3 = (a + b)(a ab + b ), katru no pāriem varam sadalīt divos reizinātājos, t.i., (n+1)(n n+1)+(n+1)((n 1) 4(n 1)+4)+... (n+1)((n/+1) n /+(n/) ) Tad, ar M apzīmejot visu ". iekavu" summu, kubu summu n 3 varam izteikt kā (n + 1)M, kas dalās ar n + 1 un nav pirmskaitlis. Savukārt, ja n ir nepāra skaitlis. Tad n 1 ir pāra skaitlis un (n 1) 3 = nm, tādēļ n 3 = nm + n 3 = n(m + n ), kas nav pirmskaitlis, jo dalās ar n. 3

11 01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 10. klasei 1. Tā kā LM ir viduslīnija, tad, balstoties uz viduslīnijas īpašībām, trijstūra 1 laukums būs 1 4 no trijstūra ABC laukuma. Analogi no viduslīnijām LN un MN varam secināt, ka trijstūri, 3 būs 1 no dotā trijstūra ABC laukuma, tādēļ meklētais trijstūra MNL laukums būs = a) 31967/0.144 = iedz. b) Krievi nepilsoņi = 10078; krievi Latvijā 10078/0.346 = c) pilsoņi krievi: = ; nepilsoņi baltkrievi: = 43101; kopumā baltkrievi 43101/0.553 = 77940; pilsoņi baltkrievi = 34839; nepilsoņi ukraiņi = 30649; kopumā ukraiņi 30649/0.563 = 54439; pilsoņi ukraiņi = d) Pilsoņi Latvijā = Krievi, baltkrievi, ukraiņi pilsoņi procentuāli no visiem pilsoņiem: ( )/ = 4.0%. 3. Ar tējas daudzumu ir vienkāršāk. Pirms katras iemalkošanas, tējas daudzums tasītē ir attiecīgi 1, 1 /, 1 /4, 1 /8, 1 /16, 1 /3 (šajā brīdī rituāls tiek pārtraukts, jo 1 /3 < 1 /0 = 5%). Tātad neizdzerta paliek 1 /3 tējas, un izdzertais tējas daudzums ir 31 /3 tasītes. Piena īpatsvars savukārt ir attiecīgi 0, 1 /, 3 /4, 7 /8, 15 /16 un katrā reizē tiek izdzerta pustasīte, tātad kopumā ( )/16/=49/3 tasītes piena. Var arī aprēķināt no kopējā daudzuma: piecreiz tiek izdzerta pustasīte, t.i. 5/ = 80/3 tasītes dzēriena, no kura 31/3 ir tēja, tātad pārējās 49/3 ir piens. 4. Varam pārliecināties, ka uzdevumu nosacījumiem atbildīs šādas atzīmes uz centimetru iedaļām: 0, 1, 4, 9, 11 0, 3, 4, 9, 11 un to atbilstošie spoguļattēli: 1

12 0,, 7, 10, 11 0,, 7, 8, 11 Apskatīsim, kādēļ neder citi atzīmēšanas veidi. Lai atvieglotu pierakstu, turpmāk ar skaitļiem apzīmēsim attālumu starp mūsu izvēlētajām iedaļām, tas ir, (0, 1, 4, 9, 11) apzīmēsim ar (1, 3, 5, ) utt. Šādi attālumi 1,, 3, 4 starp atzīmēm nederēs nekādās kombinācijās, jo: 1 nedrīkst but blakus, jo tad to summa (attālums starp pirmo un trešo iedaļu) sakritīs ar 3 jeb attālumu starp trešo un ceturto iedaļu 1 nedrīkst but blakus 3, jo tad to summa sakritīs ar 4 1 nedrīkst but blakus 4, jo tad to summa sakritīs ar un 3 summu, kuri pilnīgi noteikti atradīsies viens otram blakus, jo 1 un 4 abi kopā varēs atrasties tikai pirmajās vai pēdējās pozīcijās. Tātad pie šādām attālumiem 1 nav nekādi iespējams iekombinēt. Atliek pārbaudīt 1,, 3, 5 iespējamās kombinācijas: ievērosim, ka un 1 nedrīkst būt blakus, jo tad to summa sakritīs ar 3 analogi nedrīkstēs būt blakus 3, jo tad to summa sakritīs ar 5 tātad drīkst būt blakus tikai 5, turklāt esot tikai virknes sākumā vai beigās Varam viegli pārliecināties ka uzrādītie 4 atrisinājumi (atvieglotajā pierakstā: (1,3,5,) (3,1,5,) (,5,3,1) (,5,1,3)) būs vienīgās kombinācijas, kurām izpildīsies augstākminētie 3 nosacījumi. 5. Doto izteiksmi varam pārveidot par n(n + 1) + 1. Skaidrs, ka vai nu n + 1, vai n ir pāra skaitlis, tādēļ reizinājums n(n + 1) ir pāra skaitlis un n(n + 1) + 1 nepāra skaitlis, tāpat kā sākotnējā izteiksme. 6. Lai nebūtu jāraksta %, lietosim p = p/100 un q = q/100. Tad pareizā formula ir nevis p + q, bet gan (1 + p )(1 + q ) 1 = p + q + p q. Tātad Ritvars piemirsis pieskaitīt p q. Gadījumā, ja p un q absolūtā vērtība ir maza (piemēram, zem 0.10) tad to reizinājums ir krietni mazāks par p + q, (attiecīgi, 0.01 ir krietni mazāks par 0.0). Konkrētajā piemērā Ritvars iegūtu 0.p 0.8(p ), tātad paaugstinot cenu par vairāk nekā 5%, ieņēmumi samazinātos. No ekonomikas viedokļa gan elastības koeficients ir definēts tikai mazām cenu izmaiņām. 7. Ja nav tādu divus skolēnu, kam būtu vienāds draugu skaits, tad draugu skaits katram skolēnam ir atšķirīgs. Pieņemsim, ka skolēnu skaits klasē ir x, tad minimālais draugu skaits kādam skolēnam var būtu 0, savukārt lielākais skaits x 1. Tātad kopā x dažādas vērtības, kas nozīmē, ka starp skolēniem būs kāds, kuram nav neviena drauga un kāds kuram visi parējie skolēni ir draugi (x 1 draugi). Tas acīmredzot nav iespējams, tādēļ kāds skolēns ir samelojis par savu draugu skaitu vai arī ir nepareizi novērtējis to! 8. Apzīmēsim kopējo distanci ar d km un meklēto ātrumu ar v km /h. Ceļā pavadītais laiks ir

13 t = d/ + d/ bet vidējam ātrumam jābūt d/t = v km /h. Atrisinām: d d ( 1 + 1) = v v = 90 1 v = = v = 70 7 = km /h = Zirdziņš, kurš stāvēs uz baltā lauciņa apdraudēs tikai melnos lauciņus, un otrādi zirdziņš uz melnā lauciņā apdraudēs tikai baltos lauciņus. Tātad, uzliekot 3 zirdziņus katru uz sava baltā lauciņa, tie viens otru neapdraudēs. Pierādīsim, ka vairāk par 3 zirdziņiem, tiem vienam otru nepadraudot, uz šaha laukuma nav iespējams uzlikt. Pieņemsim, ka to var izdarīt un uz laukuma ir vismaz 33 zirdziņi. Tad, ņemot vērā, ka 8 8 laukumu var sadalīt astoņos 4 (skat. attēlu zemāk) taisnstūros, pēc Dirihlē principa uz vizmaz viena no šādiem taisnstūriem atradīsies vismaz 5 zirdziņi. Tas savukārt nozīmē, ka vismaz divi zirdziņi stāvēs uz lauciņa ar vienādu numuru un viens otru apdraudēs. Pretruna, kas pierāda, ka vairāk par 3 uz laukuma izvietot neizdosies. 10. Pārveidosim sākotnējo vienādību: z + r + zr + 1 = (z + 1)(r + 1) = 013 (z + 1) = 013 (r + 1) z + 1 ir izrēķināms, zinot r + 1. Atliek atrast visas iespējamās r + 1 vērtības. Skaitlim 013 ir trīs pirmreizinātāji, proti, 3, 11 un 61. Tātad r + 1 var saturēt vai nu nevienu, vienu, divus, vai visus trīs no šiem reizinātājiem. Visas šīs iespējas un izrietošās z + r vērtības ir apkopotas tabulā. r z z + r

14 Kopā ir 4 dažādās z + r vērtības: 9, 19, 67, a) Var sasēsties puikas, meitenes utt., tad nav tāda bērna. b) Sanumurējam vietas no 1 līdz. Vai nu nepāra, vai ari pāra numura vietās sēdes vismaz 6 meitenes (nevar būt abās mazāk par 6, jo kopā ir 11 meitenes). Taču, sasēdinot 6 meitenes, piem., pāra numura vietās, būs divas meitenes, kas sēdēs secīgās pāra vietās, tātad abpus kādam bērnam (kas sēž nepāra vietā). 1. Jebkuram kvadrātā ievilktam trijstūrim var novilkt taisni AK, kas ir paralēla kvadrāta malām (skat. piemēru kreisajā attēlā. Šī taisne var arī sakrist ar kādu kvadrāta malu). Tad S ABC = S ABK + S ACK = h 1 AK + h AK = (h 1 + h ) AK. Skaidrs, ka visos gadījumos h 1 + h 1 un AK 1, t.i., nepārsniedz kvadrāta malas garumu, tādēļ S ABC 1. Otrajā attēlā redzams piemērs ar trijstūra laukumu Varam pārveidot doto nevienādību: Un, ievērojot, ka a un b ir pozitīvi ab (a + b)/ab ab ab a + b a + b ab a ab + b 0 ( a b) 0, kas ir spēkā, jo jebkura skaitļa kvadrāts ir nenegatīvs. 14. Sanumurējam tikai zēnus, sākot no īsākā, no 1 līdz n. Zēnam nr. i trenera piešķirto kārtas numuru var izteikt kā i + a i, kur a i - cik meiteņu par viņu īsākas. Tātad trenera skaitlis ir par n i=1 i = n(n + 1)/ lielāks nekā A = n i=1 a i. 15. Vispirms ievērosim, ka V ir vidējais lielums no desmit vērtībām: V = K 1 + K 13 + K 14 + K 15 + K 3 + K 3 + K 5 + K 34 + K 35 + K 45, 10 kur K 1 - kopīgo uzdevumu skaits starp 1. un. klašu grupu, K 13 - kopīgo uzdevumu skaits starp 1. un 3. klašu grupu utt. 4

15 Apzīmēsim ar a 5 uzdevumu skaitu, kas iekļauts visās 5 klašu grupās, ar a 4, a 3, a, a 1 uzdevumu skaitu, kas iekļauts attiecīgi 4, 3, un 1 klašu grupā. Tad a 5 + a 4 + a 3 + a + a 1 = 35 0 a 5, a 4, a 3, a, a 1 15 Vidēji katrs uzdevumus ir iekļauts = 1 /7 klašu grupās. Tad [a 5 (5 1 /7) + a 4 (4 1 /7) + a 3 (3 1 /7)] [a ( 1 /7 ) + a 1 ( 1 /7 1)] = 0 (1) tas ir, uzdevumu "svars", kas iekļauti vairāk klašu grupās nekā vidēji, ir tāds pats kā uzdevumu, kas iekļauti mazāk klašu grupās nekād vidēji. Algebriski tas izriet arī no tā, ka 5a 5 + 4a 4 + 3a 3 + a + 1a 1 = 5 15 = 75 = 1 /7(a 5 + a 4 + a 3 + a + a 1 ) No vienādības (1) tad secinām: a 5 + a 4 + a 3 0 a + a 1 0 () Skaidrs, ja uzdevums būs ielikts visās 5 klašu grupās, tad tas tiks ieksaitīts visos 10 no iepriekšminētajiem skaitļiem (K 1, K K 45 ), ja 4 klašu grupās, tad 6 skaitļos, ja 3 klašu grupās, tad 3 skaitļos, ja grupās, tad tikai vienā no skaitļiem, tādēļ 10a 5 + 6a 4 + 3a 3 + a = 10 V. Saprotams, ka V sasniegs maksimālo vērtību pie iespējas lielāka a 5, bet, ņemot vērā () nevienādību a 5 nevar būt 15, jo a 1 1 (ja arī a 1, tad tas samazina iespējamo a 5 skaitu). Tad no (1) vienādības a 5 (5 1 /7) a 1 ( 1 /7 1) = 0 0a 5 8a 1 = 0 0a 5 8(35 a 5 ) = 0 8a 5 = 80 a 5 = 10, a 1 = 5, V = 10 Analogi varam secināt, ka minimālo vērtību V sasniegs pie pēc iespējas mazākas a 3 vērtības un a 1 (ja arī a 1 1, tad tas palielina iespējamo a 3 skaitu). Tad a 3 (3 1 /7) a ( 1 /7 ) = 0 6a 3 a = 0 6a 3 (35 a 3 ) = 0 7a 3 = 35 a 3 = 5, a = 30, V = 4, 5 Piemēri, kas uzrādi, ka šādi uzdevumu sadalījumi pa klašu grupām, lai iegūtu V = 10 un V = 4, 5 ir iespējami (ar X atzīmēti, kurā klašu grupā attiecīgie uzdevumi ir ielikti). 5

16 6

17 01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 11. klasei 1. Tika iepirktas 15.84/0.0 = 79 uzlīmes. Skapīšiem 1 9 pietiek ar vienu ciparu, tātad 9 uzlīmes. Skapīšiem vajag katram uzlīmes, kopā 90 = 180 uzlīmes. Skapīšiem katram nepieciešamas 3 uzlīmes, bet no nopirktajām vēl palikušas = 603 uzlīmes, t.i. 01 skapītis. Tātad kopumā klubā ir = 300 skapīši gads bija garais gads ar 366 dienām, tātad nākamajos 50 gados būs vēl 50 4 = (noapaļojot) 1 garie gadi. Tātad zelta kāzas bus pēc = 186 dienām. Dalot ar 7, 186 dod atlikumā 6, tātad pēc 50 gadiem bez vienas dienas būs apritējis pilns skaits nedēļu, kas ļauj mums secināt, ka zelta kāzas tiks svinētas vienu dienu pirms sestdienas - piektdien. Neaizmirsīsim viņus apsveikt! 3. Ar tējas daudzumu ir vienkāršāk. Pirms katras iemalkošanas, tējas daudzums tasītē ir attiecīgi 1, 1 /, 1 /4, 1 /8, 1 /16, 1 /3 (šajā brīdī rituāls tiek pārtraukts, jo 1 /3 < 1 /0 = 5%). Tātad neizdzerta paliek 1 /3 tējas, un izdzertais tējas daudzums ir 31 /3 tasītes. Piena īpatsvars savukārt ir attiecīgi 0, 1 /, 3 /4, 7 /8, 15 /16 un katrā reizē tiek izdzerta pustasīte, tātad kopumā ( )/16/=49/3 tasītes piena. Var arī aprēķināt no kopējā daudzuma: piecreiz tiek izdzerta pustasīte, t.i. 5/ = 80/3 tasītes dzēriena, no kura 31/3 ir tēja, tātad pārējās 49/3 ir piens. 4. Ievērosim, ka sākotnēji uz tāfeles uzrakstīto skaitļu summa ir nepāra skaitlis. Mārtiņš katru gājienu diviem skaitļiem pieskaita 5, tātad skaitļu summu uz tāfeles palielina par 10 un nemaina tās paritāti. Tātad pēc katra Mārtiņa gājiena skaitļu summa uz tāfeles paliks nepāra skaitlis, un attiecīgi Mārtiņš nevar panākt, ka visi skaitļi būs vienādi, jo tad uz tāfeles esošo skaitļu summai būtu jābut pāra skaitlim. 5. Ir jāizpildās šādiem nosacījumiem: autobusi brauc ar vienādu un vienmērīgu ātrumu, starp pieturām ir vienādi attālumi pieturu skaits ir pāra skaitlis autobusu skaits sakrīt ar pieturu skaitu un starp tiem ir vienāds attālums. (Var pieņemt, ka autobusam ir gala pietura, uz kuru neattiecas uzdevumu nosacījumi, jo tai pretim nav nevienas pieturas. Tad autobusu var būtu arī divreiz mazāk par pieturām - autobusi periodiski satiekas nepāra pieturās un pāra pieturās.) starp pēdejo un pirmo pieturu pretējā virzienā ir tāds pats attālums kā starp pieturām Grafiska skice maršuta izskatam: 1

18 6. a) jebkuru 4 pēc kārtas ņemtu veselu skaitļu summu, kur pirmais skaitlis ir patvaļīgs n, varam izteikt kā n + (n + 1) + (n + ) + (n + 3) = 4n + 6. Tātad 4 pēc kārtas ņemtu veselu skaitļu summa nedalās ar 4, b) analogi kā gadījumā ar 4 skaitļiem, jebkuru 5 pēc kārtas ņemtu skaitļu summa būs n + (n + 1) + (n + ) + (n + 3) + (n + 4) = 5n + 10 = 5(n + ) un tā dalīsies ar 5, c) attiecīgi neeksistē tādi pēc kārtas ņemti skaitļu, kuru summa dalās ar 6, jo (5n + 10) + (n + 6) = 6n + 16 = 6(n + ) Veicam vieglus pārveidojumus: a 3 + b 3 + c 3 6abc = (a + b + c)(a + b + c ab bc ac) a 3 + b 3 + c 3 3abc = (a + b + c)(a + b + c ab bc ac) a 3 + b 3 + c 3 3abc = (a 3 + ab + ac a b abc a c + a b + b 3 + bc ab b c abc... + a c + b c + c 3 abc bc ac ) Savelkot līdzīgos locekļus, iegūstam prasīto: a 3 + b 3 + c 3 3abc = a 3 abc + b 3 abc + c 3 abc a 3 + b 3 + c 3 3abc = a 3 + b 3 + c 3 3abc 8. a) Var sasēsties puikas, meitenes utt., tad nav tāda bērna. b) Sanumurējam vietas no 1 līdz. Vai nu nepāra, vai ari pāra numura vietās sēdes vismaz 6 meitenes (nevar būt abās mazāk par 6, jo kopā ir 11 meitenes). Taču, sasēdinot 6 meitenes, piem., pāra numura vietās, būs divas meitenes, kas sēdēs secīgās pāra vietās, tātad abpus kādam bērnam (kas sēž nepāra vietā). 9. Kombinācijas pa 3 elementiem no 33 bez atkārtošanās, secība nav svarīga (jo tikai viena ir alfabētiska): /(3!) = Pieņemsim, ka doti divi dažādi racionāli skaitļi a b un c, kur a, b, c, d ir veseli skaitļi. Tad šo d skaitļu vidējais aritmētiskias ( a b + c ad + cb )/ jeb būs racionāls skaitlis, jo gan ad + cb, d bd gan bd būs veseli skaitļi. Skaidrs arī, ka, pieņemot a b < c, vidējais aritmētiskais atradīsies d starp dotajiem skaitļiem a b < (a b + c d )/ < c d 0 < ( c d a b )/ < c d a b 11. Jebkuram kvadrātā ievilktam trijstūrim var novilkt taisni AK, kas ir paralēla kvadrāta malām (skat. piemēru kreisajā attēlā. Šī taisne var arī sakrist ar kādu kvadrāta malu). Tad S ABC = S ABK + S ACK = h 1 AK + h AK = (h 1 + h ) AK. Skaidrs, ka visos gadījumos h 1 + h 1 un AK 1, t.i., nepārsniedz kvadrāta malas garumu, tādēļ S ABC 1. Otrajā attēlā redzams piemērs ar trijstūra laukumu 1.

19 1. Ievērosim šadās sakarības: - vārdu skaits ar vienādu sakni Sakne but- prop- et- hept- Vārdu skaits formulu skaits ar vienādu oglekļu (C) skaitu C skaits Formulu skaits vārdu skaits ar vienādu galotni Galotne -īns -ēns -āns Vārdu skaits formulu skaits ar vienādām sakarībām starp H un C skaitu Skaita sakarība H= (C-1) H= C H= (C+1) Vārdu skaits 3 1 Tātad varam secināt, ka starp formulām un nosaukumiem ir spēkā šādās sakarības Sakne but- prop- et- hept- C skaits Galotne -īns -ēns -āns Skaita sakarība H= (C-1) H= C H= (C+1) Attiecīgi: a) C 3 H 8, C 4 H 6, C 3 H 4, C 4 H 8, C 7 H 14, C H ; propāns, butīns, propīns, butēns, heptēns, etīns. b) C H 4 - etēns, C H 6 - etāns, C 7 H 1 - heptīns. c) propēns - C 3 H 6, butāns - C 4 H Nedēļā ir 7 dienas, katrā no tām varbūtība lietot bļodu ir /3, tātad vidējais dienu skaits būs 7 /3 = 14 /3 = / Vispirms ievērosim, ka V ir vidējais lielums no desmit vērtībām: V = K 1 + K 13 + K 14 + K 15 + K 3 + K 3 + K 5 + K 34 + K 35 + K 45, 10 kur K 1 - kopīgo uzdevumu skaits starp 1. un. klašu grupu, K 13 - kopīgo uzdevumu skaits starp 1. un 3. klašu grupu utt. Apzīmēsim ar a 5 uzdevumu skaitu, kas iekļauts visās 5 klašu grupās, ar a 4, a 3, a, a 1 uzde- 3

20 vumu skaitu, kas iekļauts attiecīgi 4, 3, un 1 klašu grupā. Tad a 5 + a 4 + a 3 + a + a 1 = 35 0 a 5, a 4, a 3, a, a 1 15 Vidēji katrs uzdevumus ir iekļauts = 1 /7 klašu grupās. Tad [a 5 (5 1 /7) + a 4 (4 1 /7) + a 3 (3 1 /7)] [a ( 1 /7 ) + a 1 ( 1 /7 1)] = 0 (1) tas ir, uzdevumu "svars", kas iekļauti vairāk klašu grupās nekā vidēji, ir tāds pats kā uzdevumu, kas iekļauti mazāk klašu grupās nekād vidēji. Algebriski tas izriet arī no tā, ka 5a 5 + 4a 4 + 3a 3 + a + 1a 1 = 5 15 = 75 = 1 /7(a 5 + a 4 + a 3 + a + a 1 ) No vienādības (1) tad secinām: a 5 + a 4 + a 3 0 a + a 1 0 () Skaidrs, ja uzdevums būs ielikts visās 5 klašu grupās, tad tas tiks ieksaitīts visos 10 no iepriekšminētajiem skaitļiem (K 1, K K 45 ), ja 4 klašu grupās, tad 6 skaitļos, ja 3 klašu grupās, tad 3 skaitļos, ja grupās, tad tikai vienā no skaitļiem, tādēļ 10a 5 + 6a 4 + 3a 3 + a = 10 V. Saprotams, ka V sasniegs maksimālo vērtību pie iespējas lielāka a 5, bet, ņemot vērā () nevienādību a 5 nevar būt 15, jo a 1 1 (ja arī a 1, tad tas samazina iespējamo a 5 skaitu). Tad no (1) vienādības a 5 (5 1 /7) a 1 ( 1 /7 1) = 0 0a 5 8a 1 = 0 0a 5 8(35 a 5 ) = 0 8a 5 = 80 a 5 = 10, a 1 = 5, V = 10 Analogi varam secināt, ka minimālo vērtību V sasniegs pie pēc iespējas mazākas a 3 vērtības un a 1 (ja arī a 1 1, tad tas palielina iespējamo a 3 skaitu). Tad a 3 (3 1 /7) a ( 1 /7 ) = 0 6a 3 a = 0 6a 3 (35 a 3 ) = 0 7a 3 = 35 a 3 = 5, a = 30, V = 4, 5 Piemēri, kas uzrādi, ka šādi uzdevumu sadalījumi pa klašu grupām, lai iegūtu V = 10 un V = 4, 5 ir iespējami (ar X atzīmēti, kurā klašu grupā attiecīgie uzdevumi ir ielikti). 4

21 15. AB OP, AC OR ROP = CAB = α. BP = RP = πα/360. BC = a tg α a πα/360. Tātad, pie nelielām nobīdēm α, BC < BP tad un tikai tad, ja a <. 5

LATVIJAS RAJONU 43. OLIMPIĀDE

LATVIJAS RAJONU 43. OLIMPIĀDE Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5-5) kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 43 OLIMPIĀDE ATRISINĀJUMI 43 Pārlokot

Διαβάστε περισσότερα

"Profesora Cipariņa klubs" 2005./06. m.g. 1. nodarbības uzdevumu atrisinājumi. A grupa

Profesora Cipariņa klubs 2005./06. m.g. 1. nodarbības uzdevumu atrisinājumi. A grupa "Profesora Cipariņa klubs" 005./06. m.g.. nodarbības udevumu atrisinājumi A grupa. Viegli pārbaudīt, ka 3 4=44. Tātad meklējamie skaitļi var būt ; 3; 4. Pierādīsim, ka tie nevar būt citādi. Tiešām, ivēloties

Διαβάστε περισσότερα

LATVIJAS RAJONU 39. OLIMPIĀDE

LATVIJAS RAJONU 39. OLIMPIĀDE Materiāls ņemts o grāmatas:adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (-) kārtas (rajou) uzdevumi u atrisiājumi" LATVIJAS RAJONU 9 OLIMPIĀDE ATRISINĀJUMI 9 Ir jāaprēķia 00-ais

Διαβάστε περισσότερα

MULTILINGUAL GLOSSARY OF VISUAL ARTS

MULTILINGUAL GLOSSARY OF VISUAL ARTS MULTILINGUAL GLOSSARY OF VISUAL ARTS (GREEK-ENGLISH-LATVIAN) Χρώματα Colours Krāsas GREEK ENGLISH LATVIAN Αυθαίρετο χρώμα: Χρϊμα που δεν ζχει καμία ρεαλιςτικι ι φυςικι ςχζςθ με το αντικείμενο που απεικονίηεται,

Διαβάστε περισσότερα

Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004

Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004 Αριθμός 2204 Ο ΠΕΡΙ ΤΕΛΩΝΕΙΑΚΟΥ ΚΩΔΙΚΑ ΝΟΜΟΣ ΤΟΥ 2004 (Παράρτημα Παράγραφοι 1 και 2) Δηλοποιηση Κατασχέσεως Αναφορικά με τους ZBIGNIEW και MAKGORZATA EWERTWSKIGNIEWEK, με αριθμούς διαβατηρίων Πολωνίας

Διαβάστε περισσότερα

Elektronikas pamati 1. daļa

Elektronikas pamati 1. daļa Egmonts Pavlovskis Elektronikas pamati 1. daļa Mācību līdzeklis interešu izglītības elektronikas pulciņu audzēkņiem un citiem interesentiem Mācību līdzeklis tapis Eiropas reģionālās attīstības fonda projekta

Διαβάστε περισσότερα

6. Pasaules valstu attīstības teorijas un modeļi

6. Pasaules valstu attīstības teorijas un modeļi 6. Pasaules valstu attīstības teorijas un modeļi Endogēnās augsmes teorija (1980.-jos gados) Klasiskās un neoklasiskās augsmes teorijās un modeļos ir paredzēts, ka ilgtermiņa posmā ekonomiskā izaugsme

Διαβάστε περισσότερα

LATVIJAS 47. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (2006)

LATVIJAS 47. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (2006) LATVIJAS 47. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (2006) Rajona olimpiādes uzdevumi 9. klasei Atrisināt tālāk dotos 6 uzdevumus! Risinājumā parādīt arī visus aprēķinus! Rakstīt glītā, salasāmā rokrakstā! Uz risinājumu

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

8. noda a VESELÈBA UN ILGMËÛÈBA. Globålås tendences

8. noda a VESELÈBA UN ILGMËÛÈBA. Globålås tendences 8. noda a VESELÈBA UN ILGMËÛÈBA Valsts iedzîvotåju veselîbas ståvoklis bieωi tiek noteikts, izmantojot divus statistikas rådîtåjus jadzimußo paredzamo müωa ilgumu mirstîbas procentu attiecîbå uz bérniem

Διαβάστε περισσότερα

TROKSNIS UN VIBRĀCIJA

TROKSNIS UN VIBRĀCIJA TROKSNIS UN VIBRĀCIJA Kas ir skaņa? a? Vienkārša skaņas definīcija: skaņa ir ar dzirdes orgāniem uztveramās gaisa vides svārstības Fizikā: skaņa ir elastiskas vides (šķidras, cietas, gāzveida) svārstības,

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

PIRMDIENA, GADA 6. JŪNIJS

PIRMDIENA, GADA 6. JŪNIJS 06-06-2011 1 PIRMDIENA, 2011. GADA 6. JŪNIJS SĒDI VADA: J. BUZEK Priekšsēdētājs (Sēdi atklāja plkst. 17.00) 1. Sesijas atsākšana Priekšsēdētājs. Es pasludinu par atsāktu Eiropas Parlamenta sesiju, kas

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ

Διαβάστε περισσότερα

J. Dravnieks Matemātiskās statistikas metodes sporta zinātnē

J. Dravnieks Matemātiskās statistikas metodes sporta zinātnē J. Dravieks Matemātiskās statistikas metodes sporta ziātē Mācību grāmata LSPA studetiem, maģistratiem, doktoratiem RĪGA - 004 Juris Dravieks, 004. Matemātiskās statistikas metodes sporta ziātē SATURS IEVADS...

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Dzīvojamo telpu ventilācija ar 95% siltuma atguvi

Dzīvojamo telpu ventilācija ar 95% siltuma atguvi Dzīvojamo telpu ventilācija ar 95% siltuma atguvi Ventilācijas sistēma sastāv no gaisa kanāliem, caur kuriem mājā tiek nodrošināts svaiga gaisa klimats. Virtuvē, vannas istabā un tualetē izmantotais gaiss

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Διαβάστε περισσότερα

Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolēniem

Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolēniem Pētniecības metodes un pētījumu datu analīze skolēnu zinātniski pētnieciskā darba rakstīšanas procesā. Seminārs skolēniem Dr. oec, docente, Silvija Kristapsone 29.10.2015. 1 I. Zinātniskās pētniecības

Διαβάστε περισσότερα

AS Sadales tīkls. Elektroenerģijas sadales sistēmas pakalpojumu diferencēto tarifu pielietošanas kārtība

AS Sadales tīkls. Elektroenerģijas sadales sistēmas pakalpojumu diferencēto tarifu pielietošanas kārtība AS Sadales tīkls Elektroenerģijas sadales sistēmas pakalpojumu diferencēto tarifu pielietošanas kārtība Rīga 2015 Saturs: 1. Vispārīgi... 3 2. Tarifu sastāvs... 3 2.1. Maksa par elektroenerģijas sadalīšanu...

Διαβάστε περισσότερα

I PIELIKUMS ZĀĻU APRAKSTS

I PIELIKUMS ZĀĻU APRAKSTS I PIELIKUMS ZĀĻU APRAKSTS 1 1. ZĀĻU NOSAUKUMS Onbrez Breezhaler 150 mikrogrami inhalācijas pulveris cietās kapsulās 2. KVALITATĪVAIS UN KVANTITATĪVAIS SASTĀVS Katra kapsula satur indakaterola maleātu,

Διαβάστε περισσότερα

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

!#$ %&'$!&!(!)%*+, -$!!.!$(-#$&%- !"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

Διαβάστε περισσότερα

KabeĜu līniju un cauruĝvadu meklēšanas metodika

KabeĜu līniju un cauruĝvadu meklēšanas metodika KabeĜu līniju un cauruĝvadu meklēšanas metodika pielietojot 3M Dynatel sērijas kabeĝu meklēšanas iekārtas 1998.gada augusts 80-6108-6216-3-С 2 Saturs 1.nodaĜa. KabeĜa trases meklēšanas pamati 1. Ievads...7

Διαβάστε περισσότερα

ΚΙ Ν Υ Ν Ο Σ ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ. Εκτίµηση κινδύνου ανάπτυξης νόσου Παράγοντες κινδύνου Τρόποι σύγκρισης των παραµέτρων κινδύνου

ΚΙ Ν Υ Ν Ο Σ ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ. Εκτίµηση κινδύνου ανάπτυξης νόσου Παράγοντες κινδύνου Τρόποι σύγκρισης των παραµέτρων κινδύνου ΜΑΘΗΜΑ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ Epidemiology and Public Health Dept of Epidemiology and Public Health N. TZANAKIS M.D. Consultant in Respiratory Medicine Assistant Professor in Epidemiology P.O. Box 1352, 71110

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

PRASĪBAS 1 KV ELEKTROTĪKLA PROJEKTĒŠANAI UN BŪVNIECĪBAI

PRASĪBAS 1 KV ELEKTROTĪKLA PROJEKTĒŠANAI UN BŪVNIECĪBAI LATVIJAS ENERGOSTANDARTS LEK 139 Pirmais izdevums 2013 PRASĪBAS 1 KV ELEKTROTĪKLA PROJEKTĒŠANAI UN BŪVNIECĪBAI AS Latvenergo, teksts, 2013 Biedrība Latvijas Elektrotehniskā komisija, noformējums, makets,

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

-25% -33% -25% -21% -23% -39% 1,39 0,99 1,19 0,85 1,39 0,20 1,29 1,75 4,99 9,99 12,99 5,09 4,

-25% -33% -25% -21% -23% -39% 1,39 0,99 1,19 0,85 1,39 0,20 1,29 1,75 4,99 9,99 12,99 5,09 4, I K D I E N U 04.11.14 10.11.14 Baklažāni Saldā paprika 250 g 3.96 /kg Gaišās vīgas Italia Bumbieri Konference lielie 1,39 Kartupeļi fasēti Garie gurķi 1,39 1,19 Mandarīni 0,85 Acālija 12 1 gab. 0,20 1,29

Διαβάστε περισσότερα

Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ

Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ Ψηθιακά ςζηήμαηα - Διζαγωγή Καθ. Π. Βλασόποςλορ 1 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 2 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 3 Κςκλώμαηα Γιακοπηών και Λογικέρ

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

KOMISIJAS REGULA (EK)

KOMISIJAS REGULA (EK) 27.6.2009. Eiropas Savienības Oficiālais Vēstnesis L 166/3 KOMISIJAS REGULA (EK) Nr. 560/2009 (2009. gada 26. jūnijs), ar kuru groza Regulu (EK) Nr. 874/2004, ar ko nosaka sabiedriskās kārtības noteikumus

Διαβάστε περισσότερα

KONVERĢENCES ZIŅOJUMS

KONVERĢENCES ZIŅOJUMS LV KONVERĢENCES ZIŅOJUMS 2010. GADA MAIJS Visās 2010. gada publikācijās attēlots 500 euro banknotes motīvs. KONVERĢENCES ZIŅOJUMS 2010. GADA MAIJS Eiropas Centrālā banka, 2010 Adrese Kaiserstrasse 29 60311

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

SASKAŅOTS ZVA

SASKAŅOTS ZVA 1. ZĀĻU NOSAUKUMS Ciloxan 3 mg/ml acu pilieni, šķīdums. 2. KVALITATĪVAIS UN KVANTITATĪVAIS SASTĀVS 1 ml šķīduma satur 3 mg ciprofloksacīna (ciprofloxacinum) (hidrohlorīda veidā). Palīgvielas: Viens ml

Διαβάστε περισσότερα

ATTĀLINĀTA ŪDENS SKAITĪTĀJU RĀDĪJUMU NOLASĪŠANAS SISTĒMA ŪDENS SKAITĪTĀJI

ATTĀLINĀTA ŪDENS SKAITĪTĀJU RĀDĪJUMU NOLASĪŠANAS SISTĒMA ŪDENS SKAITĪTĀJI ATTĀLINĀTA ŪDENS SKAITĪTĀJU RĀDĪJUMU NOLASĪŠANAS SISTĒMA ŪDENS SKAITĪTĀJI Sistēmas un iekārtu darbības pamatprincipi Apraksts Attālinātā ūdens skaitītāju rādījumu nolasīšanas sistēma ir iekārtu kopums,

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

Άλγεβρα Boole και Υλικό Υπολογιστή

Άλγεβρα Boole και Υλικό Υπολογιστή Άλγεβρα Boole και Υλικό Υπολογιστή Άλγεβρα Boole Η σχέση της άλγεβρας Boole με την δομή των υπολογιστών και με τον προγραμματισμό. Υλικό υπολογιστή Οργάνωση Κεντρικής Μονάδας Επεξεργασίας, μνήμη, είσοδος

Διαβάστε περισσότερα

Π. Ε. Ε. Χ. Ένα άτομο Χ έχει μαζικό αριθμό 40 και στον πυρήνα του υπάρχουν 2 νετρόνια περισσότερα από τα πρωτόνια.

Π. Ε. Ε. Χ. Ένα άτομο Χ έχει μαζικό αριθμό 40 και στον πυρήνα του υπάρχουν 2 νετρόνια περισσότερα από τα πρωτόνια. Όνομα: Σχολείο: Τάξη/Τμήμα Ημερομηνία: Επαρχία:... Το εξεταστικό δοκίμιο αποτελείται από δύο μέρη: Μέρος Α και Μέρος Β Το σύνολο των σελίδων είναι έντεκα (11) Μέρος Α Αποτελείται από 8 ερωτήσεις (1-8 ).

Διαβάστε περισσότερα

I PIELIKUMS ZĀĻU APRAKSTS

I PIELIKUMS ZĀĻU APRAKSTS I PIELIKUMS ZĀĻU APRAKSTS 1 1. ZĀĻU NOSAUKUMS Aerivio Spiromax 50 mikrogrami/500 mikrogrami inhalācijas pulveris 2. KVALITATĪVAIS UN KVANTITATĪVAIS SASTĀVS Katra nomērītā deva satur 50 mikrogramus salmeterola

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó L09 cloj=klk=tsvjmosopa jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó 4 16 27 38 49 60 71 82 93 P Éå Ñê ÇÉ áí dbq=ql=hklt=vlro=^mmif^k`b mo pbkq^qflk=ab=slqob=^mm^obfi ibokbk=pfb=feo=dboûq=hbkkbk

Διαβάστε περισσότερα

Kā sagatavot klasificēšanas un marķēšanas paziņojumu

Kā sagatavot klasificēšanas un marķēšanas paziņojumu Kā sagatavot klasificēšanas un marķēšanas paziņojumu 2 Kā sagatavot klasificēšanas un marķēšanas paziņojumu 1.0. redakcija Izmaiņas šajā dokumentā Redakcija Izmaiņas 1,0 Pirmā redakcija Kā sagatavot klasificēšanas

Διαβάστε περισσότερα

PĀRDOMAS PAR KRĪZI UN LATVIJAS TAUTSAIMNIECĪBAS PROBLĒMĀM. Pēteris Guļāns gads

PĀRDOMAS PAR KRĪZI UN LATVIJAS TAUTSAIMNIECĪBAS PROBLĒMĀM. Pēteris Guļāns gads PĀRDOMAS PAR KRĪZI UN LATVIJAS TAUTSAIMNIECĪBAS PROBLĒMĀM Pēteris Guļāns 2009. gads Vārda krīze skaidrojums Oxford Dictionery for the Business World: 1) time of danger or great difficulty un 2) decisive

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

MG3-ZM-L. Tehniskā informācija Montāžas instrukcija. Gāze

MG3-ZM-L. Tehniskā informācija Montāžas instrukcija. Gāze Tehniskā informācija Montāžas instrukcija Izdevums Jūlijs 2007 Mēs paturam sev tiesības veikt tehniskās izmaiħas, kas saistītas ar produktu pilnveidošanu! MG3-ZM-L Gāze LV Satura rādītājs 1 Vispārīgie

Διαβάστε περισσότερα

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms. Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 17 Ιανουαρίου 015 Β ΓΥΜΝΑΣΙΟΥ 7 49 3 4 3 6 11 Υπολογίστε την τιμή της παράστασης: Α= + + : 3 9 7 3 5 10 Πρόβλημα Μία οικογένεια αγόρασε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

E.Gulbja Laboratorija

E.Gulbja Laboratorija ņemšana, izpildes termiņš. (Skaidrojumus skatīt tabulas beigās) nodošanai brīv, svētku un naktīs HEMATOLOĢIJA un ANĒMIJU DIAGNOSTIKA ER Eritrocīti V HB Hemoglobīns V HEMATO Hematokrīts V Vidējais eritrocītu

Διαβάστε περισσότερα

Vn 1: NHC LI MT S KIN TH C LP 10

Vn 1: NHC LI MT S KIN TH C LP 10 Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà

Διαβάστε περισσότερα

È http://en.wikipedia.org/wiki/icosidodecahedron

È http://en.wikipedia.org/wiki/icosidodecahedron À Ô ÐÓ ÖÓÒØ ØÓÙÔ Ö ÕÓÑ ÒÓÙ Ò Ø Ô ØÓÙ Ô Ñ Ð Ø ØÓÙhttp://www.mathematica.grº Å Ø ØÖÓÔ LATEX ÛØ Ò Ã Ð Ò Ø ÃÓØÖôÒ Ä ÙØ Ö ÈÖÛØÓÔ Ô Õ ÐÐ ËÙÒ ÔÓÙÓ ËÕ Ñ Ø Å Õ Ð Æ ÒÒÓ ÉÖ ØÓÌ Ë Ð ¹ ÅÔÓÖ Ò Ò Ô Ö Õ Ò Ò Ñ Ð Ö º ÌÓß

Διαβάστε περισσότερα

5 ml iekšķīgi lietojamas suspensijas (1 mērkarote) satur 125 mg vai 250 mg amoksicilīna, amoksicilīna trihidrāta veidā (Amoxicillinum).

5 ml iekšķīgi lietojamas suspensijas (1 mērkarote) satur 125 mg vai 250 mg amoksicilīna, amoksicilīna trihidrāta veidā (Amoxicillinum). 1. ZĀĻU NOSAUKUMS HICONCIL 125 mg/5 ml pulveris iekšķīgi lietojamas suspensijas pagatavošanai HICONCIL 250 mg/5 ml pulveris iekšķīgi lietojamas suspensijas pagatavošanai 2. KVALITATĪVAIS UN KVANTITATĪVAIS

Διαβάστε περισσότερα

Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2014/2015, Ημερομηνία: 16/06/2015

Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2014/2015, Ημερομηνία: 16/06/2015 Θέμα ο Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 04/05, Ημερομηνία: 6/06/05 Τα δεδομένα που ελήφθησαν από τις δοκιμές βραχυκύκλωσης και

Διαβάστε περισσότερα

PĀRTIKAS ALERĢIJAS LAI ATRASTU ĪSTO ALERĢIJAS IZRAISĪTĀJU, TIEK IZMANTOTAS ŠĀDAS METODES:

PĀRTIKAS ALERĢIJAS LAI ATRASTU ĪSTO ALERĢIJAS IZRAISĪTĀJU, TIEK IZMANTOTAS ŠĀDAS METODES: PĀRTIKAS ALERĢIJAS Maldīgi tiek uzskatīts, ka pārtikas alerģija ir bieži sastopama, jo visbiežāk novēro tikai pārtikas alerģijai līdzīgas reakcijas, ko sauc par pārtikas nepanesību jeb intoleranci. Pēc

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt206/nt206.html Πέµπτη 6 Νεµβρίου 206 Ασκηση. Να δειχθεί ότι

Διαβάστε περισσότερα

Ιστορίες που πρέπει να ειπωθούν

Ιστορίες που πρέπει να ειπωθούν This booklet has been developed by the transnational partnership Networking against human trafficking (Id. Code 4458), that involves four projects set up and carried out in the framework of the European

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

Τριφασικοί ηλεκτροκινητήρες DR/DV/DT/DTE/DVE, Ασύγχρονοι Σερβοκινητήρες CT/CV

Τριφασικοί ηλεκτροκινητήρες DR/DV/DT/DTE/DVE, Ασύγχρονοι Σερβοκινητήρες CT/CV Ηλεκτροµειωτήρες \ Βιοµηχανικοί µειωτήρες \ Ηλεκτρονικά κινητήριων µηχανισµών \ Αυτοµατισµοί \ Υπηρεσίες Τριφασικοί ηλεκτροκινητήρες DR/DV/DT/DTE/DVE, Ασύγχρονοι Σερβοκινητήρες CT/CV A6.C01 Έκδοση 07/200

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )

Διαβάστε περισσότερα

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby Gradual diversions of the Rio Pastaza in the Ecuadorian piedmont of the Andes from 1906 to 2008: role of tectonics, alluvial fan aggradation and ENSO events Carolina Bernal, Frédéric Christophoul, Jean-Claude

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ Θρεπτικό διάλυμα Είναι ένα αραιό υδατικό διάλυμα όλων των θρεπτικών στοιχείων που είναι απαραίτητα για τα φυτά, τα οποία βρίσκονται διαλυμένα

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 2012 7 Απριλίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 2012 7 Απριλίου 2012 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 0 7 Απριλίου 0 ΠΡΟΒΛΗΜΑ Να προσδιορίσετε όλες τις τριάδες p n όπου p πρώτος και αρνητικοί ακέραιοι που είναι λύσεις της εξίσωσης: p n Λύση Η δεδομένη εξίσωση

Διαβάστε περισσότερα

MS EXCEL pievienojumprogramma STATISTIKA 3.11

MS EXCEL pievienojumprogramma STATISTIKA 3.11 LATVIJAS SORTA EDAGOĢIJAS AKADĒMIJA Juris Dravieks MS EXCEL pievieojumprogramma STATISTIKA 3.11 Mācību līdzeklis - rokasgrāmata LSA studetiem, maģistratiem, doktoratiem apildiāts RĪGA - 013 Juris Dravieks,

Διαβάστε περισσότερα

6. TEMATS MEHĀNISKĀS SVĀRSTĪBAS UN VIĻŅI. Temata apraksts. Skolēnam sasniedzamo rezultātu ceļvedis. Uzdevumu piemēri

6. TEMATS MEHĀNISKĀS SVĀRSTĪBAS UN VIĻŅI. Temata apraksts. Skolēnam sasniedzamo rezultātu ceļvedis. Uzdevumu piemēri 6. TEMATS MEHĀNISKĀS SVĀRSTĪBAS UN VIĻŅI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_10_SP_06_P1 Uzdevums grupai Skolēna darba lapa F_10_UP_06_P1 Seismogrāfa darbības shēma

Διαβάστε περισσότερα

2004 #3 # lpp lpp lpp. Draudzîbai nav tautîbas Divi Ziemassvétki un lpp ÎÂ Ó

2004 #3 # lpp lpp lpp. Draudzîbai nav tautîbas Divi Ziemassvétki un lpp ÎÂ Ó 2004 #3 #18 Kultüru dialogs Draudzîbai nav tautîbas Divi Ziemassvétki un divas Lieldienas... 2. lpp... 3. lpp... 4. lpp èapple Ó Óapple à ÒÌÓ Ó appleâùóappleïâ ò Ôapple Ó, ÎÂ Ó... 5. lpp... 6. lpp... 7.

Διαβάστε περισσότερα

ANΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ

ANΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ , ANΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S. Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ Να λύσετε στους ακέραιους την εξίσωση 4 xy y x = xy 6.

Διαβάστε περισσότερα

EURO BANKNOTES UN MONĒTAS

EURO BANKNOTES UN MONĒTAS EURO BANKNOTES UN MONĒTAS Euro banknotes un monētas ir vairāk nekā 329 miljonu euro zonā dzīvojošo cilvēku ikdienas dzīves daļa. Šajā prezentācijā aprakstītas septiņas euro banknotes un astoņas euro monētas.

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

Procedure 2(b) (obvious errors in a number of language versions)

Procedure 2(b) (obvious errors in a number of language versions) COU CIL OF THE EUROPEA U IO Brussels, 12 July 2012 12546/12 Interinstitutional File: 2012/0176 ( LE) JUR 400 ECOFI 702 UEM 265 LEGISLATIVE ACTS A D OTHER I STRUME TS: CORRIGE DUM/RECTIFICATIF Subject:

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016 Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &

Διαβάστε περισσότερα

Στρωματογραφία-Ιστορική γεωλογία. Κρυπτοζωικός Μεγααιώνας Δρ. Ηλιόπουλος Γεώργιος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Στρωματογραφία-Ιστορική γεωλογία. Κρυπτοζωικός Μεγααιώνας Δρ. Ηλιόπουλος Γεώργιος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Στρωματογραφία-Ιστορική γεωλογία Κρυπτοζωικός Μεγααιώνας Δρ. Ηλιόπουλος Γεώργιος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Σκοποί ενότητας Σκοπός της ενότητας είναι η μελέτη του Κρυπτοζωικού Μεγααιώνα, κατά

Διαβάστε περισσότερα

6. ΕΚΒΟΛΗ ΜΕ ΕΜΦΥΣΗΣΗ

6. ΕΚΒΟΛΗ ΜΕ ΕΜΦΥΣΗΣΗ 6-6. ΕΚΒΟΛΗ ΜΕ ΕΜΦΥΣΗΣΗ 6.. ΕΙΣΑΓΩΓΗ Η διεργασία εκβολής µε εµφύσηση χρησιµοποιείται στη βιοµηχανία πλαστικών για την παραγωγή σάκκων και φύλλων (φιλµ) που έχουν διαξονικό προσανατολισµό. Έχουν γίνει αρκετές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ)

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ) ΑΡΧΗ ΜΗΝΥΜΑΤΟΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π:

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π: 1. Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα ορίζεται ως ο ρυθμός μιας συνισταμένης κίνησης φορτίων. Δηλαδή εάν στα άκρα ενός μεταλλικού αγωγού εφαρμοστεί μια διαφορά δυναμικού, τότε το παραγόμενο ηλεκτρικό πεδίο

Διαβάστε περισσότερα

KOKA UN PLASTMASU KONSTRUKCIJAS (vispārējs kurss)

KOKA UN PLASTMASU KONSTRUKCIJAS (vispārējs kurss) RĪGAS TEHNISKĀ UNIVERSITĀTE Būvkonstrukciju profesora grupa KOKA UN PLASTMASU KONSTRUKCIJAS (vispārējs kurss) LABORATORIJAS DARBI RTU Rīga, 004 Laboratorijas darbi paredzēti RTU būvniecības specialitāšu

Διαβάστε περισσότερα