v v 1 m y T s s Vježba 041 Kroz neko sredstvo šire se valovi koji imaju frekvenciju 1320 Hz i amplitudu 0.3 mm. Duljina

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "v v 1 m y T s s Vježba 041 Kroz neko sredstvo šire se valovi koji imaju frekvenciju 1320 Hz i amplitudu 0.3 mm. Duljina"

Transcript

1 Zadatak 4 (Mirjana, rednja škoa) Kroz neko redto šire e aoi koji iaju frekenciju 66 Hz i apitudu.3. Dujina aa je 5 c. Odredi: a) brzinu širenja aa i b) akianu brzinu jedne četice. Rješenje 4 66 Hz, y.3 3-4, λ 5 c.5,?,? Vana dujina je udajenot diju najbižih točaka aa koje titraju u itoj fazi. Drugi riječia, to je udajenot do koje e proširi a za rijee jednog titraja, tj. λ T λ, gdje je λ ana dujina, T perioda titranja, frekencija, a brzina širenja aa. Brzina tijea koje haronički titra ijenja e reeno π t co, T gdje je akiana brzina dana izrazo a) Brzina širenja aa iznoi: b) Makiana brzina četice iznoi: π y π y. T λ λ / λ π y 4 π y π T Vježba 4 Kroz neko redto šire e aoi koji iaju frekenciju 3 Hz i apitudu.3. Dujina aa je 5 c. Odredi: a) brzinu širenja aa i b) akianu brzinu jedne četice. Rezutat: 66 /,.49 /. Zadatak 4 (Deny, rednja škoa) Žica gaoira daje ton frekencije 65 Hz. Ako je dujina žice, a njezina aa po jedinici dujine 5 g/, koiko je io zategnuta žica? A) 68 N B) 84 N C) 3 N D) 677 N E) 338 N Rješenje 4 65 Hz,, µ 5 g/.5 kg/,? Onona frekencija kojo žica dujine titra jednaka je µ, gdje je napetot žice, a µ ojer ae i dujine žice. Sia kojo je žica zategnuta iznoi: µ µ / / µ µ

2 ( ) ( ) / ( ).5 kg µ µ N. µ µ Odgoor je pod E. Vježba 4 Žica gaoira daje ton frekencije 3 Hz. Ako je dujina žice, a njezina aa po jedinici dujine 5 g/, koiko je io zategnuta žica? Rezutat: E. A) 68 N B) 84 N C) 3 N D) 677 N E) 338 N Zadatak 43 (Deny, rednja škoa) Žica gaoira duga 5 c ia au g i napeta je io od 8 N. Onona frekencija kojo titra žica iznoi: A) Hz B) 4 Hz C) Hz D) Hz E) 44 Hz Rješenje 43 5 c.5, g. kg, 8 N,? Onona frekencija kojo žica dujine titra jednaka je µ, gdje je napetot žice, a µ ojer ae i dujine žice Onona frekencija kojo žica titra iznoi: µ. 8 N.5 µ etoda. kg Hz. uptitucije.5 µ Odgoor je pod D. Vježba 43 Žica gaoira duga 5 ia au dag i napeta je io od 8 N. Onona frekencija kojo titra žica iznoi: Rezutat: D. A) Hz B) 4 Hz C) Hz D) Hz E) 44 Hz Zadatak 44 (Deny, rednja škoa) zor eitira aoe jetoti ane dujine 5 n tijeko n. Koiki broj aoa je eitirao izor tijeko tog reena? (c 3 8 /) 6 A) 6 8 B) 9 C) 6 D) 6 6 E) 6 Rješenje 44 λ 5 n 5-7, t n -8, c 3 8 /, n? rekencija je broj titraja (okreta) u jedinici reena (u ekundi). n, t

3 gdje je n broj titraja (okreta) za rijee t. Prea anoj ii unduatornoj teoriji jetot e širi u aoia za koje rijedi jednadžba c λ c, λ gdje je λ dujina aa, c brzina jetoti i frekencija. Broj aoa koji je izor eitirao iznoi: n 8 8 etoda 3 t n c n c c t 6 koparacije / t n 6. c t λ t λ λ 7 5 λ Odgoor je pod A. Vježba 44 zor eitira aoe jetoti ane dujine n tijeko n. Koiki broj aoa je eitirao izor tijeko tog reena? (c 3 8 /) Rezutat: A A) 6 B) C) 6 D) 6 E) 6 Zadatak 45 (Mira, ginazija) Točkati izor titra haronijki frekencijo 5 Hz. Va e kroz edij širi brzino 3 /. Koiku raziku u fazi iaju dije točke koje u udajene i 8 od izora aa? Rješenje 45 5 Hz, 3 /, x, x 8, φ? Vana dujina je udajenot diju najbižih točaka aa koje titraju u itoj fazi. Drugi riječia, to je udajenot do koje e proširi a za rijee jednog titraja, tj. λ, gdje je λ ana dujina, brzina širenja aa, a frekencija. Dije točke koje e naaze na udajenoti x i x od izora aa iaju eđuobnu raziku u fazi, odnono poak u fazi: x x x ϕ π ϕ π. λ λ Razika u fazi u radijania iznoi: x x x x ϕ π λ etoda x x ϕ π ϕ π uptitucije λ ( x x ) ( 8 ) 5 ϕ π π π rad. 3 Vježba 45 Točkati izor titra haronijki frekencijo 5 Hz. Va e kroz edij širi brzino 3 /. Koiku raziku u fazi iaju dije točke koje u udajene i 7 od izora aa? Rezutat: π rad. 3

4 Zadatak 46 (Mira, ginazija) Dije žice iaju jednake dujine. Jedna žica ia da puta eću au od druge žice, ai je napetot te žice tri puta anja. Koiki je ojer brzina širenja aoa u ti žicaa? Rješenje 46,, Na napeto užetu ii žici a e širi brzino, 3, 4? gdje je napetot užeta, dujina užeta, a njegoa aa. Računao ojer brzina Vježba 46 Dije žice iaju jednake dujine. Jedna žica ia četiri puta eću au od druge žice, ai je napetot te žice šet puta anja. Koiki je ojer brzina širenja aoa u ti žicaa? Rezutat: 4. Zadatak 47 (an, rednja škoa) Kad dije gazbene iice itodobno odašiju zuk čujeo jedan udar ake.3. Za koiko e razikuju frekencije tih gazbenih iica? Rješenje 47 n udar, t.3, u? rekencija je broj titraja (okreta) u jedinici reena (u ekundi). n, gdje je n broj titraja (okreta) za rijee t. Razika frekencija gazbenih iica je n u Hz. t.3 Vježba 47 Kad dije gazbene iice itodobno odašiju zuk čujeo da udara akih.6. Za koiko e razikuju frekencije tih gazbenih iica? Rezutat: 3.33 Hz. Zadatak 48 (an, rednja škoa) Koika je frekencija gazbene iice koja daje 4 udara u ekundi gazbeno iico frekencije 3 Hz? Rješenje 48 n 4 udara, t, 3 Hz,? t

5 Udari nataju uperpozicijo daju aoa koji e ro ao razikuju u frekenciji. Broj udara u ekundi jednak je razici frekencija aoa koji interferiraju: u. rekencija je broj titraja (okreta) u jedinici reena (u ekundi). n, t gdje je n broj titraja (okreta) za rijee t. Računao broj udara: n 4 u 4 4 Hz. t rekencija gazbene iice iznoi: u Hz 4 ( ) / + + ii. 4 / ( ) Hz Potoje da rješenja. Vježba 48 Koika je frekencija gazbene iice koja daje udara u ekundi gazbeno iico frekencije 3 Hz? Rezutat: 3 Hz ii 98 Hz. Zadatak 49 (an, rednja škoa) Neka iraa eitira zuk frekencije 96 Hz. Kad ona i G žica ioine zajedno eitiraju zuk ože e čuti udara u 8 ekundi. Udari u e rjeđi kad e ioinka žica poako napinje. Koika je protna frekencija ioinke žice? Rješenje Hz, n udara, t 8,? rekencija je broj titraja (okreta) u jedinici reena (u ekundi). n, t gdje je n broj titraja (okreta) za rijee t. Udari nataju uperpozicijo daju aoa koji e ro ao razikuju u frekenciji. Broj udara u ekundi jednak je razici frekencija aoa koji interferiraju: u. Računao broj udara: n u.5.5 Hz. t 8 5

6 Budući da broj udara poako opada ora biti > pa ijedi: u 96 Hz.5 Hz Hz. u Vježba 49 Neka iraa eitira zuk frekencije 96 Hz. Kad ona i G žica ioine zajedno eitiraju zuk ože e čuti 5 udara u 4 ekunde. Udari u e rjeđi kad e ioinka žica poako napinje. Koika je protna frekencija ioinke žice? Rezutat: Hz. Zadatak 5 (Žejko, rednja škoa) Zuk razine 95 db udara o bubnjić uha. Poršina bubnjića je 5. Koiko energije e tijeko jedne ekunde prenoi kroz bubnjić? (prag čujnoti - W/ ) Rješenje 5 L 95 db, S 5 5-5, t, - W/, E? ntenzitet () zučnog aa je energija koju a prenee u jedinično reenu kroz jediničnu poršinu ještenu okoito a jer širenja zuka, tj. E. t S Razina intenziteta zuka L izražena u decibeia db definira e izrazo L o g, gdje intenzitet odgoara otpriike najabije zuku kojeg još proječno uho ože čuti te iznoi - W/ pri frekenciji khz. Decibe je brojčana jedinica. L og E E etoda L og t S L og t S E uptitucije t S og x x E E L E L og L og / og potencirao t S t S t S bazo L E L E L E L / t S E t S t S t S t S 5 W J. Vježba 5 Zuk razine 95 db udara o bubnjić uha. Poršina bubnjića je 5. Koiko energije e tijeko dije ekunde prenoi kroz bubnjić? (prag čujnoti - W/ ) Rezutat:.58-7 J. 6

7 Zadatak 5 (Maturantica, edicinka škoa) Va preazi iz redta A u redto B. U redtu A brzina aa iznoi /, a ana dujina.5. U redtu B e brzina aa poeća na 6 /. Koika je ana dujina aa u redtu B? A..5 B..8 C. D. 6 Rješenje 5 /, λ.5, 6 /, λ? Vana dujina je udajenot diju najbižih točaka aa koje titraju u itoj fazi. Drugi riječia, to je udajenot do koje e proširi a za rijee jednog titraja, tj. λ, gdje je brzina aa, λ dujina aa, frekencija aa. Pri prijeazu jetoti (zuka) iz jednog optičkog redta u drugo frekencija otaje neproijenjena, a ijenjaju e ana dujina i brzina jetoti (zuka). λ / λ a u redtu A λ λ λ a u redtu B λ / λ λ frekencija neproijenjena / λ λ λ λ λ λ λ λ 6.5 λ λ λ / λ.8. Odgoor je pod B. Vježba 5 Va preazi iz redta A u redto B. U redtu A brzina aa iznoi /, a ana dujina.5. U redtu B e brzina aa poeća na 3 /. Koika je ana dujina aa u redtu B? A..5 B..8 C. D. 6 Rezutat: B. Zadatak 5 (Marko, ginazija) Pri pribižaanju ozia proatrač čuje zuk frekencije Hz, a pri udajaanju 843 Hz. Koika je brzina ozia, ako je brzina zuka 34 /? Rješenje Hz, 843 Hz, z 34 /,? Doppero efekt zor zuka odašije zučne aoe frekencije. Opažač uša taj zuk na nekoj udajenoti od izora. Ako i izor i opažač iruju u ito inercijko utau, opažač će regitrirati zučne aoe jednake frekencije. Ako e opažaču izor zuka pribižaa, on čuje zuk iše frekencije. Ako e izor zuka udajaa od opažača, on čuje zuk niže frekencije. Ta e pojaa nazia Doppero efekt. Neka je: z brzina zuka brzina izora zuka i frekencija zuka koji eitira izor zuka frekencija zuka koji čuje opažač zbog Dopperoog efekta 7

8 Opažaču e izor zuka pribižaa udajaa z z z i z + i Priiko pribižaanja ozia (izora zuka) proatrač čuje zuk frekencije: z, z a pri udajaanju ozia zuk frekencije: z, z + gdje je brzina ozia, a frekencija zuka kojeg tara ozio. Dijeeći gornje jednadžbe dobije e: z z z + ( z ) ( z + ) z z + z z z + z z + z ( ) ( + ) z Hz 843 Hz k [ ] Hz Hz h Vježba 5 Pri pribižaanju ozia proatrač čuje zuk frekencije Hz, a pri udajaanju 843 Hz. Koika je brzina ozia, ako je brzina zuka 335 /? Rezutat: 8.58 k/h. Zadatak 53 (Kizo, ginazija) rekencija zižduka okootie, kako ga čuje ozač okootie, je 8 Hz. Proatrač čuje zižduk frekencije 76 Hz. Da i e ak udajuje ii pribižaa proatraču? Koika je brzina aka? Brzina zuka je 34 /. Rješenje 53 i 8 Hz, 76 Hz, z 34 /,? Doppero efekt zor zuka odašije zučne aoe frekencije. Opažač uša taj zuk na nekoj udajenoti od izora. Ako i izor i opažač iruju u ito inercijko utau, opažač će regitrirati zučne aoe jednake frekencije. Ako e opažaču izor zuka pribižaa, on čuje zuk iše frekencije. Ako e izor zuka udajaa od opažača, on čuje zuk niže frekencije. Ta e pojaa nazia Doppero efekt. Neka je: z brzina zuka brzina izora zuka i frekencija zuka koji eitira izor zuka frekencija zuka koji čuje opažač zbog Dopperoog efekta Opažaču e izor zuka pribižaa udajaa z z z i z + i Priiko udajaanja ozia (izora zuka) proatrač čuje zuk frekencije z. z + i 8

9 Budući da proatrač čuje zižduk frekencije anje od frekencije zižduka okootie < i, ak e udajuje od njega. Računao brzinu aka. z z z + z / z z z z i z i + i i i Hz z [ k.6] Hz h Kizo Vježba 53 rekencija zižduka okootie, kako ga čuje ozač okootie, je 4 Hz. Proatrač čuje zižduk frekencije 38 Hz. Da i e ak udajuje ii pribižaa proatraču? Koika je brzina aka? Brzina zuka je 34 /. Rezutat: Vak e pribižaa, 64.4 k/h. Zadatak 54 (Caro, ginazija) Tijeo haronijki titra. Eongacija tijea u oinoti o reenu opiana je izrazo π t y in + π. Koika je perioda titranja toga tijea? 3 3 A. B. C. 3 D. 6 3 Rješenje 54 π t y in + π 3, T? Eongaciju y koje god točke koja e naazi na udajenoti x od izora aa u bio koje rijee t ožeo naći iz jednadžbe π y y in t ϕ, T gdje je y apituda aa, a φ fazni poak ii zaotatak u fazi neke točke na udajenoti x od izora aa, T perioda titranja. π t π y in y in t y in π + π + π t + π π y in t + π π 6 y in t π + T 6. 6 π. y y in t ϕ T Odgoor je pod D. Vježba 54 Tijeo haronijki titra. Eongacija tijea u oinoti o reenu opiana je izrazo π t y in + π. Koika je perioda titranja toga tijea?.5 3 A. B. C. 3 D

10 Rezutat: C. Zadatak 55 (Joipa, ginazija) Puhanje u irau, zatorenu na jednoe kraju, tara e ononi ton frekencije. khz. Koika je dujina irae? Brzina zuka u zraku je 34 /. Rješenje 55. khz Hz, 34 /,? Kod iraa titra tupac zraka ongitudinani tojni ao. Čor nataje na črto kraju, tj. na zatoreno kraju tupca zraka u irai. Prootrio tojni ongitudinani a koji dobiao u irai ipunjenoj fuido (zrako) koja je jedne trane zatorena. Moguće dikretne (kantizirane) ane dujine λ n i frekencije n u: 4 λn, n,, 3,... n, n ( n ), n,, 3,... 4 gdje je λ ana dujina, frekencija, dujina irae, brzina zuka. λ 4 n trbuh poaka Ononi ton ia frekenciju: čor poaka n ( ). ( n ) 4 n 4 4 Dujina irae iznoi: 34 / c Vježba 55 Puhanje u irau, zatorenu na jednoe kraju, tara e ononi ton frekencije.4 khz. Koika je dujina irae? Brzina zuka u zraku je 34 /. Rezutat:.5 c.

11 Zadatak 56 (Dario, ginazija) Da izora jednakih frekencija razikuju e razino za 4 db. Koiki je kocijent intenziteta titranja četica? Rješenje 56, L 4 db,? Razina intenziteta zuka (L) izražena u decibeia (db) definira e izrazo L o g, gdje intenzitet odgoara otpriike najabije zuku kojeg još proječno uho ože čuti te iznoi W pri frekenciji khz. Decibe je brojčana jedinica. og og og L L og L L L L L L a og og og og og a b og L L L b antiogaritirao og 4 og 4 /: og 4 og a b b a 4. Vježba 56 Da izora jednakih frekencija razikuju e razino za 3 db. Koiki je kocijent intenziteta titranja četica? Rezutat:. Zadatak 57 (Dario, ginazija) Da izora jednakih frekencija razikuju e razino za 4 db. Koiki je kocijent apituda titranja četica? Rješenje 57, L 4 db, A? A Razina intenziteta zuka (L) izražena u decibeia (db) definira e izrazo L o g, gdje intenzitet odgoara otpriike najabije zuku kojeg još proječno uho ože čuti te iznoi

12 W pri frekenciji khz. Decibe je brojčana jedinica. ntenzitet () zučnih aoa je naga koju noi zučni a pri proazu jedinično poršino okoito na jer širenja zuka ρ π A, ( ) gdje je ρ gutoća, brzina širenja aa, frekencija, A apituda. og og og L L og L L L L L L a og og og og og a b og L L L b antiogaritirao og 4 og 4 /: og 4 og a b b a 4 ( ) ρ π A ρ ( π ) A ρ ( π ) A ρ ( π ) A A ρ ( π ) A ρ ( π ) A A A A A A /. A A A A Vježba 57 Da izora jednakih frekencija razikuju e razino za db. Koiki je kocijent apituda titranja četica? Rezutat:. Zadatak 58 (Nixi, ginazija) Pri ºC i noriranoe atoferko taku brzina zuka u zraku iznoi 33 /, a pri ºC 34 /. Za koiko e proijeni brzina zuka pri projeni teperature zraka za ºC? Rješenje 58 t ºC, 33 /, t ºC, 34 /,? Zučni aoi jeu ongitudinani aoi frekencije od 6 Hz do Hz. Projena brzine zuka pri projeni teperature zraka za ºC jednaka je kocijentu projene brzine i teperature t t.

13 t t Vježba 58 Pri ºC i noriranoe atoferko taku brzina zuka u zraku iznoi 33 /, a pri ºC 344 /. Za koiko e proijeni brzina zuka pri projeni teperature zraka za ºC? Rezutat:.6 /. Zadatak 59 (Zejneb, aturant) Žica dujine.5 titra frekencijo 8 Hz. Na žici e ože izbrojiti 8 čoroa, ukjučujući i one na krajeia žice. Brzina tranerzanog aa kroz žicu je: A. 578 B C. 857 D. 785 Rješenje 59.5, 8 Hz, n 8,? Širenje titranja kroz neko redto zoeo aoito gibanje. Vaoito je gibanje periodičko prenošenje energije titranja od jednog jeta na drugo. Pri tranerzani aoia ta e energija prenoi okoito na jer titranja. Vana dujina je udajenot diju najbižih točaka aa koje titraju u itoj fazi. To je udajenot do koje e proširi a za rijee jednog titraja, tj. λ, gdje je brzina aa, λ ana dujina, frekencija. Čor aa je točka koja ne titra. Budući da e na žici dujine ože izbrojiti 8 čoroa, znači da rijedi: 3.5 λ 3.5 λ 3.5 λ /: 3.5 λ. 3.5 Brzina tranerzanog aa kroz žicu je:.5 λ Odgoor je pod C. Vježba 59 Žica dujine.5 titra frekencijo 8 Hz. Na žici e ože izbrojiti 9 čoroa, ukjučujući i one na krajeia žice. Brzina tranerzanog aa kroz žicu je: A. 5 B. 5 C. D. Rezutat: A. Zadatak 6 (Božidar, rednja škoa) Mebrana titra frekencijo od Hz. Koika je dujina zučnog aa koji e od ebrane širi u zrak? (brzina zuka pri C 33 / ) Rješenje 6 Hz, 33 /, λ? 3

14 Vana dujina je udajenot diju najbižih točaka aa koje titraju u itoj fazi, to je udajenot do koje e proširi a za rijee jednog titraja, tj. λ, gdje je brzina širenja aa, λ ana dujina, frekencija. Dujina zučnog aa iznoi: 33 / λ λ λ λ c. Vježba 6 Mebrana titra frekencijo od 5 Hz. Koika je dujina zučnog aa koji e od ebrane širi u zrak? (brzina zuka pri C 33 / ) Rezutat: 66 c. 4

λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka?

λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka? Zadatak (Zoki, elektrotehnička škola) Da zučna ala iaju intenzitete i 5 W/c. Za koliko e decibela razlikuju ta da zuka? Rješenje I = W/c = W/, I = 5 W/c = 5 W/, I = - W/, L L =? Tražio razliku intenziteta

Διαβάστε περισσότερα

2 k s k s k m. m m m 0.2 kg s. Odgovor je pod B.

2 k s k s k m. m m m 0.2 kg s. Odgovor je pod B. Zadata (Ana, inazija) Opruu ontante 5 N/ tineo za c i putio titrati. Odredite najeću brzinu tijea ae da pri titranju. A. 3 B. 5 C. D. 4 Rješenje = 5 N/, = c =., = da =., =? Eatična oprua produžena za ia

Διαβάστε περισσότερα

ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3.

ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3. Zadaak 0 (Ana Marija, ginazija) Koliki obuja ia koad plua ae kg? (guoća plua ρ 50 kg/ ) Rješenje 0 kg, ρ 50 kg/,? Guoću ρ neke vari definirao ojero ae i obuja ijela. kg ρ / 0.004. ρ ρ kg 50 jeba 0 Koliki

Διαβάστε περισσότερα

t t , 2 v v v 3 m

t t , 2 v v v 3 m Zadatak 4 (Maturantia, ginazija) Zeljin atelit giba e brzino = 9 3 /. Oobi u atelitu prođe reenki interal od jedan at. Koliki je taj reenki interal na Zelji? Kolika je razlika u reenu? ( = 3 8 /) Rješenje

Διαβάστε περισσότερα

m m ( ) m m v v m m m

m m ( ) m m v v m m m Zadatak (Ria, ginazija) Autoobil raketni pogono započne e iz tanja iroanja ubrzaati zbog potika rakete Potiak traje 5, a ubrzanje iznoi 5 / Nakon gašenja raketnog pogona autoobil e natai gibati kontantno

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

( ). Pritom je obavljeni rad motora: 2 2

( ). Pritom je obavljeni rad motora: 2 2 Zadata (Hroje, ginazija) Dizalo ae 5 g brza e aceleracijo / iz iroanja do brzine 4 / Za cijelo rijee gibanja djelje talna ila trenja N Kolii je obaljeni rad? (g = 98 / ) Rješenje = 5 g, a = /, = 4 /, F

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

( ) ( ) β = gdje je β koeficijent linearnog rastezanja koji se definira izrazom:

( ) ( ) β = gdje je β koeficijent linearnog rastezanja koji se definira izrazom: Zadatak 8 (Filip, elektrotehnička škola) Štap od cinka i štap od željeza iaju pri C jednaku duljinu l Kolika je razlika duljina štapova pri C? (koeficijent linearnog rastezanja cinka β cink 9-5 K -, koeficijent

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

= 2. N E R T, k. kg mol K mol Vježba 161 molekula amonijaka (NH 3 ) mase 100 g

= 2. N E R T, k. kg mol K mol Vježba 161 molekula amonijaka (NH 3 ) mase 100 g Zaaak 6 (Marijan, eekroehnička škoa) Koika je kineička energija ransaornoga gibanja E k oekua aonijaka (NH ) ase g pri C? (pinska konsana R 8.4 J/(o K), ona asa aonijaka M 7 - kg/o) Rješenje 6 g. kg, C

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

Rad, snaga i energija. Dinamika. 12. dio

Rad, snaga i energija. Dinamika. 12. dio Rad, snaga i energija Dinaika 1. dio Veliine u ehanici 1. Skalari. Vektori 3. Tenzori II. reda 4. Tenzori IV. reda 1. Skalari: 3 0 1 podatak + jerna jedinica (tenzori nultog reda). Vektori: 3 1 3 podatka

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

1 Opis fizikalnih pojava

1 Opis fizikalnih pojava Opis fizikalnih pojava Opis fizikalnih pojava. Fizikalne veličine Prirodne pojave opisujeo veličinaa koje ožeo jeriti.svaku veličinu jerio posebno jedinico, na prijer, etar je jedinica za veličinu duljine.97

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ

Διαβάστε περισσότερα

konst. [ tlak i temperatura su proporcionalne veličin e]

konst. [ tlak i temperatura su proporcionalne veličin e] Zadatak 4 (Goran, ginazija) Pri teeraturi 7 C tlak lina je. Do koje je teerature otrebno lin izovoluno (izoorno) zagrijati da u tlak bude 4? Rješenje 4 t = 7 C => T = 7 + t = 7 + 7 = K, =, = 4, T =?.inačica

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

K Î Ì ÓÙ Ù applefi Ú ÛÈ

K Î Ì ÓÙ Ù applefi Ú ÛÈ K ÏÔÎ ÈÚ applefi M. ÌappleÙË 12 A PI IOY 2009 ñ ºY O 1.627 ñ appleâú Ô Ô B B EK O H TIMH: E ÚÒ 2 (EÎ ÔÛË ÌÂ appleúôûêôú Â ÚÒ 4) E. 62 8 MAPTIOY 2009 ñ ºY O 1.622 ñ appleâú Ô Ô YNENTEY H KPI TIN A KAPNT.

Διαβάστε περισσότερα

p a D, k Q A D, k Q max D, k Q P z=0 ρ,ν Rješenje: Linijski gubici u dijelu cjevovoda od točke 1 do točke 2

p a D, k Q A D, k Q max D, k Q P z=0 ρ,ν Rješenje: Linijski gubici u dijelu cjevovoda od točke 1 do točke 2 0. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA. ri maksimalnoj potrošnji max = 00 l/s u odoodnom sustau prema slici pumpa dobalja 7% protoka, a akumulacijsko jezero %. Stupanj djeloanja pumpe je η =0,8, a

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

ZADACI IZ FIZIKE. Riješeni ispitni zadaci, riješeni primjeri i zadaci za vježbu (1. dio) (2. izdanje)

ZADACI IZ FIZIKE. Riješeni ispitni zadaci, riješeni primjeri i zadaci za vježbu (1. dio) (2. izdanje) ZADACI IZ FIZIKE Riješeni ispitni zadaci, riješeni prijeri i zadaci za ježbu (. dio) (. izdanje) Zadaci iz fizike (. dio). izdanje. Izeđu dije točke koje se nalaze sa iste strane obale, na eđusobno rastojanju

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

ZADACI IZ FIZIKE. Riješeni ispitni zadaci, riješeni primjeri i zadaci za vježbu (3. dio) (2. izdanje)

ZADACI IZ FIZIKE. Riješeni ispitni zadaci, riješeni primjeri i zadaci za vježbu (3. dio) (2. izdanje) ZADACI IZ FIZIKE Riješeni ispitni zadaci, riješeni prijeri i zadaci za vježbu (3. dio) (. izdanje) Zadaci iz fizike (3. dio). izdanje. O oprugu čija je konstanta N - obješena je kuglica ase 0 g koja haronijski

Διαβάστε περισσότερα

Fizika 2. Dr. sc. Damir Lelas. Predavanje 2 Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove.

Fizika 2. Dr. sc. Damir Lelas. Predavanje 2 Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove. Školska godina 008./009. Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (90/90/930/940/950) Fizika Predavanje Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων. Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων. Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 7: Η χρήση των πτώσεων στον σχηματισμό προτάσεων Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ÙËÓ ÂappleÔ ÙÔ ÈÒÚÁÔ OÈ ÌÂÙÔ Í Û Ó ÙËÓ ÎÚ ÛË. PÔ ÛÊ ÙÈ ÛÙÔ apple Ú 5 M ÚÈ Î È ÙËÓ ÙÂÏÂ Ù ÒÚ. «EÏÏËÓ Ú» applefi ÙËÓ AÏ Ó

ÙËÓ ÂappleÔ ÙÔ ÈÒÚÁÔ OÈ ÌÂÙÔ Í Û Ó ÙËÓ ÎÚ ÛË. PÔ ÛÊ ÙÈ ÛÙÔ apple Ú 5 M ÚÈ Î È ÙËÓ ÙÂÏÂ Ù ÒÚ. «EÏÏËÓ Ú» applefi ÙËÓ AÏ Ó B EK O H AÏÏ Á... ÌÂ ÙËÓ ÂappleÈÛÙÚÔÊ 4 OKTøBPIOY 2009 ñ ºY O 1.652 ñ appleâú Ô Ô B www.enet.gr TIMH: E ÚÒ 2 (EÎ ÔÛË ÌÂ appleúôûêôú Â ÚÒ 4) E. 46 A A H KHNIKOY. KA APH NIKH A OK EIXNOYN OI POB EæEI. H

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. TRIGONOMETRIJA 5. Definicija trigonometrijskih funkcija Naj jednostavnija definicija trigonometrijskih funkcija dobije se promatranjem pravokutnog ( ) ( r) ( ) trokuta. Svaki takav trokut, za promatrani

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina ŽUPANIJSKO NATJECANJE IZ FIZIKE 6..9. Srednje škole. skupina. zadatak ( bodova) Tramvaj vozi između dvije stanice udaljene 6 m tako da polazi sa prve stanice iz mirovanja i ubrzava ubrzanjem m/s dok ne

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης 1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto "zapne" odnosno za kontrolu rezultata koristite ove upute.

Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto zapne odnosno za kontrolu rezultata koristite ove upute. 1 OE 11/12 Zadaci za pripremu III. ciklusa laboratorijskih vjezbi PTA ZA RJESAVANJE Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto "zapne" odnosno za kontrolu rezultata koristite ove upute.

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Fizika 2. Optika. Geometrijska optika 2009/10

Fizika 2. Optika. Geometrijska optika 2009/10 Fizika Optika Geometrijska optika 009/10 1 Geometrijska optika -empirijska, aproksimativna (vrijedi uz određene uvjete) -svjetlost se proučava kao pravocrtna pojava koja se širi brzinom c 0 =310 8 ms -1

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA

ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA S V E U Č I L I Š T E U Z A GR E U F A K U L T E T E L E K T R O T E H NI K E I R A Č U N A R S T V A Z A V O D Z A E L E K T R OST R OJ A R S T V O I A U T O M A T I Z A C I J U ANALIZA ELEKTRIČNIH STROJEVA

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

H IA KEæH TH KO E XA H IA TO K IMA EKINA ME I E E I E KAI O E E IºY A EI H ÓÔ Ô ÙË MÂÁ ÏË ÁÓÒÌË

H IA KEæH TH KO E XA H IA TO K IMA EKINA ME I E E I E KAI O E E IºY A EI H ÓÔ Ô ÙË MÂÁ ÏË ÁÓÒÌË ÚÔ ÂÏÙ ˆÛË... Ì ÚÈ ÓÂˆÙ Ú A EK O H 6 EKEMBPIOY 2009 ñ ºY O 1.661 ñ appleâú Ô Ô B TIMH: E ÚÒ 2 (EÎ ÔÛË Ì appleúôûêôú  ÚÒ 4) E. 62 YNENTEY H ZAN-K ONT IOYNKEP. «YNI Tø Y OMONH KAI KOYPA IO TOY E HNE. XPEIAZONTAI

Διαβάστε περισσότερα

Rotacija krutog tijela

Rotacija krutog tijela Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj

Διαβάστε περισσότερα

1. Jednoliko i jednoliko ubrzano gibanje

1. Jednoliko i jednoliko ubrzano gibanje 1. JEDNOLIKO I JEDNOLIKO UBRZANO GIBANJE 3 1. Jednoliko i jednoliko ubrzano gibanje Jednoliko gibanje po pravcu je ono gibanje pri kojem se ne mijenja ni iznos ni smjer brzine. Ako se ne mijenja iznos

Διαβάστε περισσότερα

1. Skup kompleksnih brojeva

1. Skup kompleksnih brojeva 1. Skup kompleksnih brojeva 1. Skupovibrojeva... 2 2. Skup kompleksnih brojeva................................. 5 3. Zbrajanje i množenje kompleksnih brojeva..................... 8 4. Kompleksno konjugirani

Διαβάστε περισσότερα