Class: PreCalculus Problem Set: g and and An acute is an whose measure is > than 0 and < than 90.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Class: PreCalculus Problem Set: g and and An acute is an whose measure is > than 0 and < than 90."

Transcript

1 Class: PreCalculus Problem Set: g and and An acute is an whose measure is > than 0 and < than A = 10, B = 30, C = 40. x = in 6. 3 m m 30. B

2 Class: PreCalculus Problem Set: rs 5rs a 4 b x xy5xy y 14. N 5 and N 1 W G 16. A scalene Δ is a Δ which has sides all of different lengths. 18. x = 10, y = z = m V cylinder 18 m 3 and 6. cm V sphere 56 m V cylinder cm 3, Asurface cm, V cone cm C

3 Class: PreCalculus Problem Set: NN 1 and ND 8 6., 1, 7 x 8, y x 9, y, 5 z x 70, y 3 14, z a b x 8x xx ( 1)( x) x yz cm 4. 4 in cm m A

4 Class: PreCalculus Problem Set: ND 11 and N 9 6. obtuse Δ 8. refer to Lesson refer to Lesson 4 1. x 10 and y 5 Q s t x and 7 9st y a, b, and c cm 6. cm 3, cm cm D

5 Class: PreCalculus Problem Set: g 4. acute Δ x y 10. y a x 4 z 4a x x x 14. x y i 18. x 5 and y xy cm. 144 m 4. refer to Lesson 4 6. refer to Lesson cm 3, cm 30. C

6 Class: PreCalculus Problem Set: right Δ x 1 and y 5 1. x 1, y, z 1 5a6 ba x y x y 16. y i refer to Lesson a and b cm m 30. C 0 3

7 Class: PreCalculus Problem Set: 7. If the student is an advanced math student, then the student is intelligent. 4. If the coach is not happy, then the team did not win. 6. If the motor is on, then the car is moving. valid. 8. NN 90, ND x y 16. a i b ab i. 0 m 4. a 5, b 7, c m 8. 3 cm C

8 Class: PreCalculus Problem Set: A , 7, and B valid 1. x 3, y, 1 z 14. x 5, y a b b a 3 3 6x xy4y i. refer to Lesson 4 4. refer to Lesson 4 6. x 0, y cm

9 Class: PreCalculus Problem Set: 9. NG 100, NB invalid 6. 8, 7, 6, 5 8. obtuse Δ ΔABD ΔCBD by SAS 14. 4x a y b 16. x (, 1,3) 0. a 3 7, b 3 4, c 3 6. x 1 4. refer to Lesson cm A a, b 5

10 Class: PreCalculus Problem Set: D N, Q 100 N 4. 8, 6, 4 6. y x i i 1. 6, 14. valid 16. ΔBCD ΔAED by AAAS 18. ΔQSR~ ΔPSQ so SR QR SQ PQ 0.. (4,,1) 4. 7a 5a 6. refer to Lesson x y 8. V 36 in 3, Asurface 36 in 30. C

11 Class: PreCalculus Problem Set: 11. NB 135, N 45 S 4. invalid b b 4ac x 10. 4, 1 a i i 16. x, y 4, z ΔPQR ΔPSR by HL x and 4 y b a b a x 4 y 30. C

12 Class: PreCalculus Problem Set: 1. NB 14, NG interior = 70, exterior = x 4, y 3 1. y x i i a. SAS b. HL c. SSS d. AAAS 4. ΔABE ΔCBD by SAS cm D

13 Class: PreCalculus Problem Set: valid 1. x 95, y 10, z i 18. x 5, y, z ΔABD ΔCBD by SAS m A

14 Class: PreCalculus Problem Set: , 9, ,650.7 ft , , , iˆ 4.47 ˆj 10. x 140, y 80, z , i i ABC CDE by AAAS y 4x B

15 Class: PreCalculus Problem Set: ft 6. * proof * ⁰, ⁰, ⁰, ⁰ iˆ 8.10 ˆj line A: y 3, line B: 3 y x i 18. 6i 0. 1 xy(3x y). 4. x, y 4, z D l 5 m; h 3 m

16 Class: PreCalculus Problem Set: , 1, mi pc pb 6. mc mb 8. d pmay xyb pmb 10. x 1. * proof * x4 x , , , iˆ ˆj i 6. x 10, y, z i 0. x 3, y, z 1 1 i cm 3, cm 30. C

17 Class: PreCalculus Problem Set: 17. NO 8, NS ΔABC~ ΔXYZ by SAS 6. ΔPQR~ΔSTU by AAA 8. * proof * 10. x x x 4x 4 1. ax r bxt ab 14. * proof * , , , , 4 0. x 1, y 1, z i l 10 cm, h 8 cm 30. B

18 Class: PreCalculus Problem Set: 18. NN 8, ND 9, NQ y x oz 8. ΔPQR~ ΔSTU by SSS 10. md mc ad ac bd pm 1. k mc pa 14. * proof * , , , iˆ 6.38 ˆj 0. 3, 1. 36i cm 30. B

19 Class: PreCalculus Problem Set: 19. NR 5, NB 5, NG y x ,,, , 1 5, 1 5, x a b a b y x y 14. x y p4xy 4 xyp p 16. 3acdbcd 3 abdabc a x 3 b y * proof * x x 4x6 x a. 6, 44 m 3 8b. 3 cm 30. C

20 Class: PreCalculus Problem Set: y x NR 10, N B oz ~ by SSS similarity postulate 14. x 4, y 3, z 16. no solution; x 3, xy 4 3z 3 4x y 8 6xy 4 z 3 9z x y 1 5. y 3dfgs 1x 4g , , , * proof * 8. l 10 cm, h 8 cm 30. A

21 Class: PreCalculus Problem Set: 1. y x N, N 0, N liters 8a. not a function 8b. function * proof * N D S ab 3 p4a b 6 ab 3 p p ay6xm x l 6ty i. 1 i 4. x 1 x 3 x 6. * proof * m B

22 Class: PreCalculus Problem Set:., 4, 6 4. NP 10, NN 10, NQ 4 6. * graph * 8. * graph * 10a. function, 1 to 1 10b. function, not 1 to 1 10c. not a function 10d. function, 1 to (3,3),(3, 3),( 3,3),( 3, 3) 18. xb 3p4x b 4 6xb p9p i 3. 3 a b b i * proof * cm C

23 Class: PreCalculus Problem Set: NG 5, NR 10, NB 6. 9 gallons 8. * graph * 10. * graph * 1a. 1b. 1c * proof * 18. (3,3) i 0. ab 3 3 b 3 a 4 b 6 ba 9 a 4 4. mn 6. * proof * m 30. B

24 Class: PreCalculus Problem Set: 4. 4, 6, 8, 10 and 1, 10, 8, N, N 4, N ml 8. * graph * 10a. not a function 10b. not a function 1a. 6 1b. 1c. 0 14a b. 4 14c N 3N1 18. x 43x i. xy 6. * proof * cm 30. A R G 4. B

25 Class: PreCalculus Problem Set: hr men y x 8. * graph * 10a. function, not 1 to 1 10b. not a function 10c. function, 1 to 1 10d. function, 1 to 1 1a. 0 1b a a a a x y x y smr 3sq mr q 6rl. 1 18ktm 9x4z 4. z 5sm 1k 6. * proof * m 30. C

26 Class: PreCalculus Problem Set: min 4. Donnie = 65 mph; time = 5 hr; Sarah = 45 mph; time = 10 hr 6a. log 7 k p p 6b. k * graph * 14a. 14b. 0 14c., * proof * x 4 y 3 a b 3 16 x 8 y 4 1 x 4 y a b 3 9 a 4 b 6 6. x 4 x m 30. A

27 Class: PreCalculus Problem Set: min 4. N R 4, N B 7, NW y x 3 3 n 8. m n 3 1a. * graph * 1b. * graph * 14a. not a function 14b. not a function 14c. function, 1 to 1 14d. function, not 1 to (0,4), 1 16, i i 6. * proof * 8. 6 cm 30. A

28 Class: PreCalculus Problem Set: 8. RT 0 R 5 hr hr log 9 k * graph * a. 6 18b. 3 18c x y y zca stcarz * proof * x x x x 1 8. l 0m, h 1 m 30. B

29 Class: PreCalculus Problem Set: 9. 1 henway per day 4. Nat is 65, Odessa is , log31 k * graph * 16a. 16b. 3 16c.,, b. ab 3 c d 4 a b 6 abc d 9 c 4 d i 6 3m a. 4 a ( a)( a) 6. xhx xhh 8. x 60 ; y B

30 Class: PreCalculus Problem Set: , ml ⁰ 8. * proof * * graph * 16a. 0 16b. 16c a. x 0b. x. a b x y 4. kxd kc axd ac bd 6. x xh h x h cm 30. C

31 Class: PreCalculus Problem Set: 31. Lannes is 0 and Davout is N B 1, NG 6, N R 4 6a. x-axis, no; y-axis, yes; origin, no 6b. x-axis, yes; y-axis, yes; origin, yes 8. * graph * 10. * proof * a. function, not 1 to 1 16b. function, not 1 to 1 16c. not a function 16d. function 1 to a. 1 0b. 1 0c. 0 5n n1. 7a 7 a xh h 30. B y x 3 xy

32 Class: PreCalculus Problem Set: min 4. ft y x 3 3 8a. x-axis, yes; y-axis, no; origin, no 8b. x-axis, no; y -axis, yes; origin, no 10. * graph * 1. * proof * * graph * 18. 0, (0,),, i i m 30. A

33 Class: PreCalculus Problem Set: lb 4. C y x 4 4 8a. x-axis, no; y-axis, no; origin, yes 8b. x-axis, yes; y-axis, yes; origin, yes 10. * graph * * graph * 18.,,3 0a. 80 0b. 9 0c. 4. x 4 a (1 3 a) i 6. h hxh 8. x 115, y 41, z B

34 Class: PreCalculus Problem Set: hr 4. $ H 6.67C A 1. 5 y 3x 14a. x-axis, yes; y-axis, yes; origin, yes 14b. x-axis, no; y-axis, no; origin, yes 16. * graph * ,3,4 4a. 8 4b. 8 4c cm 30. C 6. h x hx

35 Class: PreCalculus Problem Set: lb 4. multiply by Y 45B C y x a. x-axis, no; y-axis, yes; origin, no 18b. x-axis, yes; y-axis, no; origin, no 0. y ( x 3) 3 a. 4 3 b. 3 c h x( x h) 8. * proof * 30. A

36 Class: PreCalculus Problem Set: 36. N R 10, NW 100, NB mp m p mi / hr f ( x) x ; g( x) x 1 1. y 3x a y x b. 11 0c. 1 9 a. function, not 1 to 1 b. function, not 1 to 1 c. not a function d. function, not 1 to 1 4a. 1 4b. 1 6a b C 6c * proof *

37 Class: PreCalculus Problem Set: 37. $ $ y x O 6.67I A y x a. x-axis, no; y-axis, no; origin, yes x 16b. x-axis, yes; y-axis, no; origin, no 18. y 4 3 0a. D: 35, R: 17 0b. D:, R: 88 a. b. 3 c x h cm A

38 Class: PreCalculus Problem Set: 38. RT 100 miles T P hr 4. 4 liters of 90%, 16 liters of 75% y 8x f ( x) 3 x, g( x) x cm 18. y 3 x , 5, 4a. x 4b. x 30. A 6. x x ovt o g t 8. * proof *

39 Class: PreCalculus Problem Set: ft y s xy y x S 5.71P no isosceles trapezoid a. 45 b a. 3 4b. 3 4c a. x 6b. x m 30. B

40 Class: PreCalculus Problem Set: mph lb 6. 1,860, x 3y x y f ( x) x 1, g( x) x. y x 4. 0,1 6. 6x 3h B

41 Class: PreCalculus Problem Set: mph 4. 9:00 pm a b. 154, no solution x3y x x H S. 6 cm 4. y 1 x x( x h) 30. A

42 Class: PreCalculus Problem Set: 4. B 0 mph, C 5 mph hour 6. $ * graph * , no x y1 0. A 4a. 60 4b gx ( ) x 3 8. * proof * 30. D

43 Class: PreCalculus Problem Set: 43. ft hr 6. S 31yr, J 33yr 8. y 5sin x 10. * graph * yes H 8C9 3 3 y x 6a. domain: 6, range: 6 6b. domain: 55, range: * graph * gx ( ) ( x ) A

44 Class: PreCalculus Problem Set: 44. hw w m hr mi yd 8. y 11sin x 10. * graph * yes 0. x4y , 4. F 55.56D a. 45 6b B

45 Class: PreCalculus Problem Set: mi liters 8. C , r , not a good correlation 10. y 10sin 1. ( x) ( y5) x 4x f () x x3 6. y x 3 8. * proof * 30. A

46 Class: PreCalculus Problem Set: , b d b balls 6. RO 9 mph, RB 18 mph 8. N R 1, N E 4, N D x i x i 1. y 1cos x 14. ( xh) ( yk) 6 16a. 3 16b yes 4a b * graph * 8. 1 x h 30. C

47 Class: PreCalculus Problem Set: 47 dm dm. days 4. dollars B 40 mph, W 10 mph 8. y 37cos x 10. x 6x O , r , good correlation 14. * graph * x y a b. 8b y x4 8c a B

48 Class: PreCalculus Problem Set: cal ml of 40%, 150 ml of 80% 8. $ y x y 6 14sin 16. x x , 0.853, good correlation 0. * graph * y x * proof * 30. D

49 Class: PreCalculus Problem Set: days 6. 7 dp 4c dollars x y y 1 5sinx 16a b (x i)(x + i) 0. (x + ) + (y + 3) = ft 6. * graph * 8. x 30. C

50 Class: PreCalculus Problem Set: John = 30 yr, Sally = 45 yr 6. qt 8. 45, y 3x y 15 5cos 18. x 1 3ix 1 3i 0. ( x ) ( y4) 4 a. 6 5 b. 81 4a b * graph * 8. * proof * 30. B

51 Class: PreCalculus Problem Set: hr 6. 8 packages 8a b ⁰, 300⁰ , x + y 4 = y = 10 0cos 0. 4x 1 6ix 1 6i. (x + 3) + (y 3) = yes x + 1 y x

52 Class: PreCalculus Problem Set: hr 6. $56 8. W = 5 mi / hr, B = 10 mi / hr ⁰, 75⁰, 135⁰, 195⁰, 5⁰, 315⁰ 1a b x y y 8cos 0. ( x i)( x i). ( xh) ( yk) r A

53 Class: PreCalculus Problem Set: m 4. hm m p hr francs 8. 30(10) (.54) 3 3 in ⁰, 10⁰ ⁰ e y 15cosx 0. x x9 0. x 3 ( y) yes 8. y x x 1

54 Class: PreCalculus Problem Set: * graph * rad / min 4. m 10.. cm / s hr ⁰, 5⁰ 14. 0⁰, 180⁰ e 0. x y y 6 6cos 4. S 0.089T 14.47, r , good correlation 6. * graph * C

55 Class: PreCalculus Problem Set: rad / s mph 8. * graph * , mi / hr 1. 30, e y 7 3sin x i x i 4. ( x) ( y5) 7 6a. 6 6b. 31 8a b B

56 Class: PreCalculus Problem Set: ,916, $ youngster: 13 yr, ancient one: 53 yr cm 1. 5 m 14. B 16. * graph * ⁰, 100⁰, 00⁰, 0⁰, 30⁰, 340⁰ (8, ) 6. 3(x + 3 i)(x i) 8. (x 4) + (y 5) = x

57 Class: PreCalculus Problem Set: , km 8. y = 6sin( 90⁰) cm ft cm 16. * graph * 18. 0⁰, 100⁰, 140⁰, 0⁰, 60⁰, 340⁰ x y a. 33 6b D

58 Class: PreCalculus Problem Set: atm 10. * graph * 1. y = + 6cos ,70 cm m ⁰, 66⁰, 78⁰, 138⁰, 150⁰, 10⁰, ⁰, 8⁰, 94⁰, 354⁰. 3x + y 7 = a. 1 6b. 8a. D: 5, R: 36 8b. D: 55, R: B

59 Class: PreCalculus Problem Set: ( x 1) y pencils gal of 80%, 0 gal of 0% y = 3 + 8sin( 45⁰) , cm m 4. 10⁰, 70⁰, 130⁰, 190⁰, 50⁰, 310⁰. 6. e (x 3) + (y ) = A

60 Class: PreCalculus Problem Set: 60. 6,65, NR = 4, NW = 8, NG = ⁰, 70⁰ y = cos( 45⁰) m cm. A x y yes 30. x + 3 4

61 Class: PreCalculus Problem Set: $ % lie between 6 and 68, 95% lie between 59 and 71, 99% lie between 56 and * box-and-whisker plot * ⁰, 150⁰, 10⁰, 330⁰ * graph *. y = + 5sin cm 6. * graph * y = 4x + 3

62 Class: PreCalculus Problem Set: 6. 30, W = mph, D = 4 mph range = 6, mean = 4, median = 3.5, mode = 7, variance = 5.33, standard deviation = * box-and whisker plot * ⁰, 135⁰, 5⁰, 315⁰ y 35cos x cm 4. * graph * x + 3y = yes

63 Class: PreCalculus Problem Set: ma mb ab hr 8. onlookers = 850, bystanders = * graph * 1. point = 14, range = 14, median = 18, standard deviation: * stem-and-leaf plot * 16. 0⁰, 180⁰ * graph *. 1 y 35sin x cm 6. * graph *

64 Class: PreCalculus Problem Set: mr mb br hr 8a. 10cis b i * graph * and ⁰ 18. 0⁰, 45⁰, 180⁰, 5⁰ y 6 4cos x cm x y

65 Class: PreCalculus Problem Set: (45)(1000)(100) (30)(60) 6. 50( h 4) m x hr ( kxm) d pencils 10. x = a. 5.83cis59.04⁰,,, b i i 16. x gf af hd cd % y 610sin (600)(1000)(100) (.54)(1)(580) 30. D

66 Class: PreCalculus Problem Set: (1)(580)(1) (60)(13) 6. mz ma az hr 8. y = 1 8cosx ⁰, 10⁰ 1. * graph * 14. 6cis350⁰ 16. * graph * * box-and-whisker *. x =, cm ( x h)( xh)

67 Class: PreCalculus Problem Set: 67. B = 0 mph, W = 4 mph 4. $1 per dozen eggs, 50 per pound of flour a. 9 8b y 46sin 3 1a. 13cis9.6⁰ 1b i i 16. bc ad y cg df % ⁰, 80⁰, 160⁰, 00⁰, 80⁰, 30⁰,,, , cm 30. (80)(1000)(100) (.54)(580)(1)

68 Class: PreCalculus Problem Set: (15)(580)(1) (60)(400) in w a g stereos 8. parabola: 1 y x 1, vertex: (0, 0) ft 1. * box and whisker plot * 14. y 3 3cos i 18. ws kd x wa bd ,,, ⁰, 157.5⁰, 47.5⁰, 337.5⁰ , a b. 81

69 Class: PreCalculus Problem Set: 69. p is multiplied by 3 4. x k directrix: 3 y, axis of symmetry: x = 0, parabola: 10 5 y x, focus: 6 3 0, mean: 0.17, median: 0.5, variance: 9.14, mode: does not exist, standard deviation: * graph * 14. y 310sin3 0 16a. 6.3cis341.57⁰ 16b. 5 5 i 18. * graph * cm ,,, ⁰ 6. x x f (x) = ln x, g (x) = log x

70 Class: PreCalculus Problem Set: hr 4. J is doubled % * graph * 1. * graph * 14. y 1 cos x i ,,, mean: 4, median: 3.5, mode: 1, variance: 7.33, standard deviation: ft D

71 Class: PreCalculus Problem Set: 71. NB =, NR = 4, NW = hr 6. length: 100 cm, width: 17 cm, height: 33 cm 8. * graph * * graph * 14. * graph * y 1cos x i 0. 30, 150, 10, mean: 3.83, median: 4, mode: 5, variance: 4.14, standard deviation: x i x i

72 Class: PreCalculus Problem Set: 7. y m beauties B = 8, c = 5.87, b = * graph * 1., ft y 35sin x 18a. 10cis b i 0. 3,. 7 5,,, * graph * yes

73 Class: PreCalculus Problem Set: M M 5 dollars 4. 6 times 6. x x cm 10. A = 0, a = 6.70, b = % 14. * graph * 16. * graph * 18. y 6sinx 4 0. ag cd y af bd. 0, 30, 150, , y x

74 Class: PreCalculus Problem Set: L $6.44 per hour 6. D P x N 8. x = 1, y = cm * graph * 16. x = 4, * graph * 3 0. y 311sin x40 6. x = i t,,, x 30. x 5i x 5i

75 Class: PreCalculus Problem Set: 75 0D. p 0 p miles cm * graph * 14. * graph * y 34cos x i 0. 60, 10, 40, 300. x = mean:.67, median: 1.5, mode: 0, variance: 14.46, standard deviation: a. 3 8b. 14 8c x i x i

76 Class: PreCalculus Problem Set: groups 4. M = 9, R = radius: 9.71 in, area: in 1. B = 30, a = ft, b = 6. ft % 16. * graph * 18. * graph * 3 0. y3 sin4x30. 3 x, 4. x a b

77 Class: PreCalculus Problem Set: mph 4. $ x x x 5 y x = 4, y = A = 30, a = 10 cm % 18. * graph * 3 0. y 37sin x60. 60, 10, 40, * graph * x 3 + h

78 Class: PreCalculus Problem Set: (5Q Ka) cents 6. A: $1000, B: $ * graph * a b 4 1. * rules of the game * 14. side: 5 cm, radius: 8.09 cm 16. A = 30, a = 8.77 m, b = m , 0. * graph *. 3 y 5 4sin x ,, 3 3 6a. 10 6b

79 Class: PreCalculus Problem Set: 79. 0, B = 18 mph, W = 6 mph 6. 7cis cis30, cis150, cis * graph * 1. x 6 + 6x 5 y + 15x 4 y + 0x 3 y x y 4 + 6xy 5 + y * rules of the game * x, 7 y 18. side: 8 ft, area: ft 0. * graph *. 1, 4. y 15cos3x , y x 3 3

80 Class: PreCalculus Problem Set: 80. (300 hm) mi 4. 3 hr * rules of the game * cis0 1. i, i, i, i 14. a 3 + 3a b + 3ab + b C = 15, b = 0.1 in, c = 9.08 in. * graph * x 11, y 3 4. y 46cos x ,

81 Class: PreCalculus Problem Set: , 55, B = 91.43, C = 48.57, a = 5.14 in ft 10. * rules of the game * 1. cis15, cis135, cis * graph * x 4 y * graph * 0. * graph * 9 8. y 10 sin , 110, 170, 30, 90,

82 Class: PreCalculus Problem Set: 8., 33, (t rh) mi 6. 39b ab 9 days 8. log(5) 4 x 0.75 log(5) B = , A = , C = * rules of the game * 14. 1cis i, 1, 1 3 i 18. p 5 + 5p 4 q + 10p 3 q + 10p q 3 + 5pq 4 + q 5 0. radius of circumscribed circle: 6.74, radius of inscribed circle: * graph * 4. y 9sin 4 x ,,, % 5

83 Class: PreCalculus Problem Set: 83. $ log(5) log(5) A = 44.41, B = , C = * rules of the game * 14. 3i 16. 1, i, 1, i 18. 0x 3 z 3 0. area: cm, radius: cm 9. y86cos ( x30 ) 6. * graph * , 75, 195, x 3 3 i x 3 3 i

84 Class: PreCalculus Problem Set: 84 a b k p m yd / min 6. jobs 8. * graph * 10. * rules of the game * 1. * rules of the game * q = cm i, 1 3i, 1 3i, 3 i 0. * graph *. radius: 9.71 cm, area: cm 4. * graph * 6. no solution %

85 Class: PreCalculus Problem Set: min seating arrangements 8. 4, 6, , 180, * graph * 14. * rules of the game * 16. * rules of the game * p = cm, area: 5.71 cm. 3 i, 1 3i, 1 3i, 3 i x 7, y * graph * 8. mean: 0, median: 0, mode:, variance: 3.60, standard deviation: cm

86 Class: PreCalculus Problem Set: O = 4I , 4, , 86, 79, 7, , 3, * graph * 18. * rules of the game * m 4., i 3 i, 3i 6. r 3 + 3r s + 3rs + s 3 8. * graph *

87 Class: PreCalculus Problem Set: cos sin km 6. 18, 1, , 46, 66, , 10, 40, * graph * 0. * rules of the game * B = 64.89, C = 95.11, a = 3.78 cm 6. * graph * 8. area: in, radius: 4.33 in

88 Class: PreCalculus Problem Set: 88. At = 40e t, 9.86 g 4. 3:16: * rules of the game * 1. 6, 4, ,,, * graph * 18. * rules of the game * 0. * rules of the game * cis10, 3cis130, 3cis50 6. A(pentagon) = cm, A(circle) = cm

89 Class: PreCalculus Problem Set: 89. At = 40,000e -0.09t, 3.9 hr , 6, 8 8. * graph * 10. cosx , 4, 10, , * graph * 0. * rules of the game * 6. i,. 6 7 i x 4 + 4x +

90 Class: PreCalculus Problem Set: 90. At = 000e -0.35t $ * rules of the game * 10. * graph * 1. * graph * * graph *, * rules of the game * * graph * %

91 Class: PreCalculus Problem Set: ,000 marbles 4. A0 = 30, k = 1.13, At = 30e 1.13t 6. 1 hr 8. 1, * proof * 1. * proof * 14. * graph * , * graph *. * rules of the game * 4. A = 6.7, B =

92 Class: PreCalculus Problem Set: 9. A(t) = 10,000e t, t = min a * proof * 1. sinx 14. 8, 6, 4, ,,,,, * rules of the game * i, 1 3i, 3 i, 1 3i 4. P = cm, A = cm a b. 5

93 Class: PreCalculus Problem Set: 93. At=4000e t, 7.0 hr * rules of the game * 4: * rules of the game * 10. 0, 18, 16, 14 sin cos 1. x x 14. * graph * , 100, 160, 0, 80, * graph * 0. cis4, cis76, cis148, cis0, cis9. 6 x, 3 67 y 4. x = x = a. 36 8b %

94 Class: PreCalculus Problem Set: 94. At=Ae 0.0t ,00 6. * graph * 8. * rules of the game * 10. * rules of the game * cosx 16. x = ft 0. 4, 8. * graph * 4. D = x = 8a b

95 Class: PreCalculus Problem Set: min cis13.8, 1.5cis103.8, 1.50cis193.8, 1.50cis * graph * 10a. y = tan x 10b. y = cot x 1. * rules of the game * 14. * rules of the game * sin cos 16. x x , 56.5, 10.5, 146.5, 191.5, 36.5, 18.5, P = 4, 7C = ,,, 4, * graph * 6. x = 1 8. x = x 1

96 Class: PreCalculus Problem Set: min 4. 5 mi / hr 6. * rules of the game * 8. A = 51.54, area = cm 10a. * graph * 10b. * graph * x =, cis6.57,.4cis P3 = 336, 8C3 = , 1, 8. * graph * cm 6. x = x = x y

97 Class: PreCalculus Problem Set: H = 3, S = 56, C = (acute),.38 (obtuse) , 10, cis40.67,.11cis60.67,.11cis , 9, cm x y 1, vertices (, 0) and (, 0), asymptotes y = ±x x i x i

98 Class: PreCalculus Problem Set: mf f m hr laps no such triangle exists ,,, cis113.86, 1.85cis33.86, 1.85cis x y 1, major axis length: 1, minor axis length: D

99 Class: PreCalculus Problem Set: yr 4. F 6 r 4 hr 6. multiplied by ( 3, 7), (7, 3) 10. arithmetic mean: 15, geometric mean: , (obtuse), 9.46 (acute) a = cm, area = 151, cm , 5.5, 17.5, 14.5, 17.5, 3.5, 307.5, x y x i x i

100 Class: PreCalculus Problem Set: min 4. 14m d km items 6. 11P4 = 790, 11C4 = (4, 16) and ( 4, 16) no triangle exists 0.. A = 33.17, B = , cis80.78, 1.50cis170.78, 1.50cis60.78, 1.50cis

101 Class: PreCalculus Problem Set: B = 9 mph, W = 3 mph (0, 5) and ( 5, 0) 14. e, e 16. 1, , %

102 Class: PreCalculus Problem Set: B = 18 mph, W = 9 mph 6. A1 = 60, A = a 6 1a 4 b 3 + 6a b 6 b a b , A = , area = 63.1 cm 4a. y = 6 + 8csc x 4b. y = cot x 6. 5, ft 30. 1

103 Class: PreCalculus Problem Set: atm ml mol / L 1. 81a 8 108a 6 b a 4 b 6 1a b 9 + b a. y = b. y = x = x = area: m, a = 11.6 cm x

104 Class: PreCalculus Problem Set: s f gal a. 6b mole / liter 1. x 6 6x 4 y + 1x y 8y a. y = b. y = x = i, 3 1 i, i x i x i

105 Class: PreCalculus Problem Set: min 4. mhk workers a. 10b x 3 54x y + 36xy 8y x = 1, x = , 105, 135, 5, 55, i, i, i, i 30. 0

106 Class: PreCalculus Problem Set: ,30 4. $ ( x ) ( y 3) 9, x y x y a. 1b log xz 3 y x y x = 5 9. x = 1, 4 e cis36.58,1.64cis16.58,1.64cis16.58,1.64cis t 30. t 1

107 Class: PreCalculus Problem Set: 107. x x days 4. x = ( x1) ( y3) 1 x y x6y90 1. x, y, z mol / L x 3 18a. 18b x = 4 3. x = i, i, i

108 Class: PreCalculus Problem Set: % 4. Jerri 9, Kelly AB 3 4 3, AB 3 0 3, A AB does not exist, BA ( 1) 3 n 5 4 log x log y 3log z a. 18b ln 50 ln ,

109 Class: PreCalculus Problem Set: H 15 3H 6., 8. 0 ft log moles / L 18a. 18b A = 60, area = ft 6a. y = cscx 6b. y = 7 + 4secx cis105, 1.1cis5, 1.1cis x 3 3x 3x + 1

110 Class: PreCalculus Problem Set: , B = 1 mi/hr, W = 4 mi/hr 6a. 6b. 6c arithmetic mean = 19, geometric mean = x 6 6x 4 y + 1x y 8y y = log8 log 4 0. x = 1 4

111 , i, i ( x1) x i x i

112 Class: PreCalculus Problem Set: ft t ft / hr 6. 8P6 = 0,160, 8C6 = x , 1. ( x1) ( y) 9 5 1, center = (-1, ), major axis = 10, minor axis = 6, vertical ± 0. e e cm ,,, ( x 3) x i x i

113 Class: PreCalculus Problem Set: p 0.5 dollars 6. $ a 8 b x ( x10) ( y4) , center = (-10, 4), major axis = 16, minor axis = 4, horizontal log z 5 log x 1 log y e , 70, cis1.9, 1.71cis13.9, 1.71cis (x )(x + )(x i)(x + i)

114 Class: PreCalculus Problem Set: yr 4. ( k)( r)(.54)(60)(60) 100 m / hr 6. x 3x 6 8. yes 10. yes ,608x 15 y x , 1 3 i, 1 3 i, 1, 1 3 i, 1 3 i (x + i)(x + i)(x i)(x i)

115 Class: PreCalculus Problem Set: pages A x 6x 10x 0x0 1. yes x ( x1) ( y) , center = (1, ), major axis = 8, minor axis = 4, vertical a moles / liter 6b and xx ( 5) x i x i

116 Class: PreCalculus Problem Set: 115. mk m pk mi / hr 4. N R 10, NW, N P 7 6. f ( ) no A 14. x ln( x1) ln( y) ln xln y , A = 36, area = yd , 11.5, 0.5, x =, y = -1

117 Class: PreCalculus Problem Set: c (5 w ) ( m 4) hr B 1. x x x x1 x x y 16. x x 4, z 1 4. x = ,,,,,

118 Class: PreCalculus Problem Set: m k hr 6. yes , 5,, B x log y 3log ( x1) log ( y) ( x1) ( y) 1, center = ( 1,), major axis = 5, major axis = 4, vertical and x i x i

119 Class: PreCalculus Problem Set: yr hr 6. 3, ,, ,, 3, 6,,,, x 5x y 10x y 10x y 5x y y x ,

120 Class: PreCalculus Problem Set: RC 40 mph, TC = 6 hr hr, R 0 mph, T 8 hr 6. 1 or ,, or upper bound:, lower bound: 4 1., 1,1 14. i W W , 3,,,,,, , e x log 7 log 6

121 Class: PreCalculus Problem Set: days 4. HH H H H 1 1 hr x 1, y 4 10a. 1 10b. 0 or 1., 1,1,1 14. r = a. 18b. 8 16x ya AB 1 6 4, AB ee, feet ln10 ln in

122 Class: PreCalculus Problem Set: hr atm a. 1 10b. 0 or ,,, yes 16. r = x 3x 7x 1x59 x x , ,135,5, no

123 Class: PreCalculus Problem Set: ,3,5, , x, y 1 1a. 1 or 3 1b upper bound:, lower bound: , i i,, 0.. C x x 3 8x ,, 3 3

124 . D N = 00 ml of 40%, P N = 100 ml of 10% 4., 4, 6 6a. 6b , x =, y = upper bound = 3, lower bound = 3 0. r =

125 . W = mi/hr, B = mi/hr 4. N R = 4, N G = 11, N B = 8 6., 8. 3, 10a. circle 10b. hyperbola 10c. hyperbola 10d. parabola 10e. ellipse 1a. circle 1b. hyperbola 1c. ellipse 1d. hyperbola 1e. parabola , x =, y = 0. upper bound = 4, lower bound =. 4. x > y

126 . T = 3 min ( , ), (1.5538,.5538) 1. ( , ), (0.4918, 1.635) , , a. 1 6b. 0 or 8., 1, , 90, 150, 70

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Answers to practice exercises

Answers to practice exercises Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

Sheet H d-2 3D Pythagoras - Answers

Sheet H d-2 3D Pythagoras - Answers 1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm

Διαβάστε περισσότερα

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =

Διαβάστε περισσότερα

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Review Exercises for Chapter 7

Review Exercises for Chapter 7 8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Leaving Certificate Applied Maths Higher Level Answers

Leaving Certificate Applied Maths Higher Level Answers 0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)

Διαβάστε περισσότερα

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Hrold s AP Clculus BC Rectngulr Polr Prmetric Chet Sheet 15 Octoer 2017 Point Line Rectngulr Polr Prmetric f(x) = y (x, y) (, ) Slope-Intercept Form: y = mx + Point-Slope Form: y y 0 = m (x x 0 ) Generl

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB = Chapter 5 Chapter 5 Exercise 5. minor arc = 50 60.4 0.8cm. major arc = 5 60 4.7 60.cm. minor arc = 60 90 60 6.7 8.cm 4. major arc = 60 0 60 8 = 6 = cm 5. minor arc = 50 5 60 0 = cm 6. major arc = 80 8

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

) = ( 2 ) = ( -2 ) = ( -3 ) = ( 0. Solutions Key Spatial Reasoning. 225 Holt McDougal Geometry ARE YOU READY? PAGE 651

) = ( 2 ) = ( -2 ) = ( -3 ) = ( 0. Solutions Key Spatial Reasoning. 225 Holt McDougal Geometry ARE YOU READY? PAGE 651 CHAPTER 10 Solutions Key Spatial Reasoning ARE YOU READY? PAGE 651 1. D. C. A 4. E 5. b = AB = 5-0 = 5; h = - (-1 = 4 bh = (5(4 = 10 units A = 6. b = LM = 6 - (- = 8, h = KL = 7 - = 4 A = bh = (8(4 = units

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

298 Appendix A Selected Answers

298 Appendix A Selected Answers A Selected Answers 1.1.1. (/3)x +(1/3) 1.1.. y = x 1.1.3. ( /3)x +(1/3) 1.1.4. y = x+,, 1.1.5. y = x+6, 6, 6 1.1.6. y = x/+1/, 1/, 1.1.7. y = 3/, y-intercept: 3/, no x-intercept 1.1.8. y = ( /3)x,, 3 1.1.9.

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

ITU-R P (2012/02)

ITU-R P (2012/02) ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Review of Essential Skills- Part 1. Practice 1.4, page 38. Practise, Apply, Solve 1.7, page 57. Practise, Apply, Solve 1.

Review of Essential Skills- Part 1. Practice 1.4, page 38. Practise, Apply, Solve 1.7, page 57. Practise, Apply, Solve 1. Review of Essential Skills- Part Operations with Rational Numbers, page. (e) 8 Exponent Laws, page 6. (a) 0 + 5 0, (d) (), (e) +, 8 + (h) 5, 9. (h) x 5. (d) v 5 Expanding, Simplifying, and Factoring Algebraic

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1 SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY GRADE TRIALS EXAMINATION AUGUST 05 MATHEMATICS PAPER Time: 3 hours Examiners: Miss Eastes, Mrs. Jacobsz, Mrs. Dwyer 50 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY. Read the questions carefully.

Διαβάστε περισσότερα

SENIOR GRAAD 11 MARKS: PUNTE:

SENIOR GRAAD 11 MARKS: PUNTE: Province of the EASTERN CAPE EDUCATION NATIONAL SENIOR CERTIFICATE GRADE GRAAD NOVEMBER 2022 MATHEMATICS P2/WISKUNDE V2 MEMORANDUM MARKS: PUNTE: 50 This memorandum consists of 8 pages. p Hierdie memorandum

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης

Διαβάστε περισσότερα

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant CHAPTER 7 DOUBLE AND TRIPLE INTEGRALS EXERCISE 78 Page 755. Evaluate: dxd y. is integrated with respect to x between x = and x =, with y regarded as a constant dx= [ x] = [ 8 ] = [ ] ( ) ( ) d x d y =

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

11.4 Graphing in Polar Coordinates Polar Symmetries

11.4 Graphing in Polar Coordinates Polar Symmetries .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y

Διαβάστε περισσότερα

GAYAZA HIGH SCHOOL MATHS SEMINAR- APPLIED MATHS SOLUTIONS

GAYAZA HIGH SCHOOL MATHS SEMINAR- APPLIED MATHS SOLUTIONS PROBABILITY AND STATISTICS. (a) Let X be a r.v number of games won. X~B(6, ) (i) Expectation, E(X) = np 6x = 4 (ii) P(X ) = P(X < ) = (P(X = ) + P(= 0)) 5 0 6 6 = C x x C0x x 0. 98 (b) Let X be a r.v number

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2 SKEMA PERCUBAAN SPM 07 MATEMATIK TAMBAHAN KERTAS SOALAN. a) y k ( ) k 8 k py y () p( ) ()( ) p y 90 0 0., y,, Luas PQRS 8y 8 y Perimeter STR y 8 7 7 y66 8 6 6 6 6 8 0 0, y, y . a).. h( h) h h h h h h 0

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Cable Systems - Postive/Negative Seq Impedance

Cable Systems - Postive/Negative Seq Impedance Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),

Διαβάστε περισσότερα

Two-mass Equivalent Link

Two-mass Equivalent Link Notes_08_0 1 of 0 Two-ass Equivalent ink B G JG C B G C = total ass B centroid location CG B = = BC BG BC check approxiate ass oent J J = ( BG ) ( CG ) G G _ APP (for slender rod J = J ) G _ APP G _ ACTUA

Διαβάστε περισσότερα

10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2.

10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2. Electric Forces and Fields Section Review, p. 633 Givens Chapter 17 3. q 10.0 C q 10.0 C N 6.5 10 19 electrons 1.60 10 19 C/electron 1.60 10 19 C/electron Practice 17A, p. 636 1. q 1 8.0 C q 8.0 C r 5.0

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

bits and bytes q Ο υπολογιστής χρησιμοποιεί τη κύρια μνήμη για αποθήκευση δεδομένων

bits and bytes q Ο υπολογιστής χρησιμοποιεί τη κύρια μνήμη για αποθήκευση δεδομένων bits and bytes ΦΥΣ 145 - Διαλ.02 1 q Ο υπολογιστής χρησιμοποιεί τη κύρια μνήμη για αποθήκευση δεδομένων q Η μνήμη χωρίζεται σε words και κάθε word περιέχει τμήμα πληροφορίας q Ο αριθμός των words σε μια

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα