МАТЕМАТИКА 7. свеска. Република Србија. Министарство просвете. Име и презиме. Разред и одељење. Завод за вредновање квалитета образовања и васпитања
|
|
- Γιάννης Φλέσσας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Република Србија Министарство просвете Завод за вредновање квалитета образовања и васпитања Идентификациони подаци Име и презиме Разред и одељење МАТЕМАТИКА 7 свеска I
2 Упутство Пред тобом је свеска са задацима из математике. Није за оцену, али јесте провера знања. Зато је важно да задатке урадиш што боље. Ради озбиљно и покажи шта знаш! Неке од ових задатака решаваћеш тако што ћеш уписивати одговоре на линију или у празне квадратиће. У већини задатака треба да заокружиш слово испред тачног одговора, као у следећем примеру: Број А је за 3 већи од броја В. Како то записујеш? РЕШЕЊЕ: а) A = B 3 б) A = 3 B в) A = B + 3 г) A = B : 3 а) A = B 3 б) A = 3 B в) A = B + 3 г) A = B : 3 Пример 1 У неким задацима треба да повежеш линијама одговарајуће појмове, као у следећем примеру: Повежи линијом сваку геометријску фигуру са њеним називом. РЕШЕЊЕ: Пример 2 У сваком задатку треба пажљиво да прочиташ шта се од тебе тражи и како треба да одговориш на питање. Припреми оловку и гумицу. СРЕЋАН РАД
3 1 Број 0,017 једнак је разломку: а) б) в) г) Који број од датих бројева је највећи? а) б) в) 1,2 г) Вредност израза А = : 1 5 је: а) 0 б) в) 5 8 г) 5 8 T1 страна 3
4 4 Који од наведених бројева је дељив са 7? а) 201 б) 213 в) 23 г) Милан има у резервоару аутомобила 30 литара бензина. Ако аутомобил троши 8 литара бензина на 100 километара, колико ће Милану остати бензина у резервоару када буде прешао пут од 350 километара? Милану ће остати литра бензина. 6 Сару је на улици привукао мирис кокица и одлучила је да их купи. Она зна да је енергетска вредност 100 грама кокица 370 килокалорија. Које највеће паковање може Сара да купи ако не жели да унесе више од 100 килокалорија? а) кесицу од 15 грама б) малу кесу од 25 грама в) кесу од 40 грама г) велику кесу од 60 грама д) кесетину од 80 грама T1 страна 4
5 7 Зaокружи слово испред тачног одговора. Решење једначине 0,2 x + 3 = 2 је: а) 25 б) 2 в) 0,2 г) 5 д) 5 8 Повежи као што је започето: (8 : 2) Вредност израза А= 9 1+ : 16 0,36 је: а) б) в) г) 16 T1 страна 5
6 10 Израчунај вредност израза Т = Т = 11 Зaокружи слово испред тачног одговора. Израз (2x 3) 2 једнак је изразу: а) 4x 2 9 б) 4x 2 +9 в) 2x 2 +9 г) 4x 2 12x+9 12 Од квадрата бинома x + y одузми квадрат бинома x y. а) 4xy б) 0 в) 2xy г) 2y 2 д) 2x 2 +2y 2 T1 страна 6
7 13 За прављење 240 векни хлеба пекару Васи потребно је 206 килограма брашна. Колико му је брашна потребно да би направио 600 векни хлеба? а) 412 б) 446 в) 515 г) Повежи слику са одговарајућим називом као што је започето. 15 Површина троугла ABC на слици је: а) 86 cm 2 б) 8,6 dm 2 в) 43 cm 2 г) 430 cm 2 T1 страна 7
8 16 Заокружи слово испред тачног поретка страница троугла ABC од најмање до највеће. а) АB < BC < CA б) BC < AB < CA в) AB < CA < BC г) CA < AB < BC д) CA < BC < AB 17 Нацртане фигуре имају обим 60 cm. Која од фигура има највећу површину? а) једнакостранични троугао б) квадрат в) троугао са страницама 15cm, 20 cm, 25 cm г) правоугаоник чија је једна страница 10 cm 18 Пречник круга је 3,2 cm. Колика је површина круга? а) 1,60π cm 2 б) 2,56π cm 2 в) 3,20π cm 2 г) 10,24π cm 2 T1 страна 8
9 19 Око квадрата странице а = 6 cm описан је и у њега уписан круг. Колика је површина тако добијеног кружног прстена? Површина кружног прстена је cm Колико износи периферијски угао над 5 9 кружнице? а) 20 0 б) 40 0 в) г) Тијана је за домаћи задатак добила да одреди по једну осу симетрије задатих фигура. Њена другарица Јована погледала је задатке и приметила да је Тијана на неколико места погрешила. Које је од задатака Тијана решила тачно? а) Задатке 2, 3 и 6 б) Задатке 2, 3 и 4 в) Задатке 3, 4 и 5 г) Задатке 3, 4 и 6 T1 страна 9
10 22 Повежи као што је започето. Дубина бунара 30 g Маса аутомобила 30cl Запремина чаше 50 km Растојање између два града 20 m Маса кокошијег јајeта 800 kg 23 Дужина олимпијског базена је 50 m. Колико је то cm? a) 5 cm б) 500 cm в) cm г) cm 24 Милица је од баке добила динара за екскурзију у Грчку. Отишла је до мењачнице Златник и сазнала да је најмања новчаница у мењачници 5 евра. Тог дана је курс евра био 94 динара. Колико је највише евра Милица могла да купи у тој мењачници? a) 10 евра б) 100 евра в) 105 евра г) 110 евра T1 страна 10
11 25 Која тачка има координате (2,4)? a) Тачка A б) Тачка B в) Тачка C г) Тачка D д) Тачка E 26 На питање у анкети: Који од понуђених програмских садржаја најрадије гледаш на телевизији? ученици седмог разреда једне школе одговарали су бирајући између музике, серија, школског програма и филмова. Резултати анкете представљени су графиконом. Који је од понуђених телевизијских садржаја анкетирани ученици најрадије гледају? а) школски програм б) серије в) филмове г) музику T1 страна 11
12 27 У табели су дате оцене које су ученици једног одељења седмог разреда добили на писменом задатку из математике. Колика је просечна оцена на нивоу разреда? Оцена Број ученика Просечна оцена у разреду је. 28 На следећем графикону приказани су резултати мерења висине 27 ученика у једном одељењу седмог разреда. Представи податке из графикона табеларно. Висина ученика (у cm) Број ученика T1 страна 12
13 29 Јован жели да купи нови рачунар који кошта динара. На новогодишњој распродаји рачунару је цена снижена за 20%. Колико је Јован платио рачунар? Јован је на распродаји платио рачунар динара. 30 Бака Јока прави џем од 50 kg шљива. Током чишћења шљива отпада 20% укупне количине. Приликом кувања спремљене смесе изгуби се 30%. Колико килограма готовог џема ће добити бака Јока? Бака Јока је направила kg џема. T1 страна 13
14 Република Србија Министарство просвете Завод за вредновање квалитета образовања и васпитања Идентификациони подаци Име и презиме Разред и одељење МАТЕМАТИКА 7 свеска II
15 Упутство Пред тобом је свеска са задацима из математике. Није за оцену, али јесте провера знања. Зато је важно да задатке урадиш што боље. Ради озбиљно и покажи шта знаш! Неке од ових задатака решаваћеш тако што ћеш уписивати одговоре на линију или у празне квадратиће. У већини задатака треба да заокружиш слово испред тачног одговора, као у следећем примеру: Број А је за 3 већи од броја В. Како то записујеш? РЕШЕЊЕ: а) A = B 3 б) A = 3 B в) A = B + 3 г) A = B : 3 а) A = B 3 б) A = 3 B в) A = B + 3 г) A = B : 3 Пример 1 У неким задацима треба да повежеш линијама одговарајуће појмове, као у следећем примеру: Повежи линијом сваку геометријску фигуру са њеним називом. РЕШЕЊЕ: Пример 2 У сваком задатку треба пажљиво да прочиташ шта се од тебе тражи и како треба да одговориш на питање. Припреми оловку и гумицу. СРЕЋАН РАД
16 1 Децимални запис разломка 5 4 је: а) 0,8 б) 1,25 в) 4,5 г) 5,4 2 Поређај по величини од најмањег до највећег броја, следеће бројеве: 1 ; 0,9; 0,1; 0,2. 4 а) 0,2 < 1 4 < 0,1 < 0,9 б) 1 4 < 0,2 < 0,9 < 0,1 в) 1 4 < 0,2 < 0,1 < 0,9 г) 0,2 < 1 4 < 0,9 < 0,1 3 Израчунај вредност израза М = 2,52 + 0,2 ( 0,1). М = T2 страна 3
17 4 Број 354 дељив је бројем: а) 5 б) 9 в) 7 г) 6 5 Биљана у новчанику има 250 динара. На киоску је купила дневне новине за 25 динара, два сока за по 40 динара и албум за сличице за 100 динара. Колико кесица са сличицама може да купи за остатак новца ако једна кесица кошта 20 динара? а) 0 б) 1 в) 2 г) 3 д) више од 3 6 Претходног месеца Филип је разговарао мобилним телефоном 232 минута и послао 408 СМС порука. Колико ће платити рачун ако зна да: број потрошених минута треба да помножи са 4 динара; због погодности у свом претплатничком пакету има 60 бесплатних порука док остале поруке плаћа по цени од 2 динара по поруци; месечна претплата износи 180 динара. Филип ће платити рачун у износу од динара. T2 страна 4
18 7 Решење једначине x = 0,75 је: а) 1 б) 0,5 в) 0,75 г) 0,5 д) 1 8 Повежи као што је започето: (2 2 ) : Вредност израза А= а) б) в) г) : 0,25 0,16 је: 25 T2 страна 5
19 10 Израчунај вредност израза Т = Т = 11 Зaокружи слово испред тачног одговора. Израз (3 x)(7x 4) једнака је изразу: а) 7x x 12 б) 7x 2 17x + 12 в) 7x x + 12 г) 7x x Израчунај вредност израза. А = ( 2x + 3) 2 (3x 1)(1 x) + 5x А = T2 страна 6
20 13 Да би се окречио зид површине 12 m 2 потребно је 2,5 kg фарбе Колор. Колико килограма фарбе Колор је потребно да би се окречио зид површине 60 m 2? а) 30 kg б) 10 kg в) 12,5 kg г) 14,5 kg 14 Повежи назив угла са одговарајућом сликом као што је започето. 15 Површина осенченог квадрата на слици је: а) 625 cm 2 б) 25 cm 2 в) 7 cm 2 г) 5 cm 2 T2 страна 7
21 16 Дате су дужине три дужи. У ком случају од ових дужи можеш саставити троугао? а) 12 cm, 13 cm, 16 cm б) 4 cm, 2 cm, 13 cm в) 9 cm, 8 cm, 19 cm г) 8 cm, 8 cm, 16 cm 17 Углови на основици једнакокраког трапеза ABCD (AB CD) су по 45. Краћа основица CD = 6 cm и висина трапеза је 4 cm. Колика је површина трапеза? а) 80 cm 2 б) 48 cm 2 в) 40 cm 2 г) 4 dm 2 18 Ако је пречник круга 2,5 cm, онда је обим тог круга једнак: а) 2,5 cm б) 2,5π cm в) 5π cm г) 6,25π cm T2 страна 8
22 19 Слађана је купила компакт диск (CD). Она зна да се на диск могу записати различити подаци. На слици је тамнијом бојом означен део CD-а на коме су подаци. Слађану је занимало колика је површина тог дела диска? Површина тог дела диска је cm Милица се бави стреличарством. Мама јој је купила нове стреле, а Милицу је занимало колики је угао при врху сваке од њих. Нацртала је круг, обележила меру угла AOB на слици (65 ) и израчунала угао при врху. Колики је тај угао? а) б) 65 в) 130 г) Троуглови ABC и APQ су подударни. Ако су дужине страница AB, AC, МQ, и МP једнаке редом, 3,5 cm, 2,5 cm, 2,5 cm и 4 cm колике су странице BC и PQ? Страница BC = cm, страница PQ = cm. T2 страна 9
23 22 Допуни празна места следећим мерама: m 2, kg, минут,, ml, km, тако да реченице буду тачне. Ана је до школе прешла 2, носила је торбу тешку 2,5, каснила је и у питању су били да ли ће стићи на време. Морала је да сврати и до књижаре по свеску и угломер који мери углове до 360. Још само да купи сок од 220 и биће спремна да на ликовном са другарицама обоји пано површине Лазар је научио да је раздаљина између Јагодине и Крагујевца 51,62 km. Како још може да запише ту раздаљину? а) метара б) 516,2 метра в) 51 метар и 62 центиметра г) 5162 метра 24 Ивана је са одељењем отишла на екскурзију у Цирих. Од родитеља је добила 4900 динара које је могла да замени за евре по курсу од 98 динара по евру или за швајцарске франке по курсу од 70 динара по франку. Израчунај колико би за новац који има добила евра, а колико франака. Ивана би добила евра или швајцарских франака. T2 страна 10
24 25 У координатној равни дате су тачке А, В, С, D и Е. Повежи сваку тачку са одговарајућим координатама, као што је започето. А (5,5) B (5,1) C (3,1) D (1,3) E (1,5) 26 Графикон приказује кретање цене акција компаније ИБМ од 10. децембра до 9. марта године. Ког датума у овом периоду је цена акција била највећа? a) 30. децембар б) 19. јануар в) 8. фебруар г) 26. фебруар T2 страна 11
25 27 У једном одељењу осмог разреда на крају полугодишта оцене из математике су приказане табелом. Оцена Број ученика Колика је средња оцена из математике у том одељењу? Средња оцена је. 28 Радници запослени у хотелу Промаја на посао долазе пешке или користећи неко превозно средство. Подаци за 50 радника дати су графиконом. Представи те податке табеларно. Превозно средство Аутомобил Аутобус Бицикл Мотоцикл Број запослених T2 страна 12
26 29 После снижења за 50% цена кошуље коју је Стефан желео да купи сада износи 1200 динара. Колика је била цена кошуље пре снижења? Пре снижења цена кошуље је била. 30 У току једне пословне године предузеће је остварило 45% прихода од услуга, 50% од продаје производа и 5% од других послова. Ако приход од других послова износи динара, колико износи приход од услуга? Приход од услуга износи. T2 страна 13
МАТЕМАТИКА 7. свеска. Република Србија. Министарство просвете. Име и презиме. Разред и одељење. Завод за вредновање квалитета образовања и васпитања
Република Србија Министарство просвете Завод за вредновање квалитета образовања и васпитања Идентификациони подаци Име и презиме Разред и одељење МАТЕМАТИКА 7 свеска II Упутство Пред тобом је свеска са
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА
61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао
ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани
10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
5.2. Имплицитни облик линеарне функције
математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година
МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4
МАТЕМАТИЧКИ ЛИСТ 06/7. бр. LI-4 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 50 4 = 00; б) 0 5 = 650; в) 0 6 = 6; г) 4 = 94; д) 60 : = 0; ђ) 0 : = 40; е) 648 :
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/2014. година УПУТСТВО ЗА РАД Тест који треба да решиш
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
Атлетичар Лука Бора Драгиша Горан Дејан Перица Резултат у секундама 12,86 12,69 12,84 12,79 12,85 12,77
ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2014/2015. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест који треба да решиш има 20 задатака. За рад је предвиђено 120 минута. Задатке не мораш
7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
Примена првог извода функције
Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО
6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23
6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо
4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова
4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид
ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА. школска 2013/2014. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД
ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 0/04. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест који треба да решиш има 0 задатака. За рад је предвиђено 0 минута. Задатке не мораш да радиш
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА
Математика Тест 3 Кључ за оцењивање
Математика Тест 3 Кључ за оцењивање ОПШТЕ УПУТСТВО ЗА ОЦЕЊИВАЊЕ Кључ за оцењивање дефинише начин на који се оцењује сваки поједини задатак. У општим упутствима за оцењивање дефинисане су оне ситуације
МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3
МАТЕМАТИЧКИ ЛИСТ 07/8. бр. LII- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ . III разред. Обим правоугаоника је 6cm + 4cm = cm + 8cm = 0cm. Обим троугла је 7cm + 5cm + cm =
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 2 МАТЕМАТИКА УПУТСТВО
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC
ТРОУГАО 1. У троуглу АВС израчунати оштар угао између: а)симетрале углова код А и В ако је угао код А 84 а код С 43 б)симетрале углова код А и В ако је угао код С 40 в)између симетрале угла код А и висине
ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 00/0. ГОДИНУ Република
Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:
Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине
Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.
IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита
IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим.
IV разред 1. Дешифруј ребус A + BA + CBA + DCBA = 2016. Иста слова замени једнаким цифрама, а различита различитим. 2. Производ два броја је 2016. Ако се један од њих повећа за 7, производ ће бити 2457.
Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2014/2015. година УПУТСТВО ЗА РАД Тест који треба да решиш
6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница.
91.*Конструиши трапез у размери 1:200, ако је дато: = 14 m, = 6 m, = 8 m и β = 60. 92.*Ливада има облик трапеза. Нацртај је у размери 1:2000, ако су јој основице 140 m и 95 m, један крак 80 m, и висина
Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
ПРИЈЕМНИ ИСПИТ. Јун 2003.
Природно-математички факултет 7 ПРИЈЕМНИ ИСПИТ Јун 00.. Одредити све вредности параметра m за које су оба решења једначине x x + m( m 4) = 0 (a) реална; (b) реална и позитивна. Решење: (а) [ 5, + (б) [
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА
Тест за 7. разред. Шифра ученика
Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗБИРКА ЗАДАТАКА ИЗ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗБИРКА ЗАДАТАКА ИЗ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ
МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-4
МАТЕМАТИЧКИ ЛИСТ 0/5. бр. XLIX- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 70 5 = 50; б) 0 = 80; в) 0 = 9; г) 5 = 850; д) 60 : = 0; ђ) 0 : 8 = 0; е) 86 : = ;
ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5
05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)
4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима
50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 2016/2017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест
ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
ОСНОВНИ НИВО. 1. Секретарица у предузећу Експорт треба словима да упише износ у динарима. 2. Повежи, као што је започето:
ОСНОВНИ НИВО Бројеви и операције са њима. Секретарица у предузећу Експорт треба словима да упише износ у динарима. Како ће словима написати тај износ? ПРИЗНАНИЦА Укупно за уплату: 00 0,00 динара Словима:
2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
Министарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ
28.02.2015 - III разред 1. Запиши све троцифрене бројеве мање од 888 чији је збир цифара 23. 2. У свако празно поље треба уписати по једну од цифара 0, 1, 2, 2, 4. Како треба уписати цифре да би се након
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
4.4. Тежиште и ортоцентар троугла
50. 1) Нацртај правоугли троугао и конструиши његову уписану кружницу. ) Конструиши једнакокраки троугао чија је основица = 6 m и крак = 9 m, а затим конструиши уписану и описану кружницу. Да ли се уочава
ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 2014/2015. ГОДИНУ. Аутори
РЕПУБЛИКА СРБИЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОСВЕТНИ ПРЕГЛЕД ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 04/0. ГОДИНУ Аутори Др
2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем
ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.
ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),
3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5
МАТЕМАТИЧКИ ЛИСТ 014/15. бр. XLIX-5 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред 1. а) 70 - седамсто три; б) двесто осамдесет два 8.. а) 4, 54, 54, 45, 504, 54. б)
ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2014.
ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ
ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).
СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која
ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2015.
ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ
ТИ ЧУДЕС ЕСНИ БРОЈЕВИ
ТИ ЧУДЕС ЕСНИ БРОЈЕВИ Ратко Тошић, Нови Сад Бројеви су фасцинирали људе од најранијих почетака цивилизације. Питагора је открио да музичка хармонија зависи од односа целих бројева и закључио је да је све
ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016.
ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ
8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2
8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или
КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z
КОМПЛЕКСНИ БРОЈЕВИ z ib, Re( z), b Im( z), z ib b b z r b,( ) : cos,si, tg z r(cos i si ) r r k k z r (cos i si ), z r (cos i si ) z r (cos i si ), z r (cos i si ) z z r r (cos( ) i si( )), z z r (cos(
МАТЕМАТИКА. Актив наставника математике чине: Милијана Ђорђевић, Горица Пераић, Тијана Златковић (на породиљском одсуству) мења је Виолета Мирчић.
МАТЕМАТИКА Актив наставника математике чине: Милијана Ђорђевић, Горица Пераић, Тијана Златковић (на породиљском одсуству) мења је Виолета Мирчић Школско такмичење је одржано 01 02 2014 Учествопвало је
ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2013.
ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНУВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ
АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2
АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла
предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД
РЕПУБЛИКА СРПСКА МИНИСТАРСТВО ПРОСВЈЕТЕ И КУЛТУРЕ РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД Милоша Обилића 39 Бањалука, Тел/факс 051/430-110, 430-100; e-mail: pedagoski.zavod@rpz-rs.org ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ
Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2012/2013. година УПУТСТВО ЗА РАД Тест који треба да решиш
2.1. Права, дуж, полуправа, раван, полураван
2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.
Предмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )
Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P
6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1
6. Четвороугао 6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова А Сл. 1 А На приложеним сликама сигурно уочаваш геометријске фигуре које су ти познате (троугао,
b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
TAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
ЈЕДНАКОСТИ У ПРАВИЛНОМ ОСМОУГЛУ
ЈЕДНАКОСТИ У ПРАВИЛНОМ ОСМОУГЛУ Александар Средојевић и Драгољуб Милошевић, Горњи Милановац Нека је дат правилан осмоугао ABCDEFGH (слика 1). Уведимо ознаке: AB = a, AC = b, AD = c и AE = d. Тада важе
МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2011/2012. година УПУТСТВО ЗА РАД НА ТЕСТУ Тест који треба да решиш има 20 задатака.
ПЕРИОДИЧНИ НИЗОВИ. Ратко Тошић, Нови Сад
ПЕРИОДИЧНИ НИЗОВИ Ратко Тошић, Нови Сад Пођимо од следећа два задатка: Задатак 1. Испиши недостајуће чланове низа 6,,,,,,,, 4,,,,,. ако се зна да је збир свака три узастопна члана низа једнак 15. Решење.