ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА. школска 2013/2014. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА. школска 2013/2014. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД"

Transcript

1 ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 0/04. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест који треба да решиш има 0 задатака. За рад је предвиђено 0 минута. Задатке не мораш да радиш према редоследу којим су дати. Обрати пажњу да се задаци разликују по начину на који треба да даш одговор (дописивање, заокруживање, повезивање, подвлачење и друго). Током рада можеш да користиш графитну оловку, гумицу, лењир, троугао и шестар, али не и калкулатор. Коначне одговоре и поступак напиши хемијском оловком. Одговор који је написан само графитном оловком неће бити признат, као ни одговор који је прецртан. Немој ништа уписивати на овој и последњој страни, као ни у квадрат који се налази са десне стране задатка. Ако завршиш раније, предај тест и тихо изађи. Желимо ти много успеха на испиту!

2 . Дати су бројеви: 0,00 0,, 0, 0, 0,00 Који од ових бројева су мањи од 0,? Мањи су, и.. Цена аутобуске карте од Сомбора до Врњачке Бање у једном смеру је 700 динара. Карта у супротном смеру има исту цену. Ако путник купи повратну карту чија је цена 560 динара, колико новца ће уштедети? Путник ће уштедети динара.. Повежи једначине са одговарајућим решењима. 4 x = x : 4 = 8 x 5 = 5

3 4. Повежи, као што је започето. а 5а 6а а ( а ) 7а 8а 4 а 4 6а 4 4а ( а ) 6а 6а 4 5. Која фигура на слици има обим једнак 75 cm? Заокружи слово испред тачног одговора. а) b b = 0 cm = 5 cm б) = 0 cm в) = 5 cm г) b = 0 cm b = 0 cm 4

4 6. На слици је приказан круг са центром у тачки О и неколико дужи. A O C E B D F Заокружи три дужи које су тетиве овог круга. AC BO BC AD OD OF FE OC 7. Израчунај површину и запремину квадра приказаног на слици. cm cm 4 cm P = cm V = cm 8. Допуни реченице одговарајућим мерним јединицама (минут, m, g, kg, dl, dm, cm). Милена је одлучила да у својој соби, чија је површина 4, заврши домаће задатке из математике и српског језика. На радни сто, чија је дужина, ставила је чашу са сока, оловку масе, лаптоп масе,5, лењир дужине 0, свеску и збирку. Након,5 h вежбања математике направила је паузу од 0, а затим наставила да пише састав из српског језика. 5

5 9. Одреди координате темена квадрата ABCD приказаног на слици. y A 0 D C B x A(, ); B(, ); C(, ); D(, ) 0. Израчунај вредност израза. а),4 + 4 (,5) Вредност израза је. б) 7 5 : Вредност израза је.. Ако је A = 5 9 и B = ( 5 ) 4 : израчунај вредност израза А : B. Вредност израза А : B је. 6

6 . Повежи линеарну функцију са одговарајућим графиком. y y = x x - y y = x x - y y = x x - y y = x x - 7

7 . Израчунај мере углова α, β и γ приказаних на слици. α 54 β γ α =, β = и γ = 4. Израчунај запремину правилне тростране пирамиде чија је дужина основне ивице 6 cm, а висина cm. V = cm 5. Каћа, Тања и Драгана су истог дана, у оквиру пројекта из биологије, посадиле руже. На крају школске године су упоредиле висине својих ружа, али се испоставило да нису користиле исте мерне јединице. Каћина ружа била је висока 0,4 m, Тањина 4, dm и Драганина 4,5 cm. Чија ружа има највећу висину? Највећу висину има ружа. 8

8 6. Вера је купила слушалице за мобилни телефон чија је цена била 800 динара. Слушалице је платила готовином и добила попуст од 7%. Колико је Вера платила слушалице? Вера је слушалице платила динра. 7. Нека је : 4 4 = + 4:,5, ( ) b= +. Израчунај вредност израза b c. Вредност израза је. 9

9 8. Влада је за свој рођендан купио крем бананице и чоко штанглице. Једна крем бананица коштала је 0 динара, а једна чоко штанглица коштала је 5 динара. Влада је укупно потрошио 450 динара и купио укупно 5 слаткиша. Колико је Влада купио крем бананица, а колико чоко штанглица? Влада је купио крем бананица и чоко штанглица. 9. Шестоугао ABCDEF састављен је од четири подударна квадрата. Ако је АМ = 40 cm, израчунај обим и површину шестоугла ABCDEF. D C F E M A B О = cm Р = cm 0

10 0. У новинама је објављена табела са државама победницама светских првенстава у кошарци и године када су та првенства одржана, као и графикон у коме су приказане државе и укупан број победа сваке од њих на овим првенствима. Влада је приметио да у табели недостаје податак о тиму који је победио 974. године. Година одржавања Држава победница 950. Аргентина 954. САД 959. Бразил 96. Бразил 967. СССР 970. Југославија Југославија 98. СССР 986. САД 990. Југославија 994. САД 998. Југославија 00. Србија и Црна Гора Аргентина Бразил Југославија Србија и Црна Гора САД СССР Шпанија 006. Шпанија 00. САД На основу графикона он је тачно одредио која је земља била победник 974. године. Заокружи слово испред тачног одговора. Влада је закључио да је победнички тим из: а) Аргентине; б) Бразила; в) Југославије / Србије и Црне Горе; г) САД; д) СССР-а; ђ) Шпаније.

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2014/2015. година УПУТСТВО ЗА РАД Тест који треба да решиш

Διαβάστε περισσότερα

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 2016/2017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест

Διαβάστε περισσότερα

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2012/2013. година УПУТСТВО ЗА РАД Тест који треба да решиш

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2011/2012. година УПУТСТВО ЗА РАД НА ТЕСТУ Тест који треба да решиш има 20 задатака.

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија. МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2012/2013. година УПУТСТВО ЗА РАД Тест који треба да решиш

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

КОМБИНОВАНИ ТЕСТ из природних и друштвених наука

КОМБИНОВАНИ ТЕСТ из природних и друштвених наука Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА КОМБИНОВАНИ ТЕСТ из природних и друштвених наука УПУТСТВО ЗА РАД НА ТЕСТУ Пред тобом

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим.

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим. IV разред 1. Дешифруј ребус A + BA + CBA + DCBA = 2016. Иста слова замени једнаким цифрама, а различита различитим. 2. Производ два броја је 2016. Ако се један од њих повећа за 7, производ ће бити 2457.

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити. IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2014.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2014. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

Тест за 7. разред. Шифра ученика

Тест за 7. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД

РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД РЕПУБЛИКА СРПСКА МИНИСТАРСТВО ПРОСВЈЕТЕ И КУЛТУРЕ РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД Милоша Обилића 39 Бањалука, Тел/факс 051/430-110, 430-100; e-mail: pedagoski.zavod@rpz-rs.org ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5 МАТЕМАТИЧКИ ЛИСТ 014/15. бр. XLIX-5 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред 1. а) 70 - седамсто три; б) двесто осамдесет два 8.. а) 4, 54, 54, 45, 504, 54. б)

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

Драги ученици, драге ученице

Драги ученици, драге ученице РЕПУБЛИКА СРПСКА МИНИСТАРСТВО ПРОСВЈЕТЕ И КУЛТУРЕ РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД Милоша Обилића 39 Бањалука, Тел/факс 051/430-110, 430-100; e-mail: pedagoski.zavod@rpz-rs.org ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница.

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница. 91.*Конструиши трапез у размери 1:200, ако је дато: = 14 m, = 6 m, = 8 m и β = 60. 92.*Ливада има облик трапеза. Нацртај је у размери 1:2000, ако су јој основице 140 m и 95 m, један крак 80 m, и висина

Διαβάστε περισσότερα

ЗАВОД ЗА УЏБЕНИКЕ БЕОГРАД

ЗАВОД ЗА УЏБЕНИКЕ БЕОГРАД ОЛИВЕРА ТОДОРОВИЋ СРЂАН ОГЊАНОВИЋ MATEMATИKA УЏБЕНИК за први разред основне школе1 ЗАВОД ЗА УЏБЕНИКЕ БЕОГРАД 1 ПРЕДМЕТИ У ПРОСТОРУ И ОДНОСИ МЕЂУ ЊИМА... 7 1. Горе, доле, изнад, испод... 8 2. Лево, десно...

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

Драги ученици, драге ученице

Драги ученици, драге ученице РЕПУБЛИКА СРПСКА МИНИСТАРСТВО ПРОСВЈЕТЕ И КУЛТУРЕ РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД Милоша Обилића 39 Бањалука, Тел/факс 051/430-110, 430-100; e-mail: pedagoski.zavod@rpz-rs.org ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

Министарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ

Министарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ 28.02.2015 - III разред 1. Запиши све троцифрене бројеве мање од 888 чији је збир цифара 23. 2. У свако празно поље треба уписати по једну од цифара 0, 1, 2, 2, 4. Како треба уписати цифре да би се након

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5 05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

4.4. Тежиште и ортоцентар троугла

4.4. Тежиште и ортоцентар троугла 50. 1) Нацртај правоугли троугао и конструиши његову уписану кружницу. ) Конструиши једнакокраки троугао чија је основица = 6 m и крак = 9 m, а затим конструиши уписану и описану кружницу. Да ли се уочава

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије ГРАЂЕВИНСКА ШКОЛА Светог Николе 9 Београд ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА са додатком теорије - за II разред IV степен - Драгана Радовановић проф математике Београд СТЕПЕНОВАЊЕ И КОРЕНОВАЊЕ

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕНИКЕ

ОСНОВА ЕЛЕКТРОТЕНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1 6. Четвороугао 6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова А Сл. 1 А На приложеним сликама сигурно уочаваш геометријске фигуре које су ти познате (троугао,

Διαβάστε περισσότερα

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић

Διαβάστε περισσότερα

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год. КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВАЉЕВО, 006 1 1. УВОД 1.1. ПОЈАМ ДИОФАНТОВЕ ЈЕДНАЧИНЕ У једној земљи Далеког истока живео је некад један краљ, који је сваке ноћи узимао нову жену и следећег

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ МЕТОДЕ ЊИХОВОГ РЕШАВАЊА

МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ МЕТОДЕ ЊИХОВОГ РЕШАВАЊА ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ ДРЖАВНИ СЕМИНАР О НАСТАВИ МАТЕМАТИКЕ И РАЧУНАРСТВА У ОСНОВНИМ И СРЕДЊИМ ШКОЛАМА Број: 250 Компетенцијa: K1 Приоритети: 1 ТЕМА: МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ

Διαβάστε περισσότερα

26. фебруар године ТЕСТ ЗА 8. РАЗРЕД. Шифра ученика

26. фебруар године ТЕСТ ЗА 8. РАЗРЕД. Шифра ученика Република Србија Министарство просвете, науке и технолошког развоја ОПШТИНСКО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ 26. фебруар 2017. године ТЕСТ ЗА 8. РАЗРЕД Шифра ученика (три слова и три броја) Тест има 20 задатака.

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

Списак задатака за завршни тест за ученике шестог разреда

Списак задатака за завршни тест за ученике шестог разреда Списак задатака за завршни тест за ученике шестог разреда Основни ниво од до 6 од 5 до 56 од 58 до 59 од 6 до 6 од 65 до 66 69 од 76 до 00 од 08 до 0 од 6 до 9 Средњи ниво од до 8 40 од 66 до 7 од 7 до

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

Тест за I разред средње школе

Тест за I разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 31.03.2007. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα

1. Зашто се коса када скинемо вунену капу накостреши? 2. У левој колони су називи сила, а у десној искази о карактеристикама сила.

1. Зашто се коса када скинемо вунену капу накостреши? 2. У левој колони су називи сила, а у десној искази о карактеристикама сила. комбиновани тест 1. Зашто се коса када скинемо вунену капу накостреши? а) због деловања магнетне силе б) због деловања електростатичке силе в) због деловања гравитационе силе г) због деловања силе елаcтичности.

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕХНИКЕ

ОСНОВА ЕЛЕКТРОТЕХНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ПЕТНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 3

Διαβάστε περισσότερα

УТИЦАЈ РАЗВОЈА МАТЕМАТИЧКИХ КОМПЕТЕНЦИЈА УЧЕНИКА СРЕДЊИХ ШКОЛА НА ЊИХОВ УСПЕХ НА СТУДИЈАМА

УТИЦАЈ РАЗВОЈА МАТЕМАТИЧКИХ КОМПЕТЕНЦИЈА УЧЕНИКА СРЕДЊИХ ШКОЛА НА ЊИХОВ УСПЕХ НА СТУДИЈАМА УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАСТЕР РАД УТИЦАЈ РАЗВОЈА МАТЕМАТИЧКИХ КОМПЕТЕНЦИЈА УЧЕНИКА СРЕДЊИХ ШКОЛА НА ЊИХОВ УСПЕХ НА СТУДИЈАМА Ментор: проф. др Милан Божић мат. Студент: Јелица Шијаковић,

Διαβάστε περισσότερα

ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД.

ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ВО ПРЕЗЕНТАЦИЈАТА ЌЕ ПРОСЛЕДИТЕ ЗАДАЧИ ЗА ПРЕСМЕТУВАЊЕ ПЛОШТИНА И ВОЛУМЕН НА ГЕОМЕТРИСКИТЕ ТЕЛА КОИ ГИ ИЗУЧУВАМЕ ВО ОСНОВНОТО ОБРАЗОВАНИЕ. СИТЕ ЗАДАЧИ

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

Н А С Т А В Н И К КАО ИСТРАЖИВАЧ

Н А С Т А В Н И К КАО ИСТРАЖИВАЧ Н А С Т А В Н И К КАО ИСТРАЖИВАЧ ПРИМЕРИ ДОБРЕ ПРАКСЕ Дејан Станковић Јелена Радишић Невена Буђевац Смиљана Јошић Александар Бауцал БЕОГРАД, 2015. Н А С Т А В Н И К КАО ИСТРАЖИВАЧ ПРИМЕРИ ДОБРЕ ПРАКСЕ

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ ЧЕВИЈЕВА ТЕОРЕМА И ПОСЛЕДИЦЕ Мастер рад Кандидат: Рајка Милетић Ментор: проф др Неда Бокан Београд, 00 САДРЖАЈ Увод 3 I ЧЕВИЈЕВА ТЕОРЕМА 4 I Доказ Чевијеве теореме

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

Теорија одлучивања. Анализа ризика

Теорија одлучивања. Анализа ризика Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни

Διαβάστε περισσότερα

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАСТЕР РАД Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ МЕНТОР: КАНДИДАТ: Проф. др Драгољуб Кечкић Милинко Миловић

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ИЗ СРПСКОГ ЈЕЗИКА

ЗБИРКА ЗАДАТАКА ИЗ СРПСКОГ ЈЕЗИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗБИРКА ЗАДАТАКА ИЗ СРПСКОГ ЈЕЗИКА ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 2011/2012.

Διαβάστε περισσότερα

Слика 1: Савремени аутоматски дифрактометар x зрака; принципијелна шема, изглед дифрактометра (горе лево)

Слика 1: Савремени аутоматски дифрактометар x зрака; принципијелна шема, изглед дифрактометра (горе лево) ОДРЕЂИВАЊЕ ПАРАМЕТАРА КРИСТАЛНЕ РЕШЕТКЕ МЕТОДОМ КРИСТАЛНОГ ПРАХА, ДЕБАЈ ШЕРЕРОВ МЕТОД ТЕОРИЈСКИ УВОД У параметре кристалне решетке убрајају се дужине ивица кристалне ћелије: a, b и c и дужина међураванског

Διαβάστε περισσότερα

БИОЛОГИЈЕ, ГЕОГРАФИЈЕ, ИСТОРИЈЕ, ФИЗИКЕ И ХЕМИЈЕ

БИОЛОГИЈЕ, ГЕОГРАФИЈЕ, ИСТОРИЈЕ, ФИЗИКЕ И ХЕМИЈЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗБИРКА ЗАДАТАКА ИЗ БИОЛОГИЈЕ, ГЕОГРАФИЈЕ, ИСТОРИЈЕ, ФИЗИКЕ И ХЕМИЈЕ ЗА ЗАВРШНИ ИСПИТ

Διαβάστε περισσότερα

а о Е е СРПСКОГ ЈЕЗИКА ЗБИРКА ЗАДАТАКА ИЗ ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 2010/2011. ГОДИНУ

а о Е е СРПСКОГ ЈЕЗИКА ЗБИРКА ЗАДАТАКА ИЗ ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 2010/2011. ГОДИНУ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗБИРКА ЗАДАТАКА ИЗ СРПСКОГ ЈЕЗИКА ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 2010/2011. ГОДИНУ

Διαβάστε περισσότερα

а о Е е СРПСКОГ ЈЕЗИКА ЗБИРКА ЗАДАТАКА ИЗ ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 2010/2011. ГОДИНУ

а о Е е СРПСКОГ ЈЕЗИКА ЗБИРКА ЗАДАТАКА ИЗ ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 2010/2011. ГОДИНУ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗБИРКА ЗАДАТАКА ИЗ СРПСКОГ ЈЕЗИКА ЗА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ ЗА ШКОЛСКУ 2010/2011. ГОДИНУ

Διαβάστε περισσότερα

Тест за II разред средње школе

Тест за II разред средње школе Министарство просветe и спортa Републике Србије Српско хемијско друштво Међуокружно такмичење из хемије 31.03.2007. Тест за II разред средње школе Име и презиме Место и школа Разред Не отварајте добијени

Διαβάστε περισσότερα