ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ"

Transcript

1 ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ Ξανθή Παπαγεωργίου, Παναγιώτης Αρτεμιάδης, Κωνσταντίνος Κυριακόπουλος Σχολή Μηχανολόγων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο ΠΕΡΙΛΗΨΗ Νευρο-ρομποιικ ά είναι τα συστήματα εκείνα που ενσωματώνουν την γνώση μας για τα βιολογικά συστήματα, σε μηχανές που είναι είτε παθητικές είτε επενεργούμενες. Στην παρούσα εργασία το ερευνηιικ ό ενδιαφέρον επικεντρώνετατ στην χρήση μορφών διασύνδησης μεταξύ του ανθρώυου και των ρομπότ, που βασίζονται σε σήματα που μετρώνται από τον ίδιο τον άνθρωπο. Ειδικόιερα, ηλεκτρομυογραφικά σήματα καταγράφοντατ επιφανειακά από τους σκελειικ ούς μύες του ανθρωπίνοπ άνω άκρου. Στη συνέχεια τα σήματα αυτά, μέσω κατάλληλων μοντέλων μεταφράζονται στην αντίσιοιχ η κίνηση του άνω άκρου, η οποία τελικά χρησιμοποτείται για τον έλεγχο σε πραγματικό χρόνο ενός ρομποιικ ού βραχίονα 7 βαθμών ελευθερίας στον ιρισδιά σια το χώρο. Σε περιπιώσεις όπου η κίνηση του βραχίονα γίνεται σε περιβάλλον όπου συνυπάρχουν διάσπαρτα αντικείμενα εμπόδια, αναπτύσσονται οι κατάλληλες μεθοδολογίες ώστε να επττρέποπν στο ρομπότ να είναι υποχωρηιικ ό προς συγκεκριμένες επιφάνειες, ενώ ταυτόχρονα να αποφεύγει τα εμπόδια που μπορούν να αναχαττίσουν την κίνησή του. Λέξεις κλειδιά: νευρο-ρομποιικ ή, ηλεκτρομυογράφημα, προγραμμαιισμ ός κίνησης 1 ΕΙΣΑΓΩΓΗ Η παρούσα εργασία πραγματεύεται μια σημανιι κή πτυχή του τομέα της νευρορομποιικ ής, αυτήν της διασύνδησης της ρομποιικ ής και ειδικόιερ α των ρομποιικ ών συστημάτων με τον ίδιο τον άνθρωπο. Πτο συγκεκριμένα, στην παρούσα εργασία χρησιμοποτείτατ το σήμα που καταγράφεται επιφανειακά από τους σκελειικ ούς μύες του άνω άκρου, το λεγόμενο ηλεκτρομυογραφικό σήμα, ή ηλεκτρομυογράφημα. Το σήμα αυτό, με την κατάλληλη επεξεργασία, αποκωδικοποτείτατ σε κίνηση του άνω άκρου, με σκοπό να χρησιμοποιεθεί ως μεταβλητή ελέγχου ρομποιικ ών συστημάτων. Συγχρόνως υλοποιούνται κατάλληλοι ελεγκτές ώστε να είναι εφικτή η αποφυγή των εμποδίων που περιέχονια ι στον περιβάλλοντα χώρο, και να μπορεί ιο ρομπότ να προσεγγίσει και να αλληλεπιδράσει σε καμπυλωμένες επιφάνειες. Το παραπάνω σενάριο λειιου ργίας απεικονίζετατ στο Σχήμα 1. Τα ηλεκτρομυογραφικά σήματα έχουν χρησιμοποιεθεί θιο παρελθόν για τον έλεγχο ρομποιικ ών συστημάτων. Ένα τέιοιο παράδειγμα αποτελεί η εργασία (Fukuda, 2003), όπου η διεύθυνση κίνησης πρηνισμού/υπιια σμού ενός ρομποιικ ού καρπού, ελεγχόταν από ηλεκτρομυογραφικά σήματα των μυών του πήχη. Πολύ συχνά σιις παλατότερες 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

2 εργασίες χρησιμοποιούνται ηλεκτρομυογραφικά σήματα για τον έλεγχο ρομποιικ ών χεριών (Bitzer, 2006). Σε όλες ιις προαναφερσείσες εργασίες η αποκωδικοποίηση των ηλεκτρομυογραφικών σημάτων οδηγούσε σε διακρττές αποφάσεις, για παράδειγμα κάμψη ή έκταση των δακτύλων, και όχι σε μια συνεχή περιγραφή της κίνησης. Στην παρούσα εργασία ερευνάται ο συνεχής έλεγχος των ρομποιικ ών συστημάτων μέσω του ηλεκτρομυογραφήματος. Γι' αυτό το λόγο, απαιτείται η εκτίμηση της συνεχής κίνησης του άνω άκρου, ώστε η τελευταία να χρησιμοποιεθεί για τον εύρωστο και ακριβή έλεγχο ενός ρομποιικ ού βραχίονα. Σχήμα 1: Αναπαράσταση πραγματικού σεναρίου πποκατάστασης άνω άκρων. Σχήμα 2: Ο χρήστης κινεί το άνω άκρο στο χώρο, ενώ οι 4 γωνίες του ώμου και του αγκώνα ππολογίζονται μέσω των μαγνητικών αισθητήρων θέσης. Σε τέτοιου είδους συστήματα που χρησιμοποιούνται σήματα από τον άνθρωπο υπάρχει αυξημένη δυσκολία να ελεγχθεί με ακρίβεια το ρομπότ, ιδιαίτερα σε περιπιώσεις όπου είτε το περιβάλλον του ρομπότ είναι γεμάτο με αντικείμενα-εμπόδια μη-αντιληπτά από τον άνθρωπο, ηίτη η μορφολογία του ρομπότ είνατ διαφορειικ ή αυτής του ανθρώυου. Ευομένως είναι πολύ σημανιι κό να αναπτύξουμε ιις μεθοδολογίες εκείνες που θα μας επττρέψουν να ελέγξουμε το ρομπότ, κάνοντάς το να αποφεύγει ιις συγκρούσεις με τον περιβάλλοντα χώρο. 2 ΜΕΘΟΔΟΛΟΓΙΑ 2.1 Το τλεκτρομυογράφημα ως μεταβλττή ελέγχου Το ηλεκτρομυογράφημα είναι το δυναμικό που μετράται επιφανειακά από τους σκελειικ ούς μύες, όταν αυτοί συστέλλονται με σκοπό την παραγωγή δύναμης και άρα κίνησης. Σι ην παρούσα εργασία μας ενδιαφέρει η κίνηση του άνω άκρου στον τρτσδτάστατο χώρο. Επομένως, 11 συνολικά μύες που ενεργούν σιον ώμο και στον αγκώνα επιλέγονται να καταγραφούν ως οι κύριοι μύες για την εν λόγω κίνηση. Η άρθρωση του καρπού παραλείπεται για λόγους ευκολίας. Ο στόχος είναι η αποκωδικοποίηση του ηλεκτρομυογραφικού σήματος σε κίνηση. Αυτό θα επττευχθεί με την χρήση ενός μαθημαιικ ού μοντέλου, που θα μπορεί να εκπαιδεύεται κατάλληλα ώστε να εκιιμ ά την κίνηση του άνω άκρου βασισμένο μόνο στο ηλεκτρομυογράφημα. Για την εκπαίδευση του συστήματος αποκωδικοποίησης ηλεκτρομυογραφικών σημάτων απαττείται η σύγχρονη συλλογή σήματος από τους 11 εμπλεκόμενους μύες καθώς και της αντίστοιχης κίνησης του άνω άκρου. Για την καταγραφή του 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

3 ηλεκτρομυογραφήματος χρησιμοποτείτατ κατάλληλο σύστημα καταγραφής (Bagnoli-16 Desktop EMG System, Delsys Inc., Boston, MA, USA) και επιφανειακά ηλεκιρόδι α καταγραφής. Για την καταγραφή της κίνησης χρησιμοποτείτατ σύστημα μαγνηιι κών αιθθητήρων σέσης και προσανατολισμού (Isotrak II, Polhemus Inc, USA). Το σύστημα αποτελείται από δύο αισθητήρες, των οποίων, ε σέση και ο προσανατολισμός ως προς το αδρανειακό σύστημα αξόνων του αιθθητήρα, παρέχεται με συχνότητα 30 Hz. Τοποθετώντας το αδρανειακό σύστημα στον ώμο του χρήστη, και τους δύο αιθθητήρες στον αγκώνα και τον καρπό ανιίσιοιχ α, μπορούμε να υπολογίσουμε ιις 4 γωνίες των αρθρώσεων του ώμου και του αγκώνα, όπως αυτές ορίζονται στο Σχήμα 2, κάνοντας χρήση των κτνημαιικ ών εξισώσεων. Στα ηλεκτρομυογραφικά σήματα, μετά την αρχική επεξεργασία, εφαρμόζεται μια μεθοδολογία απεικόνισης σε χώρο μικρότηρης διάστασης. Αυτό συμβαίνει επειδή, όπως είναι γνωστό από την βιβλιογραφία (d'avella, 2006), οι μύες δρουν συλλογικά για την παραγωγή κίνησης. Το ίδιο συμβαίνει και για ιε ν κίνηση του άνω άκρου. Ας ορίσουμε u L 2 και y L 2 την αναπαράσταση του ηλεκτρομυογραφήματος και της κίνησης σε χώρο μικρότηρης διάστασης ανιίσιοιχ α. Το μοντέλο αποκωδικοποίησης του u L σε y L περτγράφεται από την παρακάτω εξίσωση: x k 1 Ax k Bu Lk w k y Lk Cx k k ( 1) όπου x d ένα διάνυσμα κρυφών μεταβλητών, w, μεταβλητές θορύβου και A, B, C πίνακες που περιγράφουν την δυναμική του διανύσματος των κρυφών μεταβλητών, την συνεισφορά του ηλεκτρομυογραφήματος σε αυτήν, καθώς επίσης και την σχέση του διανύσματος με την κίνηση του άνω άκρου ανιίσιοιχ α. Οι πίνακες αυτοί πρέπει να υπολογιθθούν χρησιμοποτώντας δεδομένα εκπαίδευσης, δηλαδή ηλεκτρομυογραφικά σήματα και αντίσιοι χες μεταβλητές κίνησης. Κατά τη διάρκεια της εκπαίδευσης του συστήματος ο χρήστης κινεί ιο άνω άκρο σε τυχαίες σέσεις στο χώρο. Ηλεκτρομυογραφικά σήματα καταγράφονται, καθώς και οι γωνίες των αρθρώσεων, έτστ ώστε να χρησιμοποιηθούν ως δεδομένα εκπαίδευσης για το μοντέλο (1). Μετά την εκπαίδευση του μοντέλου, ξεκινά η φάση τηλεχειρισμού του ρομποιικ ού βραχίονα σε πραγματικό χρόνο. Σε αυτή την φάση, τα ηλεκτρομυογραφικά σήματα που καταγράφονται από τους 11 μύες εισάγονται στο μοντέλο (1). Κάνοντας χρήση των εξισώσεων της (1), τελικά εκιιμ άται το διάνυσμα y L που περιγράφει ιε ν κίνηση του άνω άκρου. Ο ρομποιικ ός βραχίονας ελέγχεται τελικά με κατάλληλο ελεγκτή ροπής ώστε να κινηθεί βασισμένος σιε ν εκτίμηση της τροχιάς του ανθρωπίνου άνω άκρου. 2.2 Προγραμματισμός κίνησης Είναι πολύ σημανιικ ός ο σχεδιασμός και η ανάπτυξη ελεγκτών, που θα επττρέποπν στο ρομποιικ ό βραχίονα να εκτελεί τα καθήκοντά του πάνω σε επιφάνειες, να είναι υποχωρηιικ ός σε συγκεκριμένες καταστάσεις και ταυτόχρονα να αποφεύγει ιις συγκρούσεις με τα αντικείμενα του χώρου μέσα στον οποίο κτνείτατ (Patel, 2005), (Zhang Y, 2004). Επίσης, ένα πολύ σημανιικ ό θέμα άπτεται των ορίων, τα οποία έχουν επιβληθεί από τον κατασκευαστή του ρομποιικ ού βραχίονα, και με βάση τα οποία υπάρχει περιορισμός στο ποια είναι η μέγτστη ταχύτητα με την οποία τα μηχανικά μέρη 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

4 του ρομπότ μπορούν να εκτελέσουν μία κίνηση. Για να ανταπεξέλθουμε σε αυτήν την δυσκολία, έχουμε εντάξει αυτούς τους περιορισμούς στον σχεδιασμό του ελεγκτή του ρομπότ. Η προσπάθεια υλοποίησης των ανωτέρω συνοψίζεται στο πρόβλημα σχεδιασμού ελεγκτή για ρομποιικ ό βραχίονα με πλεονάζοντες βαθμούς, το εύρος της κίνησης των συνδέσμων του οποίου πρέπει να παραμένουν μέσα σε προκαθορισμένα όρια (τα οποία έχει σέσει ο κατασκευαστής). Προκειμένου να επττευχθεί ο στόχος μας, υλοποιούμε συναρτήσεις πλοήγησης (Rimon, 1992), αναλύουμε το σύστημα κλειστού βρόχου και ελέγχουμε την ευστάθεια του συστήματος. Το σύστημα με τη χρήση των ελεγκτών μας, είναι ολικά ομοιόμορφα ασυμπιωιικ ά ευσταθές και σέβετατ όλους οι μηχανολογικούς περιορισμούς. Επιπλέον είναι εφικτό αφενός να σταθεροποιήθοπμε το άκρο του ρομποιικ ού βραχίονα σε ένα συγκεκριμένο σεμείο ή να το οδηγήσουμε ώστε να ακολουσήσει με επττυχία μία προκαθορισμένη τροχιά, πάνω σε μία δυσδιάστατη πολυπλοκότητα (επιφάνεια) που βρίσκεται στον τρτσδτάστατο χώρο και να αποφεύγει όλα τα εμπόδια του περιβάλλοντος ΣΥΝΑΡΤΗΣΗ ΠΛΟΗΓΗΣΗΣ Οι ελεγκτές που υλοποιούμε βασίζονια ι στη δημιουργία τεχνητού δυναμικού πεδίου το οποίο δημιουργείτατ από τη συνάρτηση πλοήγησης και που καθορίζεται στην ουσία από την επιθυμητή σέση όπου το ρομπότ θέλουμε να μεταβεί και από τα εμπόδια που υπάρχουν μέσα στο χώρο δράσης του και που πρέπει να αποφύγει. Το επιθυμητό σεμείο γτα το ρομπότ παράγει το ελκιικ ό δυναμικό που θα τραβήξει το ρομπότ στην τελική σέση, ηνώ τα εμπόδια παράγουν ένα απωθητικό δυναμικό που ωθεί το ρομπότ μακριά του. Η αρνηιικ ή κλίση του συνολικού δυναμικού αντιμετωπίζεται ως μία τεχνητή δύναμη που εφαρμόζεται στο ρομπότ. Σε κάθε σέση του ρομπότ, η κατεύθυνση αυτής της δύναμης θεωρείτατ η πιο πιθανή κατεύθυνση της κίνησης. Η συνάρτηση πλοήγησης μας βοηθά θτον προγραμμαιισμ ό της κίνησης του ρομποιικ ού βραχίονα, οδηγεί το άκρο του ρομπότ προς την επιφάνεια και με τη χρήση του ελεγκτή καθορίζεται η κίνησή του πάνω σε αυτήν. Η πλοήγηση κατά μήκος της επιφάνεια περιλαμβάνει αφενός την σταθηροποίηθη σε κάποιο σεμείο ιε ς, και αφετέρου την παρακολούσηση προκαθορισμένης τροχτάς. Ο όγκος του ρομποιι κού βραχίονα στο χώρο δράσης του ρομπότ μπορεί να αναπαρασταθεί ως σεμείο σε ένα διαφορειικ ό χώρο εργασίας, ακολουθώντας μία σειρά από μετασχημαιισμ ούς. Τα εμπόδια του χώρου ακολουθούν τους ίδιους μετασχημαιισμ ούς και με αυτόν τον τρόπο κατασκευάζεται η συνάρτηση πλοήγησης. Η συνάρτηση πλοήγησης που χρησιμοποιούμε ορίζεια ι στη γενική μορφή της ως εξής : d d B 1 m όπου οι γωνίες των συνδέσμων του ρομπότ, m είναι οι βαθμοί ελευθερίας του ρομπότ, γ d είναι η συνάρτηση που μετρά την απόσταση από την επιθυμητή σέση όπου το ρομπότ θέλουμε να μεταβεί (δημιουργεί ιο ελκιικ ό πεδίο), B ws O s είναι ένα γινόμενο συναρτήσεων που αναπαριστούν εμπόδια και περιορισμούς στην κίνηση του ρομπότ (δημιουργεί ιο απωθηιικ ό δυναμικό). Κάθε μία από αυτές ιις συναρτήσεις έχει τους εξής ρόλους: η συνάρτηση β ws μας εξασφαλίζει όιι το ρομπότ θα παραμείνει μέσα στο χώρο δράσης στο οποίο επττρέπεται να κινηθεί, η συνάρτηση β Ο εξασφαλίζει όιι κάθε τμήμα του ρομπότ δεν κινδυνεύει να έρθει σε ( 2) 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

5 επαφή με το περιβάλλον, γίνεται δηλαδή αποφυγή σύγκρουσης σε όλα τα τμήματα του ρομποιικ ού βραχίονα και όχι μόνο στο άκρο του, ε συνάρτηση β s μοντελοποιεί ια ιδιόμορφα σεμεία ιε ς κινημαιικ ής ως τεχνητά εμπόδια του χώρου δράσης του ρομπότ και μας εγγυάται όιι το ρομπότ θα αποφύγει τα σεμεία αυτά. Τέλος με κ αναπαριστούμε μία θειικ ή και πραγματική παράμετρο, χρήσιμε για την ρύθμιση της συμπεριφοράς του συστήματος. 3 ΑΠΟΤΕΛΕΣΜΑΤΑ Στο Σχήμα 3 φαίνεται η πραγματική και η εκτίμηση της κίνησης του άνω άκρου μέσω των ηλεκτρομυογραφικών σημάτων και του μοντέλου (1). Τα γραφήματα απεικονίζουν την τροχιά του ανθρωπίνοπ χεριού όπως αυτή καταγράφεται από το μαγνηιικ ό σύστημα θέσης στους 3 άξονες του χώρου κίνησης, και την εκτίμηση της τροχιάς μέσω του μοντέλου αποκωδικοποίησης (1). Όπως είναι φανερό από τα γραφήματα, η εκτίμηση της τροχιάς της κίνησης είναι πολύ ακριβής, και δύναται να χρησιμοποιεθεί για τον έλεγχο του ρομποιικ ού βραχίονα, εφόσον η συχνότητα στην οποία γίνεται η εκτίμηση της κίνησης είναι ίση με αυτήν της καταγραφής του ηλεκτρομυογραφήματος, δηλαδή 1 khz. Πραγματοποιήσαμε πειράματα με σκοπό να επαληθεύσουμε την ικανότητα εφαρμογής και την αποτελεσμαιι κότητα της προιηινόμηνης μεθοδολογίας. Ο ρομποιικ ός βραχίονας στον οποίο υλοποιήσαμε τα πειράματα είναι το μοντέλο της Mitsubishi PA10-7C, με m=7 βαθμούς ελευθερίας, στη σέση που απεικονίζει η εικόνα (Σχήμα 4). Στα παρακάτω σχήματα φαίνονται γραφικές αναπαραστάσεις των αποτελεσμάτων με τη χρήση του Matlab, από διαφορειικ ές οπιικ ές γωνίες σε κάθε μία εικόνα. Η τροχιά του άκρου του ρομπότ σχεδιάζεται με την μπλε καμπύλη. Αρχικά το ρομπότ κινείται προς την επιθυμητή σέση (Σχήμα 4) και στη συνέχεια ακολουθεί μία προκαθορισμένη ημττονοητδή τροχιά (Σχήμα 5) πάνω στην επιφάνεια (κίιρινη καμπύλη), ενώ έχει αποφύγει όλα τα εμπόδια του περιβάλλοντος αλλά και τα εμπόδια που είναι ιο ποθετημένα πάνω στην ηπιφάνεια. Σχήμα 3. Πραγματική (real) και εκτιμόμενη (estimates) κίνηση του άνω άκρου μέσω του ηλεκτρομυογραφήματος στους 3 άξονες x, y, z. 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

6 Initial Configuration Trajectory Tracking Closed surface Initial Configuration Closed surface Target Configuration Σχήμα 4: Αναπαράσταση αποτελεσμάτων για σταθεροποίηση του άκρου σε σημείο. Σχήμα 5: Αναπαράσταση αποτελεσμάτων για παρακολούθηση τροχιάς. 4 ΣΥΜΠΕΡΑΣΜΑΤΑ Οι μεθοδολογίες αποκωδικοποίησης κίνησης που αναπτύξαμε επττρέπουν την κίνηση του ρομποιικ ού βραχίονα βασισμένη σε σήματα που προέρχονται από τον ίδιο ιον άνθρωπο, ενώ συγχρόνως είναι εφικτό να αποφεύγονται τα εμπόδια που υπάρχουν στο χώρο δράσης του. Οι μεθοδολογίες μπορούν να εφαρμοθθούν σε ρομποιικ ά συστήματα αποκατάστασης κινηιικ ών δυσκολιών που θα ελέγχονται από σήματα προερχόμενα από τον άνθρωπο, διαιε ρώντας την επιθυμητή αυτονομία και ασφάλεια. 5 ΒΙΒΛΙΟΓΡΑΦΙΑ S. Bitzer and P. van der Smagt, Learning EMG control of a robotic hand: towards active prostheses, Proc. of IEEE Int. Conf. on Robotics and Automation, pages , A. d Avella, A. Portone, L. Fernandez, and F. Lacuaniti, Control of fast-reaching movements by muscle synergy combinations, The Journal of Neuroscience, vol. 25, no. 30, pp , O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka, A human-assisting manipulator teleoperated by EMG signals and arm motions, IEEE Trans. on Robotics and Automation, 19(2): , Patel R., Shadpey F., Ranjbaran F., Angeles J. (2005), A collision avoidance scheme for redundant manipulators: Theory and experiments, Journal of Robotic Systems, vol. 22, no. 12, pp Rimon E. and Koditschek D. (1992), Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp Zhang Y., Wang J. (2004), Obstacle avoidance for kinematically redundant manipulators using a dual neural network, IEEE Transactions on Systems, Man, & Cybernetics - Part B: Cybernetics, vol. 34, no. 1. 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

ΒΙΟΜΙΜΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΑΝΤΙΣΤΡΟΦΗΣ ΚΙΝΗΜΑΤΙΚΗΣ ΓΙΑ ΡΟΜΠΟΤΙΚΟ ΒΡΑΧΙΟΝΑ ΜΕ ΠΛΕΟΝΑΖΟΝΤΕΣ ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ

ΒΙΟΜΙΜΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΑΝΤΙΣΤΡΟΦΗΣ ΚΙΝΗΜΑΤΙΚΗΣ ΓΙΑ ΡΟΜΠΟΤΙΚΟ ΒΡΑΧΙΟΝΑ ΜΕ ΠΛΕΟΝΑΖΟΝΤΕΣ ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ ΒΙΟΜΙΜΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΑΝΤΙΣΤΡΟΦΗΣ ΚΙΝΗΜΑΤΙΚΗΣ ΓΙΑ ΡΟΜΠΟΤΙΚΟ ΒΡΑΧΙΟΝΑ ΜΕ ΠΛΕΟΝΑΖΟΝΤΕΣ ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ ΠΕΡΙΛΗΨΗ Παναγιώτης Αρτεμιάδης, Παντελής Κατσιάρης 1, Μηνάς Λιαροκάπης 1, Κωνσταντίνος Κυριακόπουλος

Διαβάστε περισσότερα

Εισαγωγή στην Ρομποτική

Εισαγωγή στην Ρομποτική Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις

Διαβάστε περισσότερα

ΣΥΝΕΡΓΑΣΙΑ ΡΟΜΠΟΤ-ΑΝΘΡΩΠΟΥ ΓΙΑ ΤΟΝ ΧΕΙΡΙΣΜΟ ΥΦΑΣΜΑΤΩΝ

ΣΥΝΕΡΓΑΣΙΑ ΡΟΜΠΟΤ-ΑΝΘΡΩΠΟΥ ΓΙΑ ΤΟΝ ΧΕΙΡΙΣΜΟ ΥΦΑΣΜΑΤΩΝ ΣΥΝΕΡΓΑΣΙΑ ΡΟΜΠΟΤ-ΑΝΘΡΩΠΟΥ ΓΙΑ ΤΟΝ ΧΕΙΡΙΣΜΟ ΥΦΑΣΜΑΤΩΝ Παναγιώτης Κουστουμπάρδης *, Νίκος Ασπράγκαθος Πανεπιστήμιο Πατρών, Τμ. Μηχανολόγων & Αεροναυπηγών Μηχανικών, Ερευνητική Ομάδα Ρομποτικής, e-mail:

Διαβάστε περισσότερα

ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ

ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ Κώστας Νάνος και Ευάγγελος Παπαδόπουλος Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Μηχανολόγων Μηχανικών, Εργαστήριο Αυτοµάτου

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA

ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA Δρ. Φασουλάς Ιωάννης, jfasoula@ee.auth.gr jfasoulas@teemail.gr Τμήμα Πληροφορικής και Επικοινωνιών Τεχνολογικό

Διαβάστε περισσότερα

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Ηλίας Κ. Ξυδιάς, Φίλιππος Ν. Αζαριάδης Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου,

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Θέματα Εξετάσεων Ασκήσεις στο Mάθημα: "ΡΟΜΠΟΤΙΚΗ Ι: ΑΝΑΛΥΣΗ, ΕΛΕΓΧΟΣ, ΕΡΓΑΣΤΗΡΙΟ" 1 η Σειρά Θεμάτων Θέμα 1-1 Έστω ρομποτικός

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Εισαγωγή στις Συναρτήσεις Πλοήγησης (Navigation Functions - NF)

Εισαγωγή στις Συναρτήσεις Πλοήγησης (Navigation Functions - NF) Εισαωή στις Συναρτήσεις Πλοήησης (Navigation Functions - NF) Οι συναρτήσεις πλοήησης είναι μια μεθοδολοία που εισήααν οι Rimon και Koditschek ια τον προραμματισμό κίνησης (motion planning) ενός ρομπότ,

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ Δ. Σαγρής, Σ. Μήτση, Κ.-Δ. Μπουζάκης, Γκ. Μανσούρ Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας, Τμήμα Μηχανολόγων

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ

ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ Ευάγγελος Παπαδόπουλος, Ιωσήφ Σ. Παρασκευάς, Θάλεια Φλέσσα, Κώστας Νάνος, Γεώργιος Ρεκλείτης και Ιωάννης Κοντολάτης Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να:

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να: ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Τίτλος Μαθήματος Μεθοδολογίες και Συστήματα Βιομηχανικής Αυτοματοποίησης Κωδικός Μαθήματος Μ3 Θεωρία / Εργαστήριο Θεωρία + Εργαστήριο Πιστωτικές μονάδες 4 Ώρες Διδασκαλίας 2Θ+1Ε Τρόπος/Μέθοδοι

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ

ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ Δημήτριος Μ. Εμίρης Τμήμα Βιομηχανικής Διοίκησης & Τεχνολογίας, Πανεπιστήμιο Πειραιώς,

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 009-0, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ Ιωάννης Νταβλιάκος, Ευάγγελος Παπαδόπουλος Σχολή Μηχανολόγων Μηχανικών ΕΜΠ, Εργαστήριο Αυτοµάτου Ελέγχου email: gdavliak@central.ntua.gr,

Διαβάστε περισσότερα

Ρομποτική II. Περιεχόμενα Μαθήματος

Ρομποτική II. Περιεχόμενα Μαθήματος Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 010-11, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ

ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ Χ.Δ. Βάλσαμος α, Β.Χ. Μουλιανίτης β, Ν.Α. Ασπράγκαθος α α Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot

ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρ. Μηχ/κών και Μηχ/κών Υπολογιστών Τομέας Σημάτων, Ελέγχου και Ρομποτικής ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot Υπεύθυνος

Διαβάστε περισσότερα

mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός

mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Μαθηματικό εκκρεμές ονομάζεται μια σημειακή μάζα, η οποία είναι αναρτημένη σε νήμα. Το ίδιο το νήμα δεν έχει δική του μάζα και το οποίο εξάλλου δεν μπορεί να επιμηκυνθεί.

Διαβάστε περισσότερα

«Εικονική Πραγματικότητα» Φυσική Αποκατάσταση

«Εικονική Πραγματικότητα» Φυσική Αποκατάσταση «Εικονική Πραγματικότητα» Φυσική Αποκατάσταση Κωνσταντίνος Λουκάς Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή ΕΚΠΑ e-mail: cloukas@med.uoa.gr Περίγραμμα Συνεισφορά VR στη φυσική αποκατάσταση Παραδείγματα

Διαβάστε περισσότερα

Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα

Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Μέρος α : Εξισώσεις κίνησης και συμπεράσματα) Α. Τι βλέπει ένας αδρανειακός παρατηρητής

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης

Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης των Δρ. Μανόλη Καββουσανού και Δρ. Γιάννη Φασουλά Το Εργαστήριο Αυτοματικής Ρομποτικής

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΑΣΚΗΣΗ 2

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΑΣΚΗΣΗ 2 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΦΑΡΜΟΓΗ 1 ΤO ΡΟΜΠΟΤ INTELLITEK ER-2u

ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΦΑΡΜΟΓΗ 1 ΤO ΡΟΜΠΟΤ INTELLITEK ER-2u Εφαρμογή 1: Το ρομπότ INTELITEK ER-2u Εργαστήριο Ευφυών Συστημάτων και Ρομποτικής Τμήμα Μηχανικών Παραγωγής και Διοίκησης Πολυτεχνείο Κρήτης www.robolab.tuc.gr, τηλ: 28210 37292 / 37314 e-mail: savas@dpem.tuc.gr,

Διαβάστε περισσότερα

2/4/2010. ρ. Φασουλάς Ιωάννης. Απαιτούµενες γνώσεις: Ανάγκη εκπαίδευσης των φοιτητών στον προγραµµατισµό και λειτουργία των βιοµηχανικών ροµπότ

2/4/2010. ρ. Φασουλάς Ιωάννης. Απαιτούµενες γνώσεις: Ανάγκη εκπαίδευσης των φοιτητών στον προγραµµατισµό και λειτουργία των βιοµηχανικών ροµπότ Τµήµα Μηχανολογίας Τ.Ε.Ι. Κρήτης ΕΚΠΑΙ ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA ρ. Φασουλάς Ιωάννης Η Ροµ οτική στις σύγχρονες βιοµηχανικές µονάδες αραγωγής

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΕΝΟΣ ΡΟΜΠΟΤ ΜΕ ΕΝΑ ΠΟ Ι

ΠΡΟΤΥΠΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΕΝΟΣ ΡΟΜΠΟΤ ΜΕ ΕΝΑ ΠΟ Ι ΠΡΟΤΥΠΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΕΝΟΣ ΡΟΜΠΟΤ ΜΕ ΕΝΑ ΠΟ Ι Νικόλαος- ηµήτριος Χερουβείµ, Παναγιώτης Χατζάκος, Αλέξανδρος Νικολακάκης και Ευάγγελος Παπαδόπουλος Σχολή Μηχανολόγων Μηχανικών ΕΜΠ, Εργαστήριο

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΕΠΙΔΕΞΙΟΤΗΤΑΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΧΡΗΣΗ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΕΠΙΔΕΞΙΟΤΗΤΑΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΧΡΗΣΗ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΕΠΙΔΕΞΙΟΤΗΤΑΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΧΡΗΣΗ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ Α. Συνοδινός, Ν.Α. Ασπράγκαθος Ερευνητική Ομάδα Ρομποτικής, Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών, Πανεπιστήμιο Πατρών,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΙΣΜΟ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΤΑ ΤΕΧΝΟΛΟΓΙΚΑ ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ-ΤΕΕ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΙΣΜΟ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΤΑ ΤΕΧΝΟΛΟΓΙΚΑ ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ-ΤΕΕ Αφιέρωμα στο Γ Συνέδριο «Τεχνολογία & Αυτοματισμός» ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΙΣΜΟ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΤΑ ΤΕΧΝΟΛΟΓΙΚΑ ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ-ΤΕΕ Νίκος Γλώσσας Καθηγητής Δευτεροβάθμιας

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

ΡΟΜΠΟΤΟΤΙΚΗ ΚΑΙ ΔΙΑΣΤΗΜΑ

ΡΟΜΠΟΤΟΤΙΚΗ ΚΑΙ ΔΙΑΣΤΗΜΑ ΡΟΜΠΟΤΟΤΙΚΗ ΚΑΙ ΔΙΑΣΤΗΜΑ Μπουρνελάς Θάνος Νικητάκης Θάνος Ραφτόπουλος Στέφανος Τσίρος Δημήτρης Ψυχάρης Ιωάννης Τμήμα Β3,Β4 ΕΙΣΑΓΩΓΗ ΚΡΙΤΗΡΙΟ ΕΠΙΛΟΓΗΣ ΘΕΜΑΤΟΣ Η καθοριστική σημασία που έχει στη σύγχρονη

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a Συστήματα Αυτομάτου Ελέγχου ΙΙ Άσκηση Θεωρείστε το σύστημα με συνάρτηση μεταφοράς: Y ( s) a s 4 3 a3s a U ( s) s a όπου οι αριθμοί α ι αντιστοιχούν στους αντίστοιχους αριθμούς των 4 πρώτων γραμμάτων του

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Χρήσιμες έννοιες Κίνηση (σχετική κίνηση) ενός αντικειμένου λέγεται η αλλαγή της θέσης του ως προς κάποιο σύστημα αναφοράς. Τροχιά σώματος ονομάζουμε τη νοητή γραμμή που δημιουργεί

Διαβάστε περισσότερα

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Ροπή Δύναμης Θα έχετε παρατηρήσει πως κλείνετε ευκολότερα μια πόρτα, αν την σπρώξετε σε μια θέση που βρίσκεται σχετικά μακρύτερα από τον άξονα περιστροφής της (τους μεντεσέδες

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS

ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS Χ.Δ. Βάλσαμος α, Β.Χ. Μουλιανίτης β, Ν.Α. Ασπράγκαθος α α Τμήμα Μηχανολόγων Μηχανικών και Αεροναυπηγών,

Διαβάστε περισσότερα

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής ΡΟΜΠΟΤΙΚΗ: ΟΡΙΣΜΟΣ: Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής, ρομπότ είναι ένας αναπρογραμματιζόμενος και πολυλειτουργικός χωρικός μηχανισμός σχεδιασμένος να μετακινεί υλικά, αντικείμενα, εργαλεία

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

ΧΕΙΡΙΣΜΟΣ ΠΑΘΗΤΙΚΟΥ ΣΩΜΑΤΟΣ ΣΤΟ ΔΙΑΣΤΗΜΑ ΑΠΟ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤ ΣΕ ΤΡΟΧΙΑ

ΧΕΙΡΙΣΜΟΣ ΠΑΘΗΤΙΚΟΥ ΣΩΜΑΤΟΣ ΣΤΟ ΔΙΑΣΤΗΜΑ ΑΠΟ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤ ΣΕ ΤΡΟΧΙΑ ΧΕΙΡΙΣΜΟΣ ΠΑΘΗΤΙΚΟΥ ΣΩΜΑΤΟΣ ΣΤΟ ΔΙΑΣΤΗΜΑ ΑΠΟ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤ ΣΕ ΤΡΟΧΙΑ Γεώργιος Ρεκλείτης και Ευάγγελος Παπαδόπουλος Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Μηχανολόγων Μηχανικών, Εργαστήριο Αυτομάτου

Διαβάστε περισσότερα

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014 Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 204 ΘΕΜΑ Ο (2,0 μονάδες) Η διαδικασία διεύθυνσης ενός αυτοκινήτου κατά την οδήγησή του μπορεί να περιγραφεί με ένα σύστημα αυτομάτου ελέγχου κλειστού βρόχου.

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε

Διαβάστε περισσότερα

Προσομοίωση, Έλεγχος και Βελτιστοποίηση Ενεργειακών Συστημάτων

Προσομοίωση, Έλεγχος και Βελτιστοποίηση Ενεργειακών Συστημάτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Μαρία Σαμαράκου Καθηγήτρια, Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας Διονύσης Κανδρής Επίκουρος Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink Δυναμική Μηχανών I 5 6 Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

Τα στάδια της υπολογιστικής προσομοίωσης επεξήγονται αναλυτικά παρακάτω

Τα στάδια της υπολογιστικής προσομοίωσης επεξήγονται αναλυτικά παρακάτω Διαδικασία υπολογιστικής προσομοίωσης Η διαδικασία της υπολογιστικής προσομοίωσης για την επίλυση πρακτικών προβλημάτων με εμπορικό λογισμικό περιλαμβάνει τα στάδια που φαίνονται στο διάγραμμα του Σχ.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2001 ΘΕΜΑΤΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 29 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΘΕΜΑ 1 ο

Διαβάστε περισσότερα

Σχεδιασμός Τροχιάς Ρομποτικών Χειριστών

Σχεδιασμός Τροχιάς Ρομποτικών Χειριστών Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 00809, 7ο Εξάμηνο Μάθημα: Ρομποτική Ι Αυτόματος Έλεγχος Ρομπότ Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

Συγκράτηση αντικειμένου από ρομποτικά δάχτυλα: Μοντελοποίηση χωρίς τη χρήση περιορισμών

Συγκράτηση αντικειμένου από ρομποτικά δάχτυλα: Μοντελοποίηση χωρίς τη χρήση περιορισμών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΙΝΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική εργασία με θέμα: Συγκράτηση αντικειμένου

Διαβάστε περισσότερα

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Βασικές έννοιες, σχέσεις και διαδικασίες Αδρανειακό

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Συστήματα Αυτομάτου Ελέγχου ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #1: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου Δημήτριος Δημογιαννόπουλος Τμήμα

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Συνάρτηση Μεταφοράς Σ.Δ.Δ. Διακριτοποίηση Συν. Μεταφοράς Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011-12 Τοπικός διαγωνισμός στη Φυσική 10-12-2011 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Κεντρική ιδέα της άσκησης Στην άσκηση μελετάμε την κίνηση ενός

Διαβάστε περισσότερα

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 467 ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ Βαρυπάτη Αθηνά Φυσικός- Επιμορφώτρια Τ.Π.Ε. avarypat@de.sch.gr Μαστραλέξης Δημήτρης Φυσικός-Επιμορφωτής Τ.Π.Ε. dmastral@de.sch.gr

Διαβάστε περισσότερα

Αυτόματος Έλεγχος. Ενότητα 11 η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης. Παναγιώτης Σεφερλής

Αυτόματος Έλεγχος. Ενότητα 11 η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης. Παναγιώτης Σεφερλής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του

Διαβάστε περισσότερα

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3) Η Επιτάχυνση η τα- Έστω r ( t ) ( t ) i ( t ) j z ( t ) k το διάνυσμα θέσης του κινητού Μ και ( t ) χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει r ( t ) r ( t ) ή πιο απλά (1) t t Άρα

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Αντίστροφη Κινηματική

Αντίστροφη Κινηματική Αντίστροφη Κινηματική Πώς να τοποθετήσω το χέρι μου εδώ; Αντίστροφη Κινηματική: Επέλεξε αυτές τις γωνίες ΥΠΑΡΧΕΙ ΛΥΣΗ; Vrml Inverse Kinema9cs - No solu9on Στόχος Για ένα στόχο έξω από τον χώρο εργασίας

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-125 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΣΚΗΣΗ 1 Μικρή σφαίρα εκτοξεύεται τη χρονική στιγμή t=0 από ορισμένο ύψος με αρχική ταχύτητα

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

1. Ηλεκτρικοί κινητήρες- σερβοκινητήρας 2. Ελεγκτές. ΜΠΔ, 9 Ο Εξάμηνο Σάββας Πιπερίδης

1. Ηλεκτρικοί κινητήρες- σερβοκινητήρας 2. Ελεγκτές. ΜΠΔ, 9 Ο Εξάμηνο Σάββας Πιπερίδης www.robolab.tuc.gr 1. Ηλεκτρικοί κινητήρες- σερβοκινητήρας 2. Ελεγκτές ΜΠΔ, 9 Ο Εξάμηνο Σάββας Πιπερίδης 1. Ηλεκτρικοί κινητήρες σερβοκινητήρας R/C σέρβο βηματικός κινητήρας 2 1. Ηλεκτρικοί κινητήρες σερβοκινητήρας

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή.

Κεφάλαιο 1 Εισαγωγή. Κεφάλαιο 1 Εισαγωγή Αντικείμενο της εργασίας είναι η σχεδίαση και κατασκευή του ηλεκτρονικού τμήματος της διάταξης μέτρησης των θερμοκρασιών σε διάφορα σημεία ενός κινητήρα Ο στόχος είναι η ανάκτηση του

Διαβάστε περισσότερα

εν υπάρχει συµφωνία ως προς τον ορισµό. 1949 Μηχανή Αριθµητικού Ελέγχου (MIT Servo Lab) Βραχίονες για χειρισµό πυρηνικού υλικού (Master Slave, 1948)

εν υπάρχει συµφωνία ως προς τον ορισµό. 1949 Μηχανή Αριθµητικού Ελέγχου (MIT Servo Lab) Βραχίονες για χειρισµό πυρηνικού υλικού (Master Slave, 1948) Κεφάλαιο 1 Εισαγωγή 1-1 Τι είναι Ροµπότ; εν υπάρχει συµφωνία ως προς τον ορισµό. Σύµφωνα µε το Αµερικανικό Ινστιτούτο Ροµποτικής (Rbt Institute f America, RIA) είναι ένας επαναπρογραµµατιζόµενος βραχίονας

Διαβάστε περισσότερα

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε Πτυχιακή εργασία ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΘΕΣΗΣ ΓΡΑΦΙΔΑΣ ΕΚΤΥΠΩΤΗ ΕΚΠΟΝΗΣΗ: ΚΟΛΙΩΤΣΑ ΜΑΡΙΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΤΣΙΡΙΓΩΤΗΣ

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 13 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ ΘΕΜΑ B1 Η κίνηση δύο ατόµων ενός µορίου µπορεί να περιγραφεί προσεγγιστικά από ένα a 1 x ax δυναµικό της µορφής V = +, a >, όπου x> η σχετική απόσταση

Διαβάστε περισσότερα

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓ. ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία: 31 /05 / 2011 Διάρκεια:

ΛΥΚΕΙΟ ΑΓ. ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία: 31 /05 / 2011 Διάρκεια: ΛΥΚΕΙΟ ΑΓ. ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία: 31 /05 / 2011 Διάρκεια: 10.30-13.00 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 10

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

3 η Εργαστηριακή Άσκηση

3 η Εργαστηριακή Άσκηση 3 η Εργαστηριακή Άσκηση Βρόχος υστέρησης σιδηρομαγνητικών υλικών Τα περισσότερα δείγματα του σιδήρου ή οποιουδήποτε σιδηρομαγνητικού υλικού που δεν έχουν βρεθεί ποτέ μέσα σε μαγνητικά πεδία δεν παρουσιάζουν

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1

Συστήματα Αυτομάτου Ελέγχου 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 1: Βασικές έννοιες Μπλόκ διαγράμματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής Τμήματος Μηχανικών

Διαβάστε περισσότερα

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: 1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Αυτόματος Έλεγχος Συστημάτων Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski 1 Διαγράμματα Minkowski Σκοποί της διάλεξης 12: Να εισάγει τα διαγράμματα Minkowski. 18.1.2012 Να περιγράψει την ιδέα του ταυτοχρονισμού στην θεωρία της σχετικότητας με μεθόδους γεωμετρίας. Να εισάγει

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της λειτουργίας της γεννήτριας συνεχούς ρεύματος

Διαβάστε περισσότερα

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ α) Η παράγωγος μιας συνάρτησης = f() σε ένα σημείο 0 εκφράζει το ρυθμό μεταβολής της συνάρτησης (ή τον παράγωγο αριθμό) στο σημείο 0. β) Γραφικά, η παράγωγος της συνάρτησης στο σημείο

Διαβάστε περισσότερα

Ερωτήσεις για το μάθημα Μη Γραμμικά ΣΑΕ και Εφαρμογές: 10, 11, 15, 16, 17,18

Ερωτήσεις για το μάθημα Μη Γραμμικά ΣΑΕ και Εφαρμογές: 10, 11, 15, 16, 17,18 ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Διευθυντής Γ.Π. Παπαβασιλόπουλος Τίτλος Άσκησης: Sampling, Quantization, Jitter noise, Chaos Επιμέλεια: Ι. Κορδώνης Υ.Δ., Dr Ε. Σαρρή Ερωτήσεις για το μάθημα Προχωρημένες

Διαβάστε περισσότερα

Κεφάλαιο 11. Κυκλώματα Χρονισμού

Κεφάλαιο 11. Κυκλώματα Χρονισμού Κεφάλαιο 11. Κυκλώματα Χρονισμού Σύνοψη Στο κεφάλαιο αυτό αναλύεται η λειτουργία των κυκλωμάτων χρονισμού. Τα κυκλώματα αυτά παρουσιάζουν πολύ μεγάλο πρακτικό ενδιαφέρον και απαιτείται να λειτουργούν με

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3. Υλικό σημείο μάζας m και ταχύτητας υ κινείται σε περιφέρεια οριζόντιου κύκλου ακτίνας r, όπως στο σχήμα:

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3. Υλικό σημείο μάζας m και ταχύτητας υ κινείται σε περιφέρεια οριζόντιου κύκλου ακτίνας r, όπως στο σχήμα: ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΛΙΟΥ 200 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Για

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

1) Τι είναι ένα Σύστημα Αυτομάτου Ελέγχου 2) Παραδείγματα εφαρμογών Συστημάτων Ελέγχου 3) Τι είναι ανατροφοδότηση (Feedback) και ποιες είναι οι

1) Τι είναι ένα Σύστημα Αυτομάτου Ελέγχου 2) Παραδείγματα εφαρμογών Συστημάτων Ελέγχου 3) Τι είναι ανατροφοδότηση (Feedback) και ποιες είναι οι 1) Τι είναι ένα Σύστημα Αυτομάτου Ελέγχου 2) Παραδείγματα εφαρμογών Συστημάτων Ελέγχου 3) Τι είναι ανατροφοδότηση (Feedback) και ποιες είναι οι επιπτώσεις της 4) Μαθηματικό υπόβαθρο για την μελέτη των

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Σελίδα από ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ () ΘΕΜΑ Α Α. Με την πάροδο του χρόνου και καθώς τα αμορτισέρ ενός αυτοκινήτου παλιώνουν και φθείρονται:

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

r r r r r r r r r r r

r r r r r r r r r r r ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΡΩΓΜΩΝ ΣΕ ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ ΜΕ ΘΕΡΜΟΓΡΑΦΙΑ ΔΙΝΟΡΡΕΥΜΑΤΩΝ

ΑΝΙΧΝΕΥΣΗ ΡΩΓΜΩΝ ΣΕ ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ ΜΕ ΘΕΡΜΟΓΡΑΦΙΑ ΔΙΝΟΡΡΕΥΜΑΤΩΝ ΑΝΙΧΝΕΥΣΗ ΡΩΓΜΩΝ ΣΕ ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ ΜΕ ΘΕΡΜΟΓΡΑΦΙΑ ΔΙΝΟΡΡΕΥΜΑΤΩΝ Ν. Τσόπελας, Ι. Σαρρής, Ν.Ι. Σιακαβέλλας Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών, Πανεπιστήμιο Πατρών, 26500 Πάτρα Περίληψη Η ανίχνευση

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ

ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ Δρ Γιώργος Α. Δημητρίου Ευφυή Κινούμενα Ρομπότ 139 Ρομποτικός Εντοπισμός Θέσης Δεδομένα Χάρτης του περιβάλλοντος Ακολουθία παρατηρήσεων Ζητούμενο Εκτίμηση της θέσης του

Διαβάστε περισσότερα