ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ"

Transcript

1 ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ Ξανθή Παπαγεωργίου, Παναγιώτης Αρτεμιάδης, Κωνσταντίνος Κυριακόπουλος Σχολή Μηχανολόγων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο ΠΕΡΙΛΗΨΗ Νευρο-ρομποιικ ά είναι τα συστήματα εκείνα που ενσωματώνουν την γνώση μας για τα βιολογικά συστήματα, σε μηχανές που είναι είτε παθητικές είτε επενεργούμενες. Στην παρούσα εργασία το ερευνηιικ ό ενδιαφέρον επικεντρώνετατ στην χρήση μορφών διασύνδησης μεταξύ του ανθρώυου και των ρομπότ, που βασίζονται σε σήματα που μετρώνται από τον ίδιο τον άνθρωπο. Ειδικόιερα, ηλεκτρομυογραφικά σήματα καταγράφοντατ επιφανειακά από τους σκελειικ ούς μύες του ανθρωπίνοπ άνω άκρου. Στη συνέχεια τα σήματα αυτά, μέσω κατάλληλων μοντέλων μεταφράζονται στην αντίσιοιχ η κίνηση του άνω άκρου, η οποία τελικά χρησιμοποτείται για τον έλεγχο σε πραγματικό χρόνο ενός ρομποιικ ού βραχίονα 7 βαθμών ελευθερίας στον ιρισδιά σια το χώρο. Σε περιπιώσεις όπου η κίνηση του βραχίονα γίνεται σε περιβάλλον όπου συνυπάρχουν διάσπαρτα αντικείμενα εμπόδια, αναπτύσσονται οι κατάλληλες μεθοδολογίες ώστε να επττρέποπν στο ρομπότ να είναι υποχωρηιικ ό προς συγκεκριμένες επιφάνειες, ενώ ταυτόχρονα να αποφεύγει τα εμπόδια που μπορούν να αναχαττίσουν την κίνησή του. Λέξεις κλειδιά: νευρο-ρομποιικ ή, ηλεκτρομυογράφημα, προγραμμαιισμ ός κίνησης 1 ΕΙΣΑΓΩΓΗ Η παρούσα εργασία πραγματεύεται μια σημανιι κή πτυχή του τομέα της νευρορομποιικ ής, αυτήν της διασύνδησης της ρομποιικ ής και ειδικόιερ α των ρομποιικ ών συστημάτων με τον ίδιο τον άνθρωπο. Πτο συγκεκριμένα, στην παρούσα εργασία χρησιμοποτείτατ το σήμα που καταγράφεται επιφανειακά από τους σκελειικ ούς μύες του άνω άκρου, το λεγόμενο ηλεκτρομυογραφικό σήμα, ή ηλεκτρομυογράφημα. Το σήμα αυτό, με την κατάλληλη επεξεργασία, αποκωδικοποτείτατ σε κίνηση του άνω άκρου, με σκοπό να χρησιμοποιεθεί ως μεταβλητή ελέγχου ρομποιικ ών συστημάτων. Συγχρόνως υλοποιούνται κατάλληλοι ελεγκτές ώστε να είναι εφικτή η αποφυγή των εμποδίων που περιέχονια ι στον περιβάλλοντα χώρο, και να μπορεί ιο ρομπότ να προσεγγίσει και να αλληλεπιδράσει σε καμπυλωμένες επιφάνειες. Το παραπάνω σενάριο λειιου ργίας απεικονίζετατ στο Σχήμα 1. Τα ηλεκτρομυογραφικά σήματα έχουν χρησιμοποιεθεί θιο παρελθόν για τον έλεγχο ρομποιικ ών συστημάτων. Ένα τέιοιο παράδειγμα αποτελεί η εργασία (Fukuda, 2003), όπου η διεύθυνση κίνησης πρηνισμού/υπιια σμού ενός ρομποιικ ού καρπού, ελεγχόταν από ηλεκτρομυογραφικά σήματα των μυών του πήχη. Πολύ συχνά σιις παλατότερες 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

2 εργασίες χρησιμοποιούνται ηλεκτρομυογραφικά σήματα για τον έλεγχο ρομποιικ ών χεριών (Bitzer, 2006). Σε όλες ιις προαναφερσείσες εργασίες η αποκωδικοποίηση των ηλεκτρομυογραφικών σημάτων οδηγούσε σε διακρττές αποφάσεις, για παράδειγμα κάμψη ή έκταση των δακτύλων, και όχι σε μια συνεχή περιγραφή της κίνησης. Στην παρούσα εργασία ερευνάται ο συνεχής έλεγχος των ρομποιικ ών συστημάτων μέσω του ηλεκτρομυογραφήματος. Γι' αυτό το λόγο, απαιτείται η εκτίμηση της συνεχής κίνησης του άνω άκρου, ώστε η τελευταία να χρησιμοποιεθεί για τον εύρωστο και ακριβή έλεγχο ενός ρομποιικ ού βραχίονα. Σχήμα 1: Αναπαράσταση πραγματικού σεναρίου πποκατάστασης άνω άκρων. Σχήμα 2: Ο χρήστης κινεί το άνω άκρο στο χώρο, ενώ οι 4 γωνίες του ώμου και του αγκώνα ππολογίζονται μέσω των μαγνητικών αισθητήρων θέσης. Σε τέτοιου είδους συστήματα που χρησιμοποιούνται σήματα από τον άνθρωπο υπάρχει αυξημένη δυσκολία να ελεγχθεί με ακρίβεια το ρομπότ, ιδιαίτερα σε περιπιώσεις όπου είτε το περιβάλλον του ρομπότ είναι γεμάτο με αντικείμενα-εμπόδια μη-αντιληπτά από τον άνθρωπο, ηίτη η μορφολογία του ρομπότ είνατ διαφορειικ ή αυτής του ανθρώυου. Ευομένως είναι πολύ σημανιι κό να αναπτύξουμε ιις μεθοδολογίες εκείνες που θα μας επττρέψουν να ελέγξουμε το ρομπότ, κάνοντάς το να αποφεύγει ιις συγκρούσεις με τον περιβάλλοντα χώρο. 2 ΜΕΘΟΔΟΛΟΓΙΑ 2.1 Το τλεκτρομυογράφημα ως μεταβλττή ελέγχου Το ηλεκτρομυογράφημα είναι το δυναμικό που μετράται επιφανειακά από τους σκελειικ ούς μύες, όταν αυτοί συστέλλονται με σκοπό την παραγωγή δύναμης και άρα κίνησης. Σι ην παρούσα εργασία μας ενδιαφέρει η κίνηση του άνω άκρου στον τρτσδτάστατο χώρο. Επομένως, 11 συνολικά μύες που ενεργούν σιον ώμο και στον αγκώνα επιλέγονται να καταγραφούν ως οι κύριοι μύες για την εν λόγω κίνηση. Η άρθρωση του καρπού παραλείπεται για λόγους ευκολίας. Ο στόχος είναι η αποκωδικοποίηση του ηλεκτρομυογραφικού σήματος σε κίνηση. Αυτό θα επττευχθεί με την χρήση ενός μαθημαιικ ού μοντέλου, που θα μπορεί να εκπαιδεύεται κατάλληλα ώστε να εκιιμ ά την κίνηση του άνω άκρου βασισμένο μόνο στο ηλεκτρομυογράφημα. Για την εκπαίδευση του συστήματος αποκωδικοποίησης ηλεκτρομυογραφικών σημάτων απαττείται η σύγχρονη συλλογή σήματος από τους 11 εμπλεκόμενους μύες καθώς και της αντίστοιχης κίνησης του άνω άκρου. Για την καταγραφή του 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

3 ηλεκτρομυογραφήματος χρησιμοποτείτατ κατάλληλο σύστημα καταγραφής (Bagnoli-16 Desktop EMG System, Delsys Inc., Boston, MA, USA) και επιφανειακά ηλεκιρόδι α καταγραφής. Για την καταγραφή της κίνησης χρησιμοποτείτατ σύστημα μαγνηιι κών αιθθητήρων σέσης και προσανατολισμού (Isotrak II, Polhemus Inc, USA). Το σύστημα αποτελείται από δύο αισθητήρες, των οποίων, ε σέση και ο προσανατολισμός ως προς το αδρανειακό σύστημα αξόνων του αιθθητήρα, παρέχεται με συχνότητα 30 Hz. Τοποθετώντας το αδρανειακό σύστημα στον ώμο του χρήστη, και τους δύο αιθθητήρες στον αγκώνα και τον καρπό ανιίσιοιχ α, μπορούμε να υπολογίσουμε ιις 4 γωνίες των αρθρώσεων του ώμου και του αγκώνα, όπως αυτές ορίζονται στο Σχήμα 2, κάνοντας χρήση των κτνημαιικ ών εξισώσεων. Στα ηλεκτρομυογραφικά σήματα, μετά την αρχική επεξεργασία, εφαρμόζεται μια μεθοδολογία απεικόνισης σε χώρο μικρότηρης διάστασης. Αυτό συμβαίνει επειδή, όπως είναι γνωστό από την βιβλιογραφία (d'avella, 2006), οι μύες δρουν συλλογικά για την παραγωγή κίνησης. Το ίδιο συμβαίνει και για ιε ν κίνηση του άνω άκρου. Ας ορίσουμε u L 2 και y L 2 την αναπαράσταση του ηλεκτρομυογραφήματος και της κίνησης σε χώρο μικρότηρης διάστασης ανιίσιοιχ α. Το μοντέλο αποκωδικοποίησης του u L σε y L περτγράφεται από την παρακάτω εξίσωση: x k 1 Ax k Bu Lk w k y Lk Cx k k ( 1) όπου x d ένα διάνυσμα κρυφών μεταβλητών, w, μεταβλητές θορύβου και A, B, C πίνακες που περιγράφουν την δυναμική του διανύσματος των κρυφών μεταβλητών, την συνεισφορά του ηλεκτρομυογραφήματος σε αυτήν, καθώς επίσης και την σχέση του διανύσματος με την κίνηση του άνω άκρου ανιίσιοιχ α. Οι πίνακες αυτοί πρέπει να υπολογιθθούν χρησιμοποτώντας δεδομένα εκπαίδευσης, δηλαδή ηλεκτρομυογραφικά σήματα και αντίσιοι χες μεταβλητές κίνησης. Κατά τη διάρκεια της εκπαίδευσης του συστήματος ο χρήστης κινεί ιο άνω άκρο σε τυχαίες σέσεις στο χώρο. Ηλεκτρομυογραφικά σήματα καταγράφονται, καθώς και οι γωνίες των αρθρώσεων, έτστ ώστε να χρησιμοποιηθούν ως δεδομένα εκπαίδευσης για το μοντέλο (1). Μετά την εκπαίδευση του μοντέλου, ξεκινά η φάση τηλεχειρισμού του ρομποιικ ού βραχίονα σε πραγματικό χρόνο. Σε αυτή την φάση, τα ηλεκτρομυογραφικά σήματα που καταγράφονται από τους 11 μύες εισάγονται στο μοντέλο (1). Κάνοντας χρήση των εξισώσεων της (1), τελικά εκιιμ άται το διάνυσμα y L που περιγράφει ιε ν κίνηση του άνω άκρου. Ο ρομποιικ ός βραχίονας ελέγχεται τελικά με κατάλληλο ελεγκτή ροπής ώστε να κινηθεί βασισμένος σιε ν εκτίμηση της τροχιάς του ανθρωπίνου άνω άκρου. 2.2 Προγραμματισμός κίνησης Είναι πολύ σημανιικ ός ο σχεδιασμός και η ανάπτυξη ελεγκτών, που θα επττρέποπν στο ρομποιικ ό βραχίονα να εκτελεί τα καθήκοντά του πάνω σε επιφάνειες, να είναι υποχωρηιικ ός σε συγκεκριμένες καταστάσεις και ταυτόχρονα να αποφεύγει ιις συγκρούσεις με τα αντικείμενα του χώρου μέσα στον οποίο κτνείτατ (Patel, 2005), (Zhang Y, 2004). Επίσης, ένα πολύ σημανιικ ό θέμα άπτεται των ορίων, τα οποία έχουν επιβληθεί από τον κατασκευαστή του ρομποιικ ού βραχίονα, και με βάση τα οποία υπάρχει περιορισμός στο ποια είναι η μέγτστη ταχύτητα με την οποία τα μηχανικά μέρη 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

4 του ρομπότ μπορούν να εκτελέσουν μία κίνηση. Για να ανταπεξέλθουμε σε αυτήν την δυσκολία, έχουμε εντάξει αυτούς τους περιορισμούς στον σχεδιασμό του ελεγκτή του ρομπότ. Η προσπάθεια υλοποίησης των ανωτέρω συνοψίζεται στο πρόβλημα σχεδιασμού ελεγκτή για ρομποιικ ό βραχίονα με πλεονάζοντες βαθμούς, το εύρος της κίνησης των συνδέσμων του οποίου πρέπει να παραμένουν μέσα σε προκαθορισμένα όρια (τα οποία έχει σέσει ο κατασκευαστής). Προκειμένου να επττευχθεί ο στόχος μας, υλοποιούμε συναρτήσεις πλοήγησης (Rimon, 1992), αναλύουμε το σύστημα κλειστού βρόχου και ελέγχουμε την ευστάθεια του συστήματος. Το σύστημα με τη χρήση των ελεγκτών μας, είναι ολικά ομοιόμορφα ασυμπιωιικ ά ευσταθές και σέβετατ όλους οι μηχανολογικούς περιορισμούς. Επιπλέον είναι εφικτό αφενός να σταθεροποιήθοπμε το άκρο του ρομποιικ ού βραχίονα σε ένα συγκεκριμένο σεμείο ή να το οδηγήσουμε ώστε να ακολουσήσει με επττυχία μία προκαθορισμένη τροχιά, πάνω σε μία δυσδιάστατη πολυπλοκότητα (επιφάνεια) που βρίσκεται στον τρτσδτάστατο χώρο και να αποφεύγει όλα τα εμπόδια του περιβάλλοντος ΣΥΝΑΡΤΗΣΗ ΠΛΟΗΓΗΣΗΣ Οι ελεγκτές που υλοποιούμε βασίζονια ι στη δημιουργία τεχνητού δυναμικού πεδίου το οποίο δημιουργείτατ από τη συνάρτηση πλοήγησης και που καθορίζεται στην ουσία από την επιθυμητή σέση όπου το ρομπότ θέλουμε να μεταβεί και από τα εμπόδια που υπάρχουν μέσα στο χώρο δράσης του και που πρέπει να αποφύγει. Το επιθυμητό σεμείο γτα το ρομπότ παράγει το ελκιικ ό δυναμικό που θα τραβήξει το ρομπότ στην τελική σέση, ηνώ τα εμπόδια παράγουν ένα απωθητικό δυναμικό που ωθεί το ρομπότ μακριά του. Η αρνηιικ ή κλίση του συνολικού δυναμικού αντιμετωπίζεται ως μία τεχνητή δύναμη που εφαρμόζεται στο ρομπότ. Σε κάθε σέση του ρομπότ, η κατεύθυνση αυτής της δύναμης θεωρείτατ η πιο πιθανή κατεύθυνση της κίνησης. Η συνάρτηση πλοήγησης μας βοηθά θτον προγραμμαιισμ ό της κίνησης του ρομποιικ ού βραχίονα, οδηγεί το άκρο του ρομπότ προς την επιφάνεια και με τη χρήση του ελεγκτή καθορίζεται η κίνησή του πάνω σε αυτήν. Η πλοήγηση κατά μήκος της επιφάνεια περιλαμβάνει αφενός την σταθηροποίηθη σε κάποιο σεμείο ιε ς, και αφετέρου την παρακολούσηση προκαθορισμένης τροχτάς. Ο όγκος του ρομποιι κού βραχίονα στο χώρο δράσης του ρομπότ μπορεί να αναπαρασταθεί ως σεμείο σε ένα διαφορειικ ό χώρο εργασίας, ακολουθώντας μία σειρά από μετασχημαιισμ ούς. Τα εμπόδια του χώρου ακολουθούν τους ίδιους μετασχημαιισμ ούς και με αυτόν τον τρόπο κατασκευάζεται η συνάρτηση πλοήγησης. Η συνάρτηση πλοήγησης που χρησιμοποιούμε ορίζεια ι στη γενική μορφή της ως εξής : d d B 1 m όπου οι γωνίες των συνδέσμων του ρομπότ, m είναι οι βαθμοί ελευθερίας του ρομπότ, γ d είναι η συνάρτηση που μετρά την απόσταση από την επιθυμητή σέση όπου το ρομπότ θέλουμε να μεταβεί (δημιουργεί ιο ελκιικ ό πεδίο), B ws O s είναι ένα γινόμενο συναρτήσεων που αναπαριστούν εμπόδια και περιορισμούς στην κίνηση του ρομπότ (δημιουργεί ιο απωθηιικ ό δυναμικό). Κάθε μία από αυτές ιις συναρτήσεις έχει τους εξής ρόλους: η συνάρτηση β ws μας εξασφαλίζει όιι το ρομπότ θα παραμείνει μέσα στο χώρο δράσης στο οποίο επττρέπεται να κινηθεί, η συνάρτηση β Ο εξασφαλίζει όιι κάθε τμήμα του ρομπότ δεν κινδυνεύει να έρθει σε ( 2) 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

5 επαφή με το περιβάλλον, γίνεται δηλαδή αποφυγή σύγκρουσης σε όλα τα τμήματα του ρομποιικ ού βραχίονα και όχι μόνο στο άκρο του, ε συνάρτηση β s μοντελοποιεί ια ιδιόμορφα σεμεία ιε ς κινημαιικ ής ως τεχνητά εμπόδια του χώρου δράσης του ρομπότ και μας εγγυάται όιι το ρομπότ θα αποφύγει τα σεμεία αυτά. Τέλος με κ αναπαριστούμε μία θειικ ή και πραγματική παράμετρο, χρήσιμε για την ρύθμιση της συμπεριφοράς του συστήματος. 3 ΑΠΟΤΕΛΕΣΜΑΤΑ Στο Σχήμα 3 φαίνεται η πραγματική και η εκτίμηση της κίνησης του άνω άκρου μέσω των ηλεκτρομυογραφικών σημάτων και του μοντέλου (1). Τα γραφήματα απεικονίζουν την τροχιά του ανθρωπίνοπ χεριού όπως αυτή καταγράφεται από το μαγνηιικ ό σύστημα θέσης στους 3 άξονες του χώρου κίνησης, και την εκτίμηση της τροχιάς μέσω του μοντέλου αποκωδικοποίησης (1). Όπως είναι φανερό από τα γραφήματα, η εκτίμηση της τροχιάς της κίνησης είναι πολύ ακριβής, και δύναται να χρησιμοποιεθεί για τον έλεγχο του ρομποιικ ού βραχίονα, εφόσον η συχνότητα στην οποία γίνεται η εκτίμηση της κίνησης είναι ίση με αυτήν της καταγραφής του ηλεκτρομυογραφήματος, δηλαδή 1 khz. Πραγματοποιήσαμε πειράματα με σκοπό να επαληθεύσουμε την ικανότητα εφαρμογής και την αποτελεσμαιι κότητα της προιηινόμηνης μεθοδολογίας. Ο ρομποιικ ός βραχίονας στον οποίο υλοποιήσαμε τα πειράματα είναι το μοντέλο της Mitsubishi PA10-7C, με m=7 βαθμούς ελευθερίας, στη σέση που απεικονίζει η εικόνα (Σχήμα 4). Στα παρακάτω σχήματα φαίνονται γραφικές αναπαραστάσεις των αποτελεσμάτων με τη χρήση του Matlab, από διαφορειικ ές οπιικ ές γωνίες σε κάθε μία εικόνα. Η τροχιά του άκρου του ρομπότ σχεδιάζεται με την μπλε καμπύλη. Αρχικά το ρομπότ κινείται προς την επιθυμητή σέση (Σχήμα 4) και στη συνέχεια ακολουθεί μία προκαθορισμένη ημττονοητδή τροχιά (Σχήμα 5) πάνω στην επιφάνεια (κίιρινη καμπύλη), ενώ έχει αποφύγει όλα τα εμπόδια του περιβάλλοντος αλλά και τα εμπόδια που είναι ιο ποθετημένα πάνω στην ηπιφάνεια. Σχήμα 3. Πραγματική (real) και εκτιμόμενη (estimates) κίνηση του άνω άκρου μέσω του ηλεκτρομυογραφήματος στους 3 άξονες x, y, z. 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

6 Initial Configuration Trajectory Tracking Closed surface Initial Configuration Closed surface Target Configuration Σχήμα 4: Αναπαράσταση αποτελεσμάτων για σταθεροποίηση του άκρου σε σημείο. Σχήμα 5: Αναπαράσταση αποτελεσμάτων για παρακολούθηση τροχιάς. 4 ΣΥΜΠΕΡΑΣΜΑΤΑ Οι μεθοδολογίες αποκωδικοποίησης κίνησης που αναπτύξαμε επττρέπουν την κίνηση του ρομποιικ ού βραχίονα βασισμένη σε σήματα που προέρχονται από τον ίδιο ιον άνθρωπο, ενώ συγχρόνως είναι εφικτό να αποφεύγονται τα εμπόδια που υπάρχουν στο χώρο δράσης του. Οι μεθοδολογίες μπορούν να εφαρμοθθούν σε ρομποιικ ά συστήματα αποκατάστασης κινηιικ ών δυσκολιών που θα ελέγχονται από σήματα προερχόμενα από τον άνθρωπο, διαιε ρώντας την επιθυμητή αυτονομία και ασφάλεια. 5 ΒΙΒΛΙΟΓΡΑΦΙΑ S. Bitzer and P. van der Smagt, Learning EMG control of a robotic hand: towards active prostheses, Proc. of IEEE Int. Conf. on Robotics and Automation, pages , A. d Avella, A. Portone, L. Fernandez, and F. Lacuaniti, Control of fast-reaching movements by muscle synergy combinations, The Journal of Neuroscience, vol. 25, no. 30, pp , O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka, A human-assisting manipulator teleoperated by EMG signals and arm motions, IEEE Trans. on Robotics and Automation, 19(2): , Patel R., Shadpey F., Ranjbaran F., Angeles J. (2005), A collision avoidance scheme for redundant manipulators: Theory and experiments, Journal of Robotic Systems, vol. 22, no. 12, pp Rimon E. and Koditschek D. (1992), Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp Zhang Y., Wang J. (2004), Obstacle avoidance for kinematically redundant manipulators using a dual neural network, IEEE Transactions on Systems, Man, & Cybernetics - Part B: Cybernetics, vol. 34, no. 1. 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

Εισαγωγή στην Ρομποτική

Εισαγωγή στην Ρομποτική Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ

ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ Ευάγγελος Παπαδόπουλος, Ιωσήφ Σ. Παρασκευάς, Θάλεια Φλέσσα, Κώστας Νάνος, Γεώργιος Ρεκλείτης και Ιωάννης Κοντολάτης Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ

ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ Δημήτριος Μ. Εμίρης Τμήμα Βιομηχανικής Διοίκησης & Τεχνολογίας, Πανεπιστήμιο Πειραιώς,

Διαβάστε περισσότερα

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να:

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να: ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Τίτλος Μαθήματος Μεθοδολογίες και Συστήματα Βιομηχανικής Αυτοματοποίησης Κωδικός Μαθήματος Μ3 Θεωρία / Εργαστήριο Θεωρία + Εργαστήριο Πιστωτικές μονάδες 4 Ώρες Διδασκαλίας 2Θ+1Ε Τρόπος/Μέθοδοι

Διαβάστε περισσότερα

ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ

ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ Δρ Γιώργος Α. Δημητρίου Ευφυή Κινούμενα Ρομπότ 139 Ρομποτικός Εντοπισμός Θέσης Δεδομένα Χάρτης του περιβάλλοντος Ακολουθία παρατηρήσεων Ζητούμενο Εκτίμηση της θέσης του

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ)

Πανεπιστήμιο Κύπρου. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) 26/01/2014 Συνεισφορά του κλάδους ΗΜΜΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ευρύ φάσμα γνώσεων και επιστημονικών

Διαβάστε περισσότερα

Εφαρμογή RFID Αναγνωστών σε Ρομποτικούς Βραχίονες για Βελτιστοποίηση Απόδοσης ηης Γραμμής Παραγωγής

Εφαρμογή RFID Αναγνωστών σε Ρομποτικούς Βραχίονες για Βελτιστοποίηση Απόδοσης ηης Γραμμής Παραγωγής Εφαρμογή RFID Αναγνωστών σε Ρομποτικούς Βραχίονες για Βελτιστοποίηση Απόδοσης ηης Γραμμής Παραγωγής Μαρτίνη Αδαμαντίνη, Ζαχαρής Αλέξανδρος Τμήμα Μηχανικών Υπολογτστών,Τηλεπικοινωνιών και Δικτύων Πανεπτστήμιο

Διαβάστε περισσότερα

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής ΡΟΜΠΟΤΙΚΗ: ΟΡΙΣΜΟΣ: Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής, ρομπότ είναι ένας αναπρογραμματιζόμενος και πολυλειτουργικός χωρικός μηχανισμός σχεδιασμένος να μετακινεί υλικά, αντικείμενα, εργαλεία

Διαβάστε περισσότερα

Η Ελληνική Πύλη Ρομποτικής στην 77η ΔΕΘ

Η Ελληνική Πύλη Ρομποτικής στην 77η ΔΕΘ Η Ελληνική Πύλη Ρομποτικής στην 77η ΔΕΘ Για δεύτερη συνεχόμενη χρονιά η Διεθνής Έκθεση Θεσσαλονίκης φιλοξένησε την Ελληνική Πύλη Ρομποτικής σε εκθεσιακό περίπτερο στο οποίο παρουσιάστηκαν ρομποτικές εφαρμογές

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΑΥΤΟΝΟΜΗ ΠΛΟΗΓΗΣΗ ΜΗ ΕΠΑΝΔΡΩΜΕΝΩΝ ΕΛΙΚΟΠΤΕΡΩΝ

ΑΥΤΟΝΟΜΗ ΠΛΟΗΓΗΣΗ ΜΗ ΕΠΑΝΔΡΩΜΕΝΩΝ ΕΛΙΚΟΠΤΕΡΩΝ ΑΥΤΟΝΟΜΗ ΠΛΟΗΓΗΣΗ ΜΗ ΕΠΑΝΔΡΩΜΕΝΩΝ ΕΛΙΚΟΠΤΕΡΩΝ Νίκος Ι. Βιτζηλαίος, Νίκος Χρ. Τσουρβελούδης Εργαστήριο Ευφυών Συστημάτων & Ρομποτικής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Πολυτεχνείο Κρήτης, 731, Χανιά,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ. Νίκος Αγγελούσης, Επ. Καθηγητής

Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ. Νίκος Αγγελούσης, Επ. Καθηγητής Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ Νίκος Αγγελούσης, Επ. Καθηγητής Γενικά Οι ικανότητες για στάση και για βάδισµα αποτελούν βασικές προϋποθέσεις για την ποιότητα

Διαβάστε περισσότερα

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack Χλης Νικόλαος-Κοσμάς Περιγραφή παιχνιδιού Βlackjack: Σκοπός του παιχνιδιού είναι ο παίκτης

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ROBOT HANDS WITH APPLICATION TO PROSTHESES

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ROBOT HANDS WITH APPLICATION TO PROSTHESES ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΕΡΓΑΣΙΑ: ΕΜΒΙΟΜΗΧΑΝΙΚΗ & ΒΙΟΙΑΤΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ROBOT HANDS WITH APPLICATION TO PROSTHESES Advisor: Prof. Leonidas G. Alexopoulos Author: Kontoudis George In the:

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Δείκτες Επιτυχίας (Γνώσεις και υπό έμφαση ικανότητες) Παρεμφερείς Ικανότητες (προϋπάρχουσες

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2001 ΘΕΜΑΤΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 29 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΘΕΜΑ 1 ο

Διαβάστε περισσότερα

Εισαγωγή στη Ρομποτική (για αρχάριους) Δημήτρης Πιπερίδης Διαδραστική Έκθεση Επιστήμης & Τεχνολογίας Ίδρυμα Ευγενίδου

Εισαγωγή στη Ρομποτική (για αρχάριους) Δημήτρης Πιπερίδης Διαδραστική Έκθεση Επιστήμης & Τεχνολογίας Ίδρυμα Ευγενίδου Εισαγωγή στη Ρομποτική (για αρχάριους) Δημήτρης Πιπερίδης Διαδραστική Έκθεση Επιστήμης & Τεχνολογίας Ίδρυμα Ευγενίδου Τι είναι ένα ρομπότ; Δεν υπάρχει σαφής ορισμός. Ορισμός: Μια μηχανική κατασκευή που

Διαβάστε περισσότερα

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Περίληψη Τριγωνομετρικές Συναρτήσεις Κυματική Παλμογράφος STEM Εφαρμογές

Διαβάστε περισσότερα

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε μια από αυτές βαθμολογείται με 0 βαθμούς.. Χρησιμοποιήστε μόνο το στυλό που υπάρχει

Διαβάστε περισσότερα

Μηχανολόγος Μηχανικός στο Α.Π.Θ.

Μηχανολόγος Μηχανικός στο Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Μηχανολόγος Μηχανικός στο Α.Π.Θ. Παναγιώτης Σεφερλής Αναπληρωτής Καθηγητής Έχεις το «μικρόβιο» του Μηχανικού; Dilbert 2 Επιστήμη του Μηχανολόγου

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

O Ψηφιακός Παλμογράφος

O Ψηφιακός Παλμογράφος Τεχνική Εκπαίδευση O Ψηφιακός Παλμογράφος Παναγιώτης Γεώργιζας BEng Cybernetics with Automotive Electronics MSc Embedded Systems Engineering Θέματα που θα αναλυθούν www.georgizas.gr 1. Γενικά περί παλμογράφων

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Φυσική Β Γυμνασίου Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 2 Εισαγωγή 1.1 Οι φυσικές επιστήμες και η μεθοδολογία τους Φαινόμενα: Μεταβολές όπως το λιώσιμο του πάγου, η

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

Ανάπτυξη Υβριδικής Αρχιτεκτονικής Πλοήγησης Αυτόνομων Υποβρυχίων Οχημάτων με Ασαφή Λογική και Γενετικούς Αλγόριθμους

Ανάπτυξη Υβριδικής Αρχιτεκτονικής Πλοήγησης Αυτόνομων Υποβρυχίων Οχημάτων με Ασαφή Λογική και Γενετικούς Αλγόριθμους Πολυτεχνείο Κρήτης Ανάπτυξη Υβριδικής Αρχιτεκτονικής Πλοήγησης Αυτόνομων Υποβρυχίων Οχημάτων με Ασαφή Λογική και Γενετικούς Αλγόριθμους Διατριβή που υπεβλήθη για την μερική ικανοποίηση των απαιτήσεων για

Διαβάστε περισσότερα

Το Περιορισμένο Πρόβλημα Των Τριών Σωμάτων Στο Σύστημα Γη Σελήνη

Το Περιορισμένο Πρόβλημα Των Τριών Σωμάτων Στο Σύστημα Γη Σελήνη Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης χολή Θετικών Επιστημών Τμήμα Φυσικής Το Περιορισμένο Πρόβλημα Των Τριών ωμάτων το ύστημα Γη ελήνη - - - - - - - - Διπλωματική Εργασία Αντωνιάδης Παναγιώτης Δημήτριος

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Τζ. Τσιτοπούλου, Ι. Χριστακόπουλος] Για

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Σχολή Τεχνολογικών Εφαρμογών Τμήμα Αυτοματισμού Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Επιμέλεια: Ξανθή Παπαγεωργίου E-mail: xanthi.papageorgiou@gmail.com Τμήματα:

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΗ Η Ρομποτική είναι ο κλάδος της επιστήμης που κατασκευάζει και μελετά μηχανές που μπορούν να αντικαταστήσουν τον άνθρωπο στην εκτέλεση μιας εργασίας. Tι είναι το ΡΟΜΠΟΤ

Διαβάστε περισσότερα

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 Να λυθούν οι παρακάτω ασκήσεις: 1. Αν η τιµή των Ιταλικών επίπλων µειωθεί τι θα συµβεί στη ζήτηση α) των Ιταλικών επίπλων και β) των Ελληνικών επίπλων. 2. Αν η τιµή του υγραερίου

Διαβάστε περισσότερα

Τεύχος B - Διδακτικών Σημειώσεων

Τεύχος B - Διδακτικών Σημειώσεων Τεύχος B - Διδακτικών Σημειώσεων ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ Δημήτρης Δεληκαράογλου Αναπλ. Καθ., Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Επισκ.

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Ελεγκτής VGA οθόνης και αντιμετώπιση μεγαλύτερων κυκλωμάτων Συνεχίζοντας από την 3 η άσκηση,

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

Υλοποίηση εντοπισμού στα Nao robots μέσω προσέγγισης του φίλτρου Kalman

Υλοποίηση εντοπισμού στα Nao robots μέσω προσέγγισης του φίλτρου Kalman Α Π Ε (Χ 2011/2012) Υλοποίηση εντοπισμού στα Nao robots μέσω προσέγγισης του φίλτρου Kalman Ιωακείμ Πέρρος, ΑΜ: 2007030085 2 Απριλίου 2012 Περιεχόμενα 1 Εισαγωγή / Πρόβλημα 1 2 Προσέγγιση / Λύση 2 2.1

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΡΟΜΠΟΤΙΚΗΣ

ΕΙΣΑΓΩΓΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΡΟΜΠΟΤΙΚΗΣ ΕΙΣΑΓΩΓΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΡΟΜΠΟΤΙΚΗΣ 1 ΕΙΣΑΓΩΓΗ 1.1 Ορισµοί και Ιστορικά Στοιχεία Η Ροµποτική είναι εκείνος ο κλάδος της επιστήµης του µηχανικού που ασχολείται µε τη σύλληψη, το σχεδιασµό, την κατασκευή και

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ TRITH 7 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ TRITH 7 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ TRITH 7 ΙΟΥΝΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο α γ 3 δ 4 γ 5. α Σ, β Λ, γ Σ, δ Σ, ε Λ. ΘΕΜΑ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης Τροχιές σωμάτων σε πεδίο Βαρύτητας Γιώργος Νικολιδάκης 9/18/2013 1 Κωνικές Τομές Είναι καμπύλες που σχηματίζονται καθώς επίπεδα τέμνουν με διάφορες γωνίες επιφάνειες κώνων. Παραβολή Έλλειψη -κύκλος Υπερβολή

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα

ΠΟΜΠΟΣ ΕΚΤΗΣ ΑΝΙΧΝΕΥΤΗΣ

ΠΟΜΠΟΣ ΕΚΤΗΣ ΑΝΙΧΝΕΥΤΗΣ Σαν ήχος χαρακτηρίζεται οποιοδήποτε μηχανικό ελαστικό κύμα ή γενικότερα μία μηχανική διαταραχή που διαδίδεται σε ένα υλικό μέσο και είναι δυνατό να ανιχνευθεί από τον άνθρωπο μέσω της αίσθησης της ακοής.

Διαβάστε περισσότερα

ιδασκαλία της Ροµποτικής Επιστήµης στη ευτεροβάθµια Εκπαίδευση Εµπειρίες από άλλα εκπαιδευτικά συστήµατα και προσαρµογή στην Ελληνική πραγµατικότητα

ιδασκαλία της Ροµποτικής Επιστήµης στη ευτεροβάθµια Εκπαίδευση Εµπειρίες από άλλα εκπαιδευτικά συστήµατα και προσαρµογή στην Ελληνική πραγµατικότητα ιδασκαλία της Ροµποτικής Επιστήµης στη ευτεροβάθµια Εκπαίδευση Εµπειρίες από άλλα εκπαιδευτικά συστήµατα και προσαρµογή στην Ελληνική πραγµατικότητα Αντώνιος Τζες Αναπληρωτής Καθηγητής Τµήµατος Ηλεκτρολόγων

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή computer aided design and manufacture (cad/cam)

Κεφάλαιο 1. Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή computer aided design and manufacture (cad/cam) Κεφάλαιο 1 Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή computer aided design and manufacture (cad/cam) 1.1 Ορισμός σχεδιομελέτης και παραγωγής με χρήση υπολογιστή CAD (Computer

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2013. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων

18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2013. 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων 18 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2013 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Ανάλυση Δεδομένων Παρακαλούμε, διαβάστε προσεκτικά τα παρακάτω: 1. Μπορείτε να χρησιμοποιήσετε τον χάρακα και το κομπιουτεράκι

Διαβάστε περισσότερα

Γενικές αρχές διοίκησης. μιας μικρής επιχείρησης

Γενικές αρχές διοίκησης. μιας μικρής επιχείρησης Γενικές αρχές διοίκησης μιας μικρής επιχείρησης Η επιχείρηση αποτελεί μια παραγωγική - οικονομική μονάδα, με την έννοια ότι συνδυάζει και αξιοποιεί τους συντελεστές παραγωγής (εργασία, κεφάλαιο, γνώση,

Διαβάστε περισσότερα

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y)

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y) Λογικά Διανύσματα Τα λογικά διανύσματα του Matlab είναι πολύ χρήσιμα εργαλεία. Για παράδειγμα ας υποθέσουμε ότι θέλουμε να κάνουμε την γραφική παράσταση της tan(x) στο διάστημα από -3π/2 μέχρι 3π/2. >>x

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.

Διαβάστε περισσότερα

Μάθημα: Ακουστική και Ψυχοακουστική

Μάθημα: Ακουστική και Ψυχοακουστική Τμήμα Τεχνών Ήχου και Εικόνας Ιόνιο Πανεπιστήμιο Μάθημα: Ακουστική και Ψυχοακουστική Εργαστηριακή Άσκηση 1 «Ποσοτική εκτίμηση ελαχίστου κατωφλίου ακουστότητας» Διδάσκων: Φλώρος Ανδρέας Δρ. Ηλ/γος Μηχ/κός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΙΣΧΥΟΣ ΗΜΥ 444

ΗΛΕΚΤΡΟΝΙΚΑ ΙΣΧΥΟΣ ΗΜΥ 444 ΗΛΕΚΤΡΟΝΙΚΑ ΙΣΧΥΟΣ ΗΜΥ 444 ΕΛΕΓΧΟΣ ΚΙΝΗΤΗΡΩΝ DC ΚΑΙ AC ΣΥΣΤΗΜΑΤΑ ΑΔΙΑΛΕΙΠΤΗΣ ΠΑΡΟΧΗΣ Δρ Ανδρέας Σταύρου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα Θέματα

Διαβάστε περισσότερα

Δημοσίευση HandTutor Enhanced Hand Rehabilitation after Stroke A Pilot Study στο περιοδικό Physiother Res Int

Δημοσίευση HandTutor Enhanced Hand Rehabilitation after Stroke A Pilot Study στο περιοδικό Physiother Res Int Δημοσίευση HandTutor Enhanced Hand Rehabilitation after Stroke A Pilot Study στο περιοδικό Physiother Res Int 2011-03-15 12:25:14 Σκοπός Η μελέτη αξιολογεί τα θεραπευτικά αποτελέσματα της χρήσης του συστήματος

Διαβάστε περισσότερα

Κατηγορίες και Βασικές Ιδιότητες Θερμοστοιχείων.

Κατηγορίες και Βασικές Ιδιότητες Θερμοστοιχείων. Κεφάλαιο 3 Κατηγορίες και Βασικές Ιδιότητες Θερμοστοιχείων. Υπάρχουν διάφοροι τύποι μετατροπέων για τη μέτρηση θερμοκρασίας. Οι βασικότεροι από αυτούς είναι τα θερμόμετρα διαστολής, τα θερμοζεύγη, οι μετατροπείς

Διαβάστε περισσότερα

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Όνοµα: Τάσος Αναστάσιος Επώνυµο: Μικρόπουλος Τίτλος: Αναπληρωτής Καθηγητής, Εργαστήριο Εφαρµογών Εικονικής Πραγµατικότητας στην Εκπαίδευση, Πανεπιστήµιο Ιωαννίνων

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΓΕΩΡΓΙΟΣ Π. ΜΟΥΣΤΡΗΣ ΔΙΔΑΚΤΩΡ ΜΗΧΑΝΙΚΟΣ ΕΜΠ

ΑΝΑΛΥΤΙΚΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΓΕΩΡΓΙΟΣ Π. ΜΟΥΣΤΡΗΣ ΔΙΔΑΚΤΩΡ ΜΗΧΑΝΙΚΟΣ ΕΜΠ ΑΝΑΛΥΤΙΚΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΓΕΩΡΓΙΟΣ Π. ΜΟΥΣΤΡΗΣ ΔΙΔΑΚΤΩΡ ΜΗΧΑΝΙΚΟΣ ΕΜΠ Φεβρουάριος 2014 Σελίδα 2 από 9 ΠΕΡΙΕΧΟΜΕΝΑ Α. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ... 3 Β. ΤΙΤΛΟΙ ΣΠΟΥΔΩΝ... 3 Γ. ΣΥΓΓΡΑΦΙΚΟ ΕΡΓΟ... 3 Γ.1 ΔΙΠΛΩΜΑΤΙΚΕΣ

Διαβάστε περισσότερα

ΑΔΑΜΑΝΤΙΑ Κ. ΣΠΑΝΑΚΑ Σύντομες Προδιαγραφές Συγγραφής Εκπαιδευτικού Υλικού εξ αποστάσεως εκπαίδευσης: Σημεία Προσοχής ΠΛΣ

ΑΔΑΜΑΝΤΙΑ Κ. ΣΠΑΝΑΚΑ Σύντομες Προδιαγραφές Συγγραφής Εκπαιδευτικού Υλικού εξ αποστάσεως εκπαίδευσης: Σημεία Προσοχής ΠΛΣ ΑΔΑΜΑΝΤΙΑ Κ. ΣΠΑΝΑΚΑ Σύντομες Προδιαγραφές Συγγραφής Εκπαιδευτικού Υλικού εξ αποστάσεως εκπαίδευσης: Σημεία Προσοχής ΠΛΣ Πρόκληση ο σχεδιασμός κι η ανάπτυξη εξ αποστάσεως εκπαιδευτικού υλικού. Ζητούμενο

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Τα κυψελωτά συστήματα εξασφαλίζουν ασύρματη κάλυψη σε μια γεωγραφική περιοχή η οποία διαιρείται σε τμήματα τα οποία είναι γνωστά ως κυψέλες (Εικόνα 1).

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΕΡΓΑΣΤΗΡΙΑΚΟΥ ΕΞΟΠΛΙΣΜΟΥ ΓΙΑ CAD Ι

ΕΓΧΕΙΡΙΔΙΟ ΕΡΓΑΣΤΗΡΙΑΚΟΥ ΕΞΟΠΛΙΣΜΟΥ ΓΙΑ CAD Ι ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

Ιστορία της NetLogo. Logo

Ιστορία της NetLogo. Logo Ιστορία της NetLogo Εικόνα 1 Η ιστορική εξέλιξη από τη Logo, στη StarLogo και τέλος στη NetLogo. Logo Εικόνα 2 Από το ίδρυμα για τη Logo του MΙΤ στο διαδύκτιο. Στα μέσα της δεκαετίας του 1960, o Seymourt

Διαβάστε περισσότερα

Επιτάχυνση της Βαρύτητας g = 10m/s 2

Επιτάχυνση της Βαρύτητας g = 10m/s 2 ΛΥΚΕΙΟ ΑΚΡΟΠΟΛΗΣ ΠΡΟΤΕΙΟΜΕΕΣ ΑΠΑΤΗΣΕΙΣ Σχολική Χρονιά:2014-2015 αθμός :. ΔΙΑΓΩΙΣΜΑ κατ. ΣΧΕΔΙΑΣΜΟΣ ΔΥΑΜΕΩ-ΚΙΗΜΑΤΙΚΗ-ΔΥΑΜΙΚΗ-ΤΡΙΗ Υπ. Κηδεμόνα :.. Μάθημα : ΦΥΣΙΚΗ Όνομα μαθητή/τριας: Ημερομηνία : Τμήμα

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Λέξεις Κλειδιά: Ινοπλισμένο Σκυρόδεμα, Μανδύες, Αντισεισμική Ενίσχυση.

Λέξεις Κλειδιά: Ινοπλισμένο Σκυρόδεμα, Μανδύες, Αντισεισμική Ενίσχυση. Μία Νέα Καινοτόμος Λύση για τις Ενισχύσεις Κατασκευών Ο/Σ με Σύνθετα Υλικά New Innovative Solution for the Strengthening of R/C Structures using Composite Materials Αλέξανδρος-Δημήτριος ΤΣΩΝΟΣ, Γεώργιος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 2010-11, 8ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Αρχιτεκτονικές Ελέγχου (mobile robot control architectures)

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΑΠΟΔΟΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΕ ΑΡΘΡΩΤΗ ΦΙΓΟΥΡΑ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΑΠΟΔΟΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΕ ΑΡΘΡΩΤΗ ΦΙΓΟΥΡΑ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΑΠΟΔΟΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΕ ΑΡΘΡΩΤΗ ΦΙΓΟΥΡΑ Γ ιαγτζή Αναστασία Κάζογλου Αναστασία ΜΑΙΟΣ 2009 ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ Μαρκουλίδης

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

Θέματα Ατομικής Διπλωματικής Εργασίας - DRAFT Ακαδημαϊκό Έτος 2015/2016. Γεωργία Καπιτσάκη (Λέκτορας)

Θέματα Ατομικής Διπλωματικής Εργασίας - DRAFT Ακαδημαϊκό Έτος 2015/2016. Γεωργία Καπιτσάκη (Λέκτορας) Θέματα Ατομικής Διπλωματικής Εργασίας - DRAFT Ακαδημαϊκό Έτος 2015/2016 Γεωργία Καπιτσάκη (Λέκτορας) ΠΕΡΙΟΧΗ Α: ΕΦΑΡΜΟΓΕΣ ΜΕ ΑΙΣΘΗΤΗΡΕΣ ΓΙΑ ΕΠΙΓΝΩΣΗ ΣΥΓΚΕΙΜΕΝΟΥ Οι αισθητήρες μας δίνουν τη δυνατότητα συλλογής

Διαβάστε περισσότερα

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 2 Μη αδρανειακά συστήµατα x Έστω ότι το S αποκτά επιτάχυνση α 0 S z 0 Α x z S y, y Ο παρατηρητής S µετρά µια επιτάχυνση: A = A +

Διαβάστε περισσότερα

Σενάριο 13. Προγραμματίζοντας ένα Ρομπότ

Σενάριο 13. Προγραμματίζοντας ένα Ρομπότ Σενάριο 13. Προγραμματίζοντας ένα Ρομπότ Ταυτότητα Σεναρίου Τίτλος: Προγραμματίζοντας ένα Ρομπότ Γνωστικό Αντικείμενο: Πληροφορική Διδακτική Ενότητα: Ελέγχω-Προγραμματίζω τον Υπολογιστή Τάξη: Γ Γυμνασίου

Διαβάστε περισσότερα

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής.

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής. Από το προηγούμενο μάθημα... Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 2 η : «Βασικές Β έ αρχές ψηφιακού ήχου» Φλώρος Ανδρέας Επίκ. Καθηγητής Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν

Διαβάστε περισσότερα

ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή. Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo

ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή. Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo Εμπλεκόμενες έννοιες «Γραφή» και άμεση εκτέλεση εντολής. Αποτέλεσμα εκτέλεσης εντολής.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕΤΡΗΣΗΣ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΔΙΕΝΕΡΓΕΙΑ ΑΣΤΡΟΝΟΜΙΚΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΚΑΙ ΜΕΤΡΗΣΕΩΝ.

ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕΤΡΗΣΗΣ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΔΙΕΝΕΡΓΕΙΑ ΑΣΤΡΟΝΟΜΙΚΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΚΑΙ ΜΕΤΡΗΣΕΩΝ. Ερασιτεχνικής Αστρονομίας ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΟΣ ΜΕΤΡΗΣΗΣ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΔΙΕΝΕΡΓΕΙΑ ΑΣΤΡΟΝΟΜΙΚΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΚΑΙ ΜΕΤΡΗΣΕΩΝ. Κυριάκος Πανίτσας Διπλ. Ηλεκτρολόγος Μηχανικός-Εκπαιδευτικός

Διαβάστε περισσότερα