ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ"

Transcript

1 ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ Ξανθή Παπαγεωργίου, Παναγιώτης Αρτεμιάδης, Κωνσταντίνος Κυριακόπουλος Σχολή Μηχανολόγων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο ΠΕΡΙΛΗΨΗ Νευρο-ρομποιικ ά είναι τα συστήματα εκείνα που ενσωματώνουν την γνώση μας για τα βιολογικά συστήματα, σε μηχανές που είναι είτε παθητικές είτε επενεργούμενες. Στην παρούσα εργασία το ερευνηιικ ό ενδιαφέρον επικεντρώνετατ στην χρήση μορφών διασύνδησης μεταξύ του ανθρώυου και των ρομπότ, που βασίζονται σε σήματα που μετρώνται από τον ίδιο τον άνθρωπο. Ειδικόιερα, ηλεκτρομυογραφικά σήματα καταγράφοντατ επιφανειακά από τους σκελειικ ούς μύες του ανθρωπίνοπ άνω άκρου. Στη συνέχεια τα σήματα αυτά, μέσω κατάλληλων μοντέλων μεταφράζονται στην αντίσιοιχ η κίνηση του άνω άκρου, η οποία τελικά χρησιμοποτείται για τον έλεγχο σε πραγματικό χρόνο ενός ρομποιικ ού βραχίονα 7 βαθμών ελευθερίας στον ιρισδιά σια το χώρο. Σε περιπιώσεις όπου η κίνηση του βραχίονα γίνεται σε περιβάλλον όπου συνυπάρχουν διάσπαρτα αντικείμενα εμπόδια, αναπτύσσονται οι κατάλληλες μεθοδολογίες ώστε να επττρέποπν στο ρομπότ να είναι υποχωρηιικ ό προς συγκεκριμένες επιφάνειες, ενώ ταυτόχρονα να αποφεύγει τα εμπόδια που μπορούν να αναχαττίσουν την κίνησή του. Λέξεις κλειδιά: νευρο-ρομποιικ ή, ηλεκτρομυογράφημα, προγραμμαιισμ ός κίνησης 1 ΕΙΣΑΓΩΓΗ Η παρούσα εργασία πραγματεύεται μια σημανιι κή πτυχή του τομέα της νευρορομποιικ ής, αυτήν της διασύνδησης της ρομποιικ ής και ειδικόιερ α των ρομποιικ ών συστημάτων με τον ίδιο τον άνθρωπο. Πτο συγκεκριμένα, στην παρούσα εργασία χρησιμοποτείτατ το σήμα που καταγράφεται επιφανειακά από τους σκελειικ ούς μύες του άνω άκρου, το λεγόμενο ηλεκτρομυογραφικό σήμα, ή ηλεκτρομυογράφημα. Το σήμα αυτό, με την κατάλληλη επεξεργασία, αποκωδικοποτείτατ σε κίνηση του άνω άκρου, με σκοπό να χρησιμοποιεθεί ως μεταβλητή ελέγχου ρομποιικ ών συστημάτων. Συγχρόνως υλοποιούνται κατάλληλοι ελεγκτές ώστε να είναι εφικτή η αποφυγή των εμποδίων που περιέχονια ι στον περιβάλλοντα χώρο, και να μπορεί ιο ρομπότ να προσεγγίσει και να αλληλεπιδράσει σε καμπυλωμένες επιφάνειες. Το παραπάνω σενάριο λειιου ργίας απεικονίζετατ στο Σχήμα 1. Τα ηλεκτρομυογραφικά σήματα έχουν χρησιμοποιεθεί θιο παρελθόν για τον έλεγχο ρομποιικ ών συστημάτων. Ένα τέιοιο παράδειγμα αποτελεί η εργασία (Fukuda, 2003), όπου η διεύθυνση κίνησης πρηνισμού/υπιια σμού ενός ρομποιικ ού καρπού, ελεγχόταν από ηλεκτρομυογραφικά σήματα των μυών του πήχη. Πολύ συχνά σιις παλατότερες 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

2 εργασίες χρησιμοποιούνται ηλεκτρομυογραφικά σήματα για τον έλεγχο ρομποιικ ών χεριών (Bitzer, 2006). Σε όλες ιις προαναφερσείσες εργασίες η αποκωδικοποίηση των ηλεκτρομυογραφικών σημάτων οδηγούσε σε διακρττές αποφάσεις, για παράδειγμα κάμψη ή έκταση των δακτύλων, και όχι σε μια συνεχή περιγραφή της κίνησης. Στην παρούσα εργασία ερευνάται ο συνεχής έλεγχος των ρομποιικ ών συστημάτων μέσω του ηλεκτρομυογραφήματος. Γι' αυτό το λόγο, απαιτείται η εκτίμηση της συνεχής κίνησης του άνω άκρου, ώστε η τελευταία να χρησιμοποιεθεί για τον εύρωστο και ακριβή έλεγχο ενός ρομποιικ ού βραχίονα. Σχήμα 1: Αναπαράσταση πραγματικού σεναρίου πποκατάστασης άνω άκρων. Σχήμα 2: Ο χρήστης κινεί το άνω άκρο στο χώρο, ενώ οι 4 γωνίες του ώμου και του αγκώνα ππολογίζονται μέσω των μαγνητικών αισθητήρων θέσης. Σε τέτοιου είδους συστήματα που χρησιμοποιούνται σήματα από τον άνθρωπο υπάρχει αυξημένη δυσκολία να ελεγχθεί με ακρίβεια το ρομπότ, ιδιαίτερα σε περιπιώσεις όπου είτε το περιβάλλον του ρομπότ είναι γεμάτο με αντικείμενα-εμπόδια μη-αντιληπτά από τον άνθρωπο, ηίτη η μορφολογία του ρομπότ είνατ διαφορειικ ή αυτής του ανθρώυου. Ευομένως είναι πολύ σημανιι κό να αναπτύξουμε ιις μεθοδολογίες εκείνες που θα μας επττρέψουν να ελέγξουμε το ρομπότ, κάνοντάς το να αποφεύγει ιις συγκρούσεις με τον περιβάλλοντα χώρο. 2 ΜΕΘΟΔΟΛΟΓΙΑ 2.1 Το τλεκτρομυογράφημα ως μεταβλττή ελέγχου Το ηλεκτρομυογράφημα είναι το δυναμικό που μετράται επιφανειακά από τους σκελειικ ούς μύες, όταν αυτοί συστέλλονται με σκοπό την παραγωγή δύναμης και άρα κίνησης. Σι ην παρούσα εργασία μας ενδιαφέρει η κίνηση του άνω άκρου στον τρτσδτάστατο χώρο. Επομένως, 11 συνολικά μύες που ενεργούν σιον ώμο και στον αγκώνα επιλέγονται να καταγραφούν ως οι κύριοι μύες για την εν λόγω κίνηση. Η άρθρωση του καρπού παραλείπεται για λόγους ευκολίας. Ο στόχος είναι η αποκωδικοποίηση του ηλεκτρομυογραφικού σήματος σε κίνηση. Αυτό θα επττευχθεί με την χρήση ενός μαθημαιικ ού μοντέλου, που θα μπορεί να εκπαιδεύεται κατάλληλα ώστε να εκιιμ ά την κίνηση του άνω άκρου βασισμένο μόνο στο ηλεκτρομυογράφημα. Για την εκπαίδευση του συστήματος αποκωδικοποίησης ηλεκτρομυογραφικών σημάτων απαττείται η σύγχρονη συλλογή σήματος από τους 11 εμπλεκόμενους μύες καθώς και της αντίστοιχης κίνησης του άνω άκρου. Για την καταγραφή του 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

3 ηλεκτρομυογραφήματος χρησιμοποτείτατ κατάλληλο σύστημα καταγραφής (Bagnoli-16 Desktop EMG System, Delsys Inc., Boston, MA, USA) και επιφανειακά ηλεκιρόδι α καταγραφής. Για την καταγραφή της κίνησης χρησιμοποτείτατ σύστημα μαγνηιι κών αιθθητήρων σέσης και προσανατολισμού (Isotrak II, Polhemus Inc, USA). Το σύστημα αποτελείται από δύο αισθητήρες, των οποίων, ε σέση και ο προσανατολισμός ως προς το αδρανειακό σύστημα αξόνων του αιθθητήρα, παρέχεται με συχνότητα 30 Hz. Τοποθετώντας το αδρανειακό σύστημα στον ώμο του χρήστη, και τους δύο αιθθητήρες στον αγκώνα και τον καρπό ανιίσιοιχ α, μπορούμε να υπολογίσουμε ιις 4 γωνίες των αρθρώσεων του ώμου και του αγκώνα, όπως αυτές ορίζονται στο Σχήμα 2, κάνοντας χρήση των κτνημαιικ ών εξισώσεων. Στα ηλεκτρομυογραφικά σήματα, μετά την αρχική επεξεργασία, εφαρμόζεται μια μεθοδολογία απεικόνισης σε χώρο μικρότηρης διάστασης. Αυτό συμβαίνει επειδή, όπως είναι γνωστό από την βιβλιογραφία (d'avella, 2006), οι μύες δρουν συλλογικά για την παραγωγή κίνησης. Το ίδιο συμβαίνει και για ιε ν κίνηση του άνω άκρου. Ας ορίσουμε u L 2 και y L 2 την αναπαράσταση του ηλεκτρομυογραφήματος και της κίνησης σε χώρο μικρότηρης διάστασης ανιίσιοιχ α. Το μοντέλο αποκωδικοποίησης του u L σε y L περτγράφεται από την παρακάτω εξίσωση: x k 1 Ax k Bu Lk w k y Lk Cx k k ( 1) όπου x d ένα διάνυσμα κρυφών μεταβλητών, w, μεταβλητές θορύβου και A, B, C πίνακες που περιγράφουν την δυναμική του διανύσματος των κρυφών μεταβλητών, την συνεισφορά του ηλεκτρομυογραφήματος σε αυτήν, καθώς επίσης και την σχέση του διανύσματος με την κίνηση του άνω άκρου ανιίσιοιχ α. Οι πίνακες αυτοί πρέπει να υπολογιθθούν χρησιμοποτώντας δεδομένα εκπαίδευσης, δηλαδή ηλεκτρομυογραφικά σήματα και αντίσιοι χες μεταβλητές κίνησης. Κατά τη διάρκεια της εκπαίδευσης του συστήματος ο χρήστης κινεί ιο άνω άκρο σε τυχαίες σέσεις στο χώρο. Ηλεκτρομυογραφικά σήματα καταγράφονται, καθώς και οι γωνίες των αρθρώσεων, έτστ ώστε να χρησιμοποιηθούν ως δεδομένα εκπαίδευσης για το μοντέλο (1). Μετά την εκπαίδευση του μοντέλου, ξεκινά η φάση τηλεχειρισμού του ρομποιικ ού βραχίονα σε πραγματικό χρόνο. Σε αυτή την φάση, τα ηλεκτρομυογραφικά σήματα που καταγράφονται από τους 11 μύες εισάγονται στο μοντέλο (1). Κάνοντας χρήση των εξισώσεων της (1), τελικά εκιιμ άται το διάνυσμα y L που περιγράφει ιε ν κίνηση του άνω άκρου. Ο ρομποιικ ός βραχίονας ελέγχεται τελικά με κατάλληλο ελεγκτή ροπής ώστε να κινηθεί βασισμένος σιε ν εκτίμηση της τροχιάς του ανθρωπίνου άνω άκρου. 2.2 Προγραμματισμός κίνησης Είναι πολύ σημανιικ ός ο σχεδιασμός και η ανάπτυξη ελεγκτών, που θα επττρέποπν στο ρομποιικ ό βραχίονα να εκτελεί τα καθήκοντά του πάνω σε επιφάνειες, να είναι υποχωρηιικ ός σε συγκεκριμένες καταστάσεις και ταυτόχρονα να αποφεύγει ιις συγκρούσεις με τα αντικείμενα του χώρου μέσα στον οποίο κτνείτατ (Patel, 2005), (Zhang Y, 2004). Επίσης, ένα πολύ σημανιικ ό θέμα άπτεται των ορίων, τα οποία έχουν επιβληθεί από τον κατασκευαστή του ρομποιικ ού βραχίονα, και με βάση τα οποία υπάρχει περιορισμός στο ποια είναι η μέγτστη ταχύτητα με την οποία τα μηχανικά μέρη 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

4 του ρομπότ μπορούν να εκτελέσουν μία κίνηση. Για να ανταπεξέλθουμε σε αυτήν την δυσκολία, έχουμε εντάξει αυτούς τους περιορισμούς στον σχεδιασμό του ελεγκτή του ρομπότ. Η προσπάθεια υλοποίησης των ανωτέρω συνοψίζεται στο πρόβλημα σχεδιασμού ελεγκτή για ρομποιικ ό βραχίονα με πλεονάζοντες βαθμούς, το εύρος της κίνησης των συνδέσμων του οποίου πρέπει να παραμένουν μέσα σε προκαθορισμένα όρια (τα οποία έχει σέσει ο κατασκευαστής). Προκειμένου να επττευχθεί ο στόχος μας, υλοποιούμε συναρτήσεις πλοήγησης (Rimon, 1992), αναλύουμε το σύστημα κλειστού βρόχου και ελέγχουμε την ευστάθεια του συστήματος. Το σύστημα με τη χρήση των ελεγκτών μας, είναι ολικά ομοιόμορφα ασυμπιωιικ ά ευσταθές και σέβετατ όλους οι μηχανολογικούς περιορισμούς. Επιπλέον είναι εφικτό αφενός να σταθεροποιήθοπμε το άκρο του ρομποιικ ού βραχίονα σε ένα συγκεκριμένο σεμείο ή να το οδηγήσουμε ώστε να ακολουσήσει με επττυχία μία προκαθορισμένη τροχιά, πάνω σε μία δυσδιάστατη πολυπλοκότητα (επιφάνεια) που βρίσκεται στον τρτσδτάστατο χώρο και να αποφεύγει όλα τα εμπόδια του περιβάλλοντος ΣΥΝΑΡΤΗΣΗ ΠΛΟΗΓΗΣΗΣ Οι ελεγκτές που υλοποιούμε βασίζονια ι στη δημιουργία τεχνητού δυναμικού πεδίου το οποίο δημιουργείτατ από τη συνάρτηση πλοήγησης και που καθορίζεται στην ουσία από την επιθυμητή σέση όπου το ρομπότ θέλουμε να μεταβεί και από τα εμπόδια που υπάρχουν μέσα στο χώρο δράσης του και που πρέπει να αποφύγει. Το επιθυμητό σεμείο γτα το ρομπότ παράγει το ελκιικ ό δυναμικό που θα τραβήξει το ρομπότ στην τελική σέση, ηνώ τα εμπόδια παράγουν ένα απωθητικό δυναμικό που ωθεί το ρομπότ μακριά του. Η αρνηιικ ή κλίση του συνολικού δυναμικού αντιμετωπίζεται ως μία τεχνητή δύναμη που εφαρμόζεται στο ρομπότ. Σε κάθε σέση του ρομπότ, η κατεύθυνση αυτής της δύναμης θεωρείτατ η πιο πιθανή κατεύθυνση της κίνησης. Η συνάρτηση πλοήγησης μας βοηθά θτον προγραμμαιισμ ό της κίνησης του ρομποιικ ού βραχίονα, οδηγεί το άκρο του ρομπότ προς την επιφάνεια και με τη χρήση του ελεγκτή καθορίζεται η κίνησή του πάνω σε αυτήν. Η πλοήγηση κατά μήκος της επιφάνεια περιλαμβάνει αφενός την σταθηροποίηθη σε κάποιο σεμείο ιε ς, και αφετέρου την παρακολούσηση προκαθορισμένης τροχτάς. Ο όγκος του ρομποιι κού βραχίονα στο χώρο δράσης του ρομπότ μπορεί να αναπαρασταθεί ως σεμείο σε ένα διαφορειικ ό χώρο εργασίας, ακολουθώντας μία σειρά από μετασχημαιισμ ούς. Τα εμπόδια του χώρου ακολουθούν τους ίδιους μετασχημαιισμ ούς και με αυτόν τον τρόπο κατασκευάζεται η συνάρτηση πλοήγησης. Η συνάρτηση πλοήγησης που χρησιμοποιούμε ορίζεια ι στη γενική μορφή της ως εξής : d d B 1 m όπου οι γωνίες των συνδέσμων του ρομπότ, m είναι οι βαθμοί ελευθερίας του ρομπότ, γ d είναι η συνάρτηση που μετρά την απόσταση από την επιθυμητή σέση όπου το ρομπότ θέλουμε να μεταβεί (δημιουργεί ιο ελκιικ ό πεδίο), B ws O s είναι ένα γινόμενο συναρτήσεων που αναπαριστούν εμπόδια και περιορισμούς στην κίνηση του ρομπότ (δημιουργεί ιο απωθηιικ ό δυναμικό). Κάθε μία από αυτές ιις συναρτήσεις έχει τους εξής ρόλους: η συνάρτηση β ws μας εξασφαλίζει όιι το ρομπότ θα παραμείνει μέσα στο χώρο δράσης στο οποίο επττρέπεται να κινηθεί, η συνάρτηση β Ο εξασφαλίζει όιι κάθε τμήμα του ρομπότ δεν κινδυνεύει να έρθει σε ( 2) 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

5 επαφή με το περιβάλλον, γίνεται δηλαδή αποφυγή σύγκρουσης σε όλα τα τμήματα του ρομποιικ ού βραχίονα και όχι μόνο στο άκρο του, ε συνάρτηση β s μοντελοποιεί ια ιδιόμορφα σεμεία ιε ς κινημαιικ ής ως τεχνητά εμπόδια του χώρου δράσης του ρομπότ και μας εγγυάται όιι το ρομπότ θα αποφύγει τα σεμεία αυτά. Τέλος με κ αναπαριστούμε μία θειικ ή και πραγματική παράμετρο, χρήσιμε για την ρύθμιση της συμπεριφοράς του συστήματος. 3 ΑΠΟΤΕΛΕΣΜΑΤΑ Στο Σχήμα 3 φαίνεται η πραγματική και η εκτίμηση της κίνησης του άνω άκρου μέσω των ηλεκτρομυογραφικών σημάτων και του μοντέλου (1). Τα γραφήματα απεικονίζουν την τροχιά του ανθρωπίνοπ χεριού όπως αυτή καταγράφεται από το μαγνηιικ ό σύστημα θέσης στους 3 άξονες του χώρου κίνησης, και την εκτίμηση της τροχιάς μέσω του μοντέλου αποκωδικοποίησης (1). Όπως είναι φανερό από τα γραφήματα, η εκτίμηση της τροχιάς της κίνησης είναι πολύ ακριβής, και δύναται να χρησιμοποιεθεί για τον έλεγχο του ρομποιικ ού βραχίονα, εφόσον η συχνότητα στην οποία γίνεται η εκτίμηση της κίνησης είναι ίση με αυτήν της καταγραφής του ηλεκτρομυογραφήματος, δηλαδή 1 khz. Πραγματοποιήσαμε πειράματα με σκοπό να επαληθεύσουμε την ικανότητα εφαρμογής και την αποτελεσμαιι κότητα της προιηινόμηνης μεθοδολογίας. Ο ρομποιικ ός βραχίονας στον οποίο υλοποιήσαμε τα πειράματα είναι το μοντέλο της Mitsubishi PA10-7C, με m=7 βαθμούς ελευθερίας, στη σέση που απεικονίζει η εικόνα (Σχήμα 4). Στα παρακάτω σχήματα φαίνονται γραφικές αναπαραστάσεις των αποτελεσμάτων με τη χρήση του Matlab, από διαφορειικ ές οπιικ ές γωνίες σε κάθε μία εικόνα. Η τροχιά του άκρου του ρομπότ σχεδιάζεται με την μπλε καμπύλη. Αρχικά το ρομπότ κινείται προς την επιθυμητή σέση (Σχήμα 4) και στη συνέχεια ακολουθεί μία προκαθορισμένη ημττονοητδή τροχιά (Σχήμα 5) πάνω στην επιφάνεια (κίιρινη καμπύλη), ενώ έχει αποφύγει όλα τα εμπόδια του περιβάλλοντος αλλά και τα εμπόδια που είναι ιο ποθετημένα πάνω στην ηπιφάνεια. Σχήμα 3. Πραγματική (real) και εκτιμόμενη (estimates) κίνηση του άνω άκρου μέσω του ηλεκτρομυογραφήματος στους 3 άξονες x, y, z. 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

6 Initial Configuration Trajectory Tracking Closed surface Initial Configuration Closed surface Target Configuration Σχήμα 4: Αναπαράσταση αποτελεσμάτων για σταθεροποίηση του άκρου σε σημείο. Σχήμα 5: Αναπαράσταση αποτελεσμάτων για παρακολούθηση τροχιάς. 4 ΣΥΜΠΕΡΑΣΜΑΤΑ Οι μεθοδολογίες αποκωδικοποίησης κίνησης που αναπτύξαμε επττρέπουν την κίνηση του ρομποιικ ού βραχίονα βασισμένη σε σήματα που προέρχονται από τον ίδιο ιον άνθρωπο, ενώ συγχρόνως είναι εφικτό να αποφεύγονται τα εμπόδια που υπάρχουν στο χώρο δράσης του. Οι μεθοδολογίες μπορούν να εφαρμοθθούν σε ρομποιικ ά συστήματα αποκατάστασης κινηιικ ών δυσκολιών που θα ελέγχονται από σήματα προερχόμενα από τον άνθρωπο, διαιε ρώντας την επιθυμητή αυτονομία και ασφάλεια. 5 ΒΙΒΛΙΟΓΡΑΦΙΑ S. Bitzer and P. van der Smagt, Learning EMG control of a robotic hand: towards active prostheses, Proc. of IEEE Int. Conf. on Robotics and Automation, pages , A. d Avella, A. Portone, L. Fernandez, and F. Lacuaniti, Control of fast-reaching movements by muscle synergy combinations, The Journal of Neuroscience, vol. 25, no. 30, pp , O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka, A human-assisting manipulator teleoperated by EMG signals and arm motions, IEEE Trans. on Robotics and Automation, 19(2): , Patel R., Shadpey F., Ranjbaran F., Angeles J. (2005), A collision avoidance scheme for redundant manipulators: Theory and experiments, Journal of Robotic Systems, vol. 22, no. 12, pp Rimon E. and Koditschek D. (1992), Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp Zhang Y., Wang J. (2004), Obstacle avoidance for kinematically redundant manipulators using a dual neural network, IEEE Transactions on Systems, Man, & Cybernetics - Part B: Cybernetics, vol. 34, no. 1. 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

ΒΙΟΜΙΜΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΑΝΤΙΣΤΡΟΦΗΣ ΚΙΝΗΜΑΤΙΚΗΣ ΓΙΑ ΡΟΜΠΟΤΙΚΟ ΒΡΑΧΙΟΝΑ ΜΕ ΠΛΕΟΝΑΖΟΝΤΕΣ ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ

ΒΙΟΜΙΜΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΑΝΤΙΣΤΡΟΦΗΣ ΚΙΝΗΜΑΤΙΚΗΣ ΓΙΑ ΡΟΜΠΟΤΙΚΟ ΒΡΑΧΙΟΝΑ ΜΕ ΠΛΕΟΝΑΖΟΝΤΕΣ ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ ΒΙΟΜΙΜΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΑΝΤΙΣΤΡΟΦΗΣ ΚΙΝΗΜΑΤΙΚΗΣ ΓΙΑ ΡΟΜΠΟΤΙΚΟ ΒΡΑΧΙΟΝΑ ΜΕ ΠΛΕΟΝΑΖΟΝΤΕΣ ΒΑΘΜΟΥΣ ΕΛΕΥΘΕΡΙΑΣ ΠΕΡΙΛΗΨΗ Παναγιώτης Αρτεμιάδης, Παντελής Κατσιάρης 1, Μηνάς Λιαροκάπης 1, Κωνσταντίνος Κυριακόπουλος

Διαβάστε περισσότερα

ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ.

ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ. ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ. Όλγα Ζωίδη, Ζωή Δουλγέρη Εργαστήριο Αυτοματοποίησης και Ρομποτικής Τμήμα

Διαβάστε περισσότερα

Εισαγωγή στην Ρομποτική

Εισαγωγή στην Ρομποτική Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις

Διαβάστε περισσότερα

ΣΥΝΕΡΓΑΣΙΑ ΡΟΜΠΟΤ-ΑΝΘΡΩΠΟΥ ΓΙΑ ΤΟΝ ΧΕΙΡΙΣΜΟ ΥΦΑΣΜΑΤΩΝ

ΣΥΝΕΡΓΑΣΙΑ ΡΟΜΠΟΤ-ΑΝΘΡΩΠΟΥ ΓΙΑ ΤΟΝ ΧΕΙΡΙΣΜΟ ΥΦΑΣΜΑΤΩΝ ΣΥΝΕΡΓΑΣΙΑ ΡΟΜΠΟΤ-ΑΝΘΡΩΠΟΥ ΓΙΑ ΤΟΝ ΧΕΙΡΙΣΜΟ ΥΦΑΣΜΑΤΩΝ Παναγιώτης Κουστουμπάρδης *, Νίκος Ασπράγκαθος Πανεπιστήμιο Πατρών, Τμ. Μηχανολόγων & Αεροναυπηγών Μηχανικών, Ερευνητική Ομάδα Ρομποτικής, e-mail:

Διαβάστε περισσότερα

ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ

ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ Κώστας Νάνος και Ευάγγελος Παπαδόπουλος Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Μηχανολόγων Μηχανικών, Εργαστήριο Αυτοµάτου

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA

ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA Δρ. Φασουλάς Ιωάννης, jfasoula@ee.auth.gr jfasoulas@teemail.gr Τμήμα Πληροφορικής και Επικοινωνιών Τεχνολογικό

Διαβάστε περισσότερα

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Ηλίας Κ. Ξυδιάς, Φίλιππος Ν. Αζαριάδης Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου,

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Θέματα Εξετάσεων Ασκήσεις στο Mάθημα: "ΡΟΜΠΟΤΙΚΗ Ι: ΑΝΑΛΥΣΗ, ΕΛΕΓΧΟΣ, ΕΡΓΑΣΤΗΡΙΟ" 1 η Σειρά Θεμάτων Θέμα 1-1 Έστω ρομποτικός

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Εισαγωγή στις Συναρτήσεις Πλοήγησης (Navigation Functions - NF)

Εισαγωγή στις Συναρτήσεις Πλοήγησης (Navigation Functions - NF) Εισαωή στις Συναρτήσεις Πλοήησης (Navigation Functions - NF) Οι συναρτήσεις πλοήησης είναι μια μεθοδολοία που εισήααν οι Rimon και Koditschek ια τον προραμματισμό κίνησης (motion planning) ενός ρομπότ,

Διαβάστε περισσότερα

Μέθοδοι Σχεδίασης κίνησης

Μέθοδοι Σχεδίασης κίνησης Μέθοδοι Σχεδίασης κίνησης Τασούδης Σταύρος Ο προγραμματισμός τροχιάς(trajectory planning) είναι η κίνηση από το σημείο Α προς το σημείο Β αποφεύγοντας τις συγκρούσεις με την πάροδο του χρόνου. Αυτό μπορεί

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ Δ. Σαγρής, Σ. Μήτση, Κ.-Δ. Μπουζάκης, Γκ. Μανσούρ Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας, Τμήμα Μηχανολόγων

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

Μάθημα: Ρομποτικός Έλεγχος

Μάθημα: Ρομποτικός Έλεγχος Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ε.Μ.Π., Ακαδημαϊκό Έτος 011-1 Μάθημα: Ρομποτικός Έλεγχος Αυτόματος Έλεγχος Ρομπότ (Μη-Γραμμικός Ρομποτικός Έλεγχος Κων/νος Τζαφέστας

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ

ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ Ευάγγελος Παπαδόπουλος, Ιωσήφ Σ. Παρασκευάς, Θάλεια Φλέσσα, Κώστας Νάνος, Γεώργιος Ρεκλείτης και Ιωάννης Κοντολάτης Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να:

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να: ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Τίτλος Μαθήματος Μεθοδολογίες και Συστήματα Βιομηχανικής Αυτοματοποίησης Κωδικός Μαθήματος Μ3 Θεωρία / Εργαστήριο Θεωρία + Εργαστήριο Πιστωτικές μονάδες 4 Ώρες Διδασκαλίας 2Θ+1Ε Τρόπος/Μέθοδοι

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ

ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ Δημήτριος Μ. Εμίρης Τμήμα Βιομηχανικής Διοίκησης & Τεχνολογίας, Πανεπιστήμιο Πειραιώς,

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 009-0, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ Ιωάννης Νταβλιάκος, Ευάγγελος Παπαδόπουλος Σχολή Μηχανολόγων Μηχανικών ΕΜΠ, Εργαστήριο Αυτοµάτου Ελέγχου email: gdavliak@central.ntua.gr,

Διαβάστε περισσότερα

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control)

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Αλληλεπίδρασης με το Περιβάλλον Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Εμπέδησης (Impeance Control) Αλληλεπίδραση με το περιβάλλον Η αλληλεπίδραση με το περιβάλλον

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,

Διαβάστε περισσότερα

Ρομποτική II. Περιεχόμενα Μαθήματος

Ρομποτική II. Περιεχόμενα Μαθήματος Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 010-11, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής

Διαβάστε περισσότερα

mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός

mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Μαθηματικό εκκρεμές ονομάζεται μια σημειακή μάζα, η οποία είναι αναρτημένη σε νήμα. Το ίδιο το νήμα δεν έχει δική του μάζα και το οποίο εξάλλου δεν μπορεί να επιμηκυνθεί.

Διαβάστε περισσότερα

ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot

ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρ. Μηχ/κών και Μηχ/κών Υπολογιστών Τομέας Σημάτων, Ελέγχου και Ρομποτικής ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot Υπεύθυνος

Διαβάστε περισσότερα

«Εικονική Πραγματικότητα» Φυσική Αποκατάσταση

«Εικονική Πραγματικότητα» Φυσική Αποκατάσταση «Εικονική Πραγματικότητα» Φυσική Αποκατάσταση Κωνσταντίνος Λουκάς Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή ΕΚΠΑ e-mail: cloukas@med.uoa.gr Περίγραμμα Συνεισφορά VR στη φυσική αποκατάσταση Παραδείγματα

Διαβάστε περισσότερα

Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα

Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Μέρος α : Εξισώσεις κίνησης και συμπεράσματα) Α. Τι βλέπει ένας αδρανειακός παρατηρητής

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ

ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ Χ.Δ. Βάλσαμος α, Β.Χ. Μουλιανίτης β, Ν.Α. Ασπράγκαθος α α Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης

Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης των Δρ. Μανόλη Καββουσανού και Δρ. Γιάννη Φασουλά Το Εργαστήριο Αυτοματικής Ρομποτικής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης Ψηφιακός Έλεγχος Μέθοδος μετατόπισης ιδιοτιμών Έστω γραμμικό χρονικά αμετάβλητο σύστημα διακριτού χρόνου: ( + ) = + x k Ax k Bu k Εφαρμόζουμε γραμμικό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΑΣΚΗΣΗ 2

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΑΣΚΗΣΗ 2 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΦΑΡΜΟΓΗ 1 ΤO ΡΟΜΠΟΤ INTELLITEK ER-2u

ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΦΑΡΜΟΓΗ 1 ΤO ΡΟΜΠΟΤ INTELLITEK ER-2u Εφαρμογή 1: Το ρομπότ INTELITEK ER-2u Εργαστήριο Ευφυών Συστημάτων και Ρομποτικής Τμήμα Μηχανικών Παραγωγής και Διοίκησης Πολυτεχνείο Κρήτης www.robolab.tuc.gr, τηλ: 28210 37292 / 37314 e-mail: savas@dpem.tuc.gr,

Διαβάστε περισσότερα

2/4/2010. ρ. Φασουλάς Ιωάννης. Απαιτούµενες γνώσεις: Ανάγκη εκπαίδευσης των φοιτητών στον προγραµµατισµό και λειτουργία των βιοµηχανικών ροµπότ

2/4/2010. ρ. Φασουλάς Ιωάννης. Απαιτούµενες γνώσεις: Ανάγκη εκπαίδευσης των φοιτητών στον προγραµµατισµό και λειτουργία των βιοµηχανικών ροµπότ Τµήµα Μηχανολογίας Τ.Ε.Ι. Κρήτης ΕΚΠΑΙ ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA ρ. Φασουλάς Ιωάννης Η Ροµ οτική στις σύγχρονες βιοµηχανικές µονάδες αραγωγής

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΕΝΟΣ ΡΟΜΠΟΤ ΜΕ ΕΝΑ ΠΟ Ι

ΠΡΟΤΥΠΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΕΝΟΣ ΡΟΜΠΟΤ ΜΕ ΕΝΑ ΠΟ Ι ΠΡΟΤΥΠΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΕΝΟΣ ΡΟΜΠΟΤ ΜΕ ΕΝΑ ΠΟ Ι Νικόλαος- ηµήτριος Χερουβείµ, Παναγιώτης Χατζάκος, Αλέξανδρος Νικολακάκης και Ευάγγελος Παπαδόπουλος Σχολή Μηχανολόγων Μηχανικών ΕΜΠ, Εργαστήριο

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΙΣΜΟ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΤΑ ΤΕΧΝΟΛΟΓΙΚΑ ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ-ΤΕΕ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΙΣΜΟ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΤΑ ΤΕΧΝΟΛΟΓΙΚΑ ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ-ΤΕΕ Αφιέρωμα στο Γ Συνέδριο «Τεχνολογία & Αυτοματισμός» ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΙΣΜΟ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΤΑ ΤΕΧΝΟΛΟΓΙΚΑ ΕΠΑΓΓΕΛΜΑΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ-ΤΕΕ Νίκος Γλώσσας Καθηγητής Δευτεροβάθμιας

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΕΠΙΔΕΞΙΟΤΗΤΑΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΧΡΗΣΗ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΕΠΙΔΕΞΙΟΤΗΤΑΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΧΡΗΣΗ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΕΠΙΔΕΞΙΟΤΗΤΑΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΧΡΗΣΗ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ Α. Συνοδινός, Ν.Α. Ασπράγκαθος Ερευνητική Ομάδα Ρομποτικής, Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών, Πανεπιστήμιο Πατρών,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

ΡΟΜΠΟΤΟΤΙΚΗ ΚΑΙ ΔΙΑΣΤΗΜΑ

ΡΟΜΠΟΤΟΤΙΚΗ ΚΑΙ ΔΙΑΣΤΗΜΑ ΡΟΜΠΟΤΟΤΙΚΗ ΚΑΙ ΔΙΑΣΤΗΜΑ Μπουρνελάς Θάνος Νικητάκης Θάνος Ραφτόπουλος Στέφανος Τσίρος Δημήτρης Ψυχάρης Ιωάννης Τμήμα Β3,Β4 ΕΙΣΑΓΩΓΗ ΚΡΙΤΗΡΙΟ ΕΠΙΛΟΓΗΣ ΘΕΜΑΤΟΣ Η καθοριστική σημασία που έχει στη σύγχρονη

Διαβάστε περισσότερα

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1 1 Πολυώνυμα και συσχετικός χώρος Ορισμός 3.1 Ενα μονώνυμο N στις μεταβλητές x 1, x 2,..., x n είναι ένα γινόμενο της μορφής x m 1 2...x m n n, όπου όλοι οι εκθέτες είναι φυσικοί αριθμοί. Ο βαθμός του μονωνύμου

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a Συστήματα Αυτομάτου Ελέγχου ΙΙ Άσκηση Θεωρείστε το σύστημα με συνάρτηση μεταφοράς: Y ( s) a s 4 3 a3s a U ( s) s a όπου οι αριθμοί α ι αντιστοιχούν στους αντίστοιχους αριθμούς των 4 πρώτων γραμμάτων του

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΔΙΑΔΡΟΜΗΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΕΥΡΙΣΤΙΚΩΝ ΚΑΙ ΣΤΟΧΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΔΙΑΔΡΟΜΗΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΕΥΡΙΣΤΙΚΩΝ ΚΑΙ ΣΤΟΧΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΡΓΑΛΕΙΟΜΗΧΑΝΩΝ & ΔΙΑΜΟΡΦΩΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΣΧΕΔΙΑΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΔΙΑΔΡΟΜΗΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΤΗΝ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Χρήσιμες έννοιες Κίνηση (σχετική κίνηση) ενός αντικειμένου λέγεται η αλλαγή της θέσης του ως προς κάποιο σύστημα αναφοράς. Τροχιά σώματος ονομάζουμε τη νοητή γραμμή που δημιουργεί

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Ροπή Δύναμης Θα έχετε παρατηρήσει πως κλείνετε ευκολότερα μια πόρτα, αν την σπρώξετε σε μια θέση που βρίσκεται σχετικά μακρύτερα από τον άξονα περιστροφής της (τους μεντεσέδες

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Τεχνολογικών Εφαρμογών Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Έλεγχος

Διαβάστε περισσότερα

ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS

ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS ΔΕΙΚΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΑΝΑΤΟΜΙΩΝ ΜΕΤΑΜΟΡΦΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΑΥΤΟΥ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ANFIS Χ.Δ. Βάλσαμος α, Β.Χ. Μουλιανίτης β, Ν.Α. Ασπράγκαθος α α Τμήμα Μηχανολόγων Μηχανικών και Αεροναυπηγών,

Διαβάστε περισσότερα

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής ΡΟΜΠΟΤΙΚΗ: ΟΡΙΣΜΟΣ: Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής, ρομπότ είναι ένας αναπρογραμματιζόμενος και πολυλειτουργικός χωρικός μηχανισμός σχεδιασμένος να μετακινεί υλικά, αντικείμενα, εργαλεία

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 10 η διάλεξη Ασκήσεις Ψηφιακός Έλεγχος 1 Άσκηση1 Ασκήσεις Επιθυμούμε να ελέγξουμε την γωνία ανύψωσης μιας κεραίας για να παρακολουθείται η θέση ενός δορυφόρου. Το σύστημα της κεραίας και

Διαβάστε περισσότερα

ΧΕΙΡΙΣΜΟΣ ΠΑΘΗΤΙΚΟΥ ΣΩΜΑΤΟΣ ΣΤΟ ΔΙΑΣΤΗΜΑ ΑΠΟ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤ ΣΕ ΤΡΟΧΙΑ

ΧΕΙΡΙΣΜΟΣ ΠΑΘΗΤΙΚΟΥ ΣΩΜΑΤΟΣ ΣΤΟ ΔΙΑΣΤΗΜΑ ΑΠΟ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤ ΣΕ ΤΡΟΧΙΑ ΧΕΙΡΙΣΜΟΣ ΠΑΘΗΤΙΚΟΥ ΣΩΜΑΤΟΣ ΣΤΟ ΔΙΑΣΤΗΜΑ ΑΠΟ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤ ΣΕ ΤΡΟΧΙΑ Γεώργιος Ρεκλείτης και Ευάγγελος Παπαδόπουλος Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Μηχανολόγων Μηχανικών, Εργαστήριο Αυτομάτου

Διαβάστε περισσότερα

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014 Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 204 ΘΕΜΑ Ο (2,0 μονάδες) Η διαδικασία διεύθυνσης ενός αυτοκινήτου κατά την οδήγησή του μπορεί να περιγραφεί με ένα σύστημα αυτομάτου ελέγχου κλειστού βρόχου.

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε

Διαβάστε περισσότερα

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται

Διαβάστε περισσότερα

Προσομοίωση, Έλεγχος και Βελτιστοποίηση Ενεργειακών Συστημάτων

Προσομοίωση, Έλεγχος και Βελτιστοποίηση Ενεργειακών Συστημάτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Μαρία Σαμαράκου Καθηγήτρια, Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας Διονύσης Κανδρής Επίκουρος Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink Δυναμική Μηχανών I 5 6 Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

Συλλογή μεταφορά και έλεγχος Δεδομένων. 1.4 Απλά και σύνθετα συστήματα αυτοματισμού.

Συλλογή μεταφορά και έλεγχος Δεδομένων. 1.4 Απλά και σύνθετα συστήματα αυτοματισμού. Συλλογή μεταφορά και έλεγχος Δεδομένων 1.4 Απλά και σύνθετα συστήματα αυτοματισμού. Το είδαμε μέχρι τώρα Δομή συστήματος αυτοματισμού Ο ελεγκτής προϋποθέτει την ύπαρξη κάποιων στοιχείων, στα οποία θα επιδράσει

Διαβάστε περισσότερα

Συγγραφέας: Νικόλαος Παναγιωτίδης

Συγγραφέας: Νικόλαος Παναγιωτίδης Τίτλος: Β Νόμος του Newton. Τάξη: Α Λυκείου Συγγραφέας: Νικόλαος Παναγιωτίδης e-mail: ekfe@dide.ioa.sch.gr ΕΚΦΕ: Ιωαννίνων 1 Υλικά: 1. Αμαξίδιο, 2. Τροχαλία, 3. Νήμα, 4. Κυλινδρικές μάζες 200 g με γάντζο,

Διαβάστε περισσότερα

Τα στάδια της υπολογιστικής προσομοίωσης επεξήγονται αναλυτικά παρακάτω

Τα στάδια της υπολογιστικής προσομοίωσης επεξήγονται αναλυτικά παρακάτω Διαδικασία υπολογιστικής προσομοίωσης Η διαδικασία της υπολογιστικής προσομοίωσης για την επίλυση πρακτικών προβλημάτων με εμπορικό λογισμικό περιλαμβάνει τα στάδια που φαίνονται στο διάγραμμα του Σχ.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2001 ΘΕΜΑΤΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 29 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΘΕΜΑ 1 ο

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Χαρακτηριστικά των Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση

Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 8-9, 7ο Εξάμηνο Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

Σχεδιασμός Τροχιάς Ρομποτικών Χειριστών

Σχεδιασμός Τροχιάς Ρομποτικών Χειριστών Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 00809, 7ο Εξάμηνο Μάθημα: Ρομποτική Ι Αυτόματος Έλεγχος Ρομπότ Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Συστήματα Αυτομάτου Ελέγχου ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #1: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου Δημήτριος Δημογιαννόπουλος Τμήμα

Διαβάστε περισσότερα

Συγκράτηση αντικειμένου από ρομποτικά δάχτυλα: Μοντελοποίηση χωρίς τη χρήση περιορισμών

Συγκράτηση αντικειμένου από ρομποτικά δάχτυλα: Μοντελοποίηση χωρίς τη χρήση περιορισμών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΙΝΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική εργασία με θέμα: Συγκράτηση αντικειμένου

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ

ΤΑΛΑΝΤΩΣΗ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ A A N A B P Y T A ΡΑΛΛΟΥ ΦΑΣΟΥΡΑΚΗ (Β4) ΜΑΡΤΙΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 9 5 ΤΑΛΑΝΤΩΣΗ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ Γενίκευση της άσκησης (σελ 4) του σχολικού βιβλίου Φυσικής Κατεύθυνσης Β Λυκείου

Διαβάστε περισσότερα

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Βασικές έννοιες, σχέσεις και διαδικασίες Αδρανειακό

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Συνάρτηση Μεταφοράς Σ.Δ.Δ. Διακριτοποίηση Συν. Μεταφοράς Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ

Διαβάστε περισσότερα

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011-12 Τοπικός διαγωνισμός στη Φυσική 10-12-2011 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Κεντρική ιδέα της άσκησης Στην άσκηση μελετάμε την κίνηση ενός

Διαβάστε περισσότερα

Διάλεξη 13: Σχήματα ανώτερης τάξης Οριακές συνθήκες για προβλήματα συναγωγήςδιάχυσης

Διάλεξη 13: Σχήματα ανώτερης τάξης Οριακές συνθήκες για προβλήματα συναγωγήςδιάχυσης ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 13: Σχήματα ανώτερης τάξης Οριακές συνθήκες για προβλήματα συναγωγήςδιάχυσης Χειμερινό εξάμηνο 2008

Διαβάστε περισσότερα

Αυτόματος Έλεγχος. Ενότητα 11 η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης. Παναγιώτης Σεφερλής

Αυτόματος Έλεγχος. Ενότητα 11 η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης. Παναγιώτης Σεφερλής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα η : Σχεδίαση ελεγκτών στο πεδίο του χώρου μεταβλητών κατάστασης Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης

Διαβάστε περισσότερα

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan)

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) On-the-fly feedback, Upper Secondary Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) Τάξη: Β Λυκείου Διάρκεια ενότητας Μάθημα: Φυσική Θέμα: Ταλαντώσεις (αριθμός Χ διάρκεια μαθήματος): 6X90

Διαβάστε περισσότερα

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 467 ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ Βαρυπάτη Αθηνά Φυσικός- Επιμορφώτρια Τ.Π.Ε. avarypat@de.sch.gr Μαστραλέξης Δημήτρης Φυσικός-Επιμορφωτής Τ.Π.Ε. dmastral@de.sch.gr

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 2

Συστήματα Αυτομάτου Ελέγχου 2 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 2 Ενότητα #1: Ποιοτικά χαρακτηριστικά συστημάτων κλειστού βρόχου Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής

Διαβάστε περισσότερα

μαγνητικό πεδίο παράλληλο στον άξονα x

μαγνητικό πεδίο παράλληλο στον άξονα x Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του

Διαβάστε περισσότερα

Αντίστροφη Κινηματική

Αντίστροφη Κινηματική Αντίστροφη Κινηματική Πώς να τοποθετήσω το χέρι μου εδώ; Αντίστροφη Κινηματική: Επέλεξε αυτές τις γωνίες ΥΠΑΡΧΕΙ ΛΥΣΗ; Vrml Inverse Kinema9cs - No solu9on Στόχος Για ένα στόχο έξω από τον χώρο εργασίας

Διαβάστε περισσότερα

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3) Η Επιτάχυνση η τα- Έστω r ( t ) ( t ) i ( t ) j z ( t ) k το διάνυσμα θέσης του κινητού Μ και ( t ) χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει r ( t ) r ( t ) ή πιο απλά (1) t t Άρα

Διαβάστε περισσότερα

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i, Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-125 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΣΚΗΣΗ 1 Μικρή σφαίρα εκτοξεύεται τη χρονική στιγμή t=0 από ορισμένο ύψος με αρχική ταχύτητα

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 1: Βασικές έννοιες Μπλόκ διαγράμματα Δ. Δημογιαννόπουλος,

Διαβάστε περισσότερα

1. Ηλεκτρικοί κινητήρες- σερβοκινητήρας 2. Ελεγκτές. ΜΠΔ, 9 Ο Εξάμηνο Σάββας Πιπερίδης

1. Ηλεκτρικοί κινητήρες- σερβοκινητήρας 2. Ελεγκτές. ΜΠΔ, 9 Ο Εξάμηνο Σάββας Πιπερίδης www.robolab.tuc.gr 1. Ηλεκτρικοί κινητήρες- σερβοκινητήρας 2. Ελεγκτές ΜΠΔ, 9 Ο Εξάμηνο Σάββας Πιπερίδης 1. Ηλεκτρικοί κινητήρες σερβοκινητήρας R/C σέρβο βηματικός κινητήρας 2 1. Ηλεκτρικοί κινητήρες σερβοκινητήρας

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή.

Κεφάλαιο 1 Εισαγωγή. Κεφάλαιο 1 Εισαγωγή Αντικείμενο της εργασίας είναι η σχεδίαση και κατασκευή του ηλεκτρονικού τμήματος της διάταξης μέτρησης των θερμοκρασιών σε διάφορα σημεία ενός κινητήρα Ο στόχος είναι η ανάκτηση του

Διαβάστε περισσότερα

εν υπάρχει συµφωνία ως προς τον ορισµό. 1949 Μηχανή Αριθµητικού Ελέγχου (MIT Servo Lab) Βραχίονες για χειρισµό πυρηνικού υλικού (Master Slave, 1948)

εν υπάρχει συµφωνία ως προς τον ορισµό. 1949 Μηχανή Αριθµητικού Ελέγχου (MIT Servo Lab) Βραχίονες για χειρισµό πυρηνικού υλικού (Master Slave, 1948) Κεφάλαιο 1 Εισαγωγή 1-1 Τι είναι Ροµπότ; εν υπάρχει συµφωνία ως προς τον ορισµό. Σύµφωνα µε το Αµερικανικό Ινστιτούτο Ροµποτικής (Rbt Institute f America, RIA) είναι ένας επαναπρογραµµατιζόµενος βραχίονας

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε Πτυχιακή εργασία ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΘΕΣΗΣ ΓΡΑΦΙΔΑΣ ΕΚΤΥΠΩΤΗ ΕΚΠΟΝΗΣΗ: ΚΟΛΙΩΤΣΑ ΜΑΡΙΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΤΣΙΡΙΓΩΤΗΣ

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Ηλίας Γλύτσης, Τηλ. 21-7722479, e-mail:

Διαβάστε περισσότερα