ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ"

Transcript

1 ΝΕΥΡΟ-ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΛΕΓΧΟΣ ΜΕΣΩ ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑΤΟΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΙΝΗΣΗΣ Ξανθή Παπαγεωργίου, Παναγιώτης Αρτεμιάδης, Κωνσταντίνος Κυριακόπουλος Σχολή Μηχανολόγων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο ΠΕΡΙΛΗΨΗ Νευρο-ρομποιικ ά είναι τα συστήματα εκείνα που ενσωματώνουν την γνώση μας για τα βιολογικά συστήματα, σε μηχανές που είναι είτε παθητικές είτε επενεργούμενες. Στην παρούσα εργασία το ερευνηιικ ό ενδιαφέρον επικεντρώνετατ στην χρήση μορφών διασύνδησης μεταξύ του ανθρώυου και των ρομπότ, που βασίζονται σε σήματα που μετρώνται από τον ίδιο τον άνθρωπο. Ειδικόιερα, ηλεκτρομυογραφικά σήματα καταγράφοντατ επιφανειακά από τους σκελειικ ούς μύες του ανθρωπίνοπ άνω άκρου. Στη συνέχεια τα σήματα αυτά, μέσω κατάλληλων μοντέλων μεταφράζονται στην αντίσιοιχ η κίνηση του άνω άκρου, η οποία τελικά χρησιμοποτείται για τον έλεγχο σε πραγματικό χρόνο ενός ρομποιικ ού βραχίονα 7 βαθμών ελευθερίας στον ιρισδιά σια το χώρο. Σε περιπιώσεις όπου η κίνηση του βραχίονα γίνεται σε περιβάλλον όπου συνυπάρχουν διάσπαρτα αντικείμενα εμπόδια, αναπτύσσονται οι κατάλληλες μεθοδολογίες ώστε να επττρέποπν στο ρομπότ να είναι υποχωρηιικ ό προς συγκεκριμένες επιφάνειες, ενώ ταυτόχρονα να αποφεύγει τα εμπόδια που μπορούν να αναχαττίσουν την κίνησή του. Λέξεις κλειδιά: νευρο-ρομποιικ ή, ηλεκτρομυογράφημα, προγραμμαιισμ ός κίνησης 1 ΕΙΣΑΓΩΓΗ Η παρούσα εργασία πραγματεύεται μια σημανιι κή πτυχή του τομέα της νευρορομποιικ ής, αυτήν της διασύνδησης της ρομποιικ ής και ειδικόιερ α των ρομποιικ ών συστημάτων με τον ίδιο τον άνθρωπο. Πτο συγκεκριμένα, στην παρούσα εργασία χρησιμοποτείτατ το σήμα που καταγράφεται επιφανειακά από τους σκελειικ ούς μύες του άνω άκρου, το λεγόμενο ηλεκτρομυογραφικό σήμα, ή ηλεκτρομυογράφημα. Το σήμα αυτό, με την κατάλληλη επεξεργασία, αποκωδικοποτείτατ σε κίνηση του άνω άκρου, με σκοπό να χρησιμοποιεθεί ως μεταβλητή ελέγχου ρομποιικ ών συστημάτων. Συγχρόνως υλοποιούνται κατάλληλοι ελεγκτές ώστε να είναι εφικτή η αποφυγή των εμποδίων που περιέχονια ι στον περιβάλλοντα χώρο, και να μπορεί ιο ρομπότ να προσεγγίσει και να αλληλεπιδράσει σε καμπυλωμένες επιφάνειες. Το παραπάνω σενάριο λειιου ργίας απεικονίζετατ στο Σχήμα 1. Τα ηλεκτρομυογραφικά σήματα έχουν χρησιμοποιεθεί θιο παρελθόν για τον έλεγχο ρομποιικ ών συστημάτων. Ένα τέιοιο παράδειγμα αποτελεί η εργασία (Fukuda, 2003), όπου η διεύθυνση κίνησης πρηνισμού/υπιια σμού ενός ρομποιικ ού καρπού, ελεγχόταν από ηλεκτρομυογραφικά σήματα των μυών του πήχη. Πολύ συχνά σιις παλατότερες 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

2 εργασίες χρησιμοποιούνται ηλεκτρομυογραφικά σήματα για τον έλεγχο ρομποιικ ών χεριών (Bitzer, 2006). Σε όλες ιις προαναφερσείσες εργασίες η αποκωδικοποίηση των ηλεκτρομυογραφικών σημάτων οδηγούσε σε διακρττές αποφάσεις, για παράδειγμα κάμψη ή έκταση των δακτύλων, και όχι σε μια συνεχή περιγραφή της κίνησης. Στην παρούσα εργασία ερευνάται ο συνεχής έλεγχος των ρομποιικ ών συστημάτων μέσω του ηλεκτρομυογραφήματος. Γι' αυτό το λόγο, απαιτείται η εκτίμηση της συνεχής κίνησης του άνω άκρου, ώστε η τελευταία να χρησιμοποιεθεί για τον εύρωστο και ακριβή έλεγχο ενός ρομποιικ ού βραχίονα. Σχήμα 1: Αναπαράσταση πραγματικού σεναρίου πποκατάστασης άνω άκρων. Σχήμα 2: Ο χρήστης κινεί το άνω άκρο στο χώρο, ενώ οι 4 γωνίες του ώμου και του αγκώνα ππολογίζονται μέσω των μαγνητικών αισθητήρων θέσης. Σε τέτοιου είδους συστήματα που χρησιμοποιούνται σήματα από τον άνθρωπο υπάρχει αυξημένη δυσκολία να ελεγχθεί με ακρίβεια το ρομπότ, ιδιαίτερα σε περιπιώσεις όπου είτε το περιβάλλον του ρομπότ είναι γεμάτο με αντικείμενα-εμπόδια μη-αντιληπτά από τον άνθρωπο, ηίτη η μορφολογία του ρομπότ είνατ διαφορειικ ή αυτής του ανθρώυου. Ευομένως είναι πολύ σημανιι κό να αναπτύξουμε ιις μεθοδολογίες εκείνες που θα μας επττρέψουν να ελέγξουμε το ρομπότ, κάνοντάς το να αποφεύγει ιις συγκρούσεις με τον περιβάλλοντα χώρο. 2 ΜΕΘΟΔΟΛΟΓΙΑ 2.1 Το τλεκτρομυογράφημα ως μεταβλττή ελέγχου Το ηλεκτρομυογράφημα είναι το δυναμικό που μετράται επιφανειακά από τους σκελειικ ούς μύες, όταν αυτοί συστέλλονται με σκοπό την παραγωγή δύναμης και άρα κίνησης. Σι ην παρούσα εργασία μας ενδιαφέρει η κίνηση του άνω άκρου στον τρτσδτάστατο χώρο. Επομένως, 11 συνολικά μύες που ενεργούν σιον ώμο και στον αγκώνα επιλέγονται να καταγραφούν ως οι κύριοι μύες για την εν λόγω κίνηση. Η άρθρωση του καρπού παραλείπεται για λόγους ευκολίας. Ο στόχος είναι η αποκωδικοποίηση του ηλεκτρομυογραφικού σήματος σε κίνηση. Αυτό θα επττευχθεί με την χρήση ενός μαθημαιικ ού μοντέλου, που θα μπορεί να εκπαιδεύεται κατάλληλα ώστε να εκιιμ ά την κίνηση του άνω άκρου βασισμένο μόνο στο ηλεκτρομυογράφημα. Για την εκπαίδευση του συστήματος αποκωδικοποίησης ηλεκτρομυογραφικών σημάτων απαττείται η σύγχρονη συλλογή σήματος από τους 11 εμπλεκόμενους μύες καθώς και της αντίστοιχης κίνησης του άνω άκρου. Για την καταγραφή του 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

3 ηλεκτρομυογραφήματος χρησιμοποτείτατ κατάλληλο σύστημα καταγραφής (Bagnoli-16 Desktop EMG System, Delsys Inc., Boston, MA, USA) και επιφανειακά ηλεκιρόδι α καταγραφής. Για την καταγραφή της κίνησης χρησιμοποτείτατ σύστημα μαγνηιι κών αιθθητήρων σέσης και προσανατολισμού (Isotrak II, Polhemus Inc, USA). Το σύστημα αποτελείται από δύο αισθητήρες, των οποίων, ε σέση και ο προσανατολισμός ως προς το αδρανειακό σύστημα αξόνων του αιθθητήρα, παρέχεται με συχνότητα 30 Hz. Τοποθετώντας το αδρανειακό σύστημα στον ώμο του χρήστη, και τους δύο αιθθητήρες στον αγκώνα και τον καρπό ανιίσιοιχ α, μπορούμε να υπολογίσουμε ιις 4 γωνίες των αρθρώσεων του ώμου και του αγκώνα, όπως αυτές ορίζονται στο Σχήμα 2, κάνοντας χρήση των κτνημαιικ ών εξισώσεων. Στα ηλεκτρομυογραφικά σήματα, μετά την αρχική επεξεργασία, εφαρμόζεται μια μεθοδολογία απεικόνισης σε χώρο μικρότηρης διάστασης. Αυτό συμβαίνει επειδή, όπως είναι γνωστό από την βιβλιογραφία (d'avella, 2006), οι μύες δρουν συλλογικά για την παραγωγή κίνησης. Το ίδιο συμβαίνει και για ιε ν κίνηση του άνω άκρου. Ας ορίσουμε u L 2 και y L 2 την αναπαράσταση του ηλεκτρομυογραφήματος και της κίνησης σε χώρο μικρότηρης διάστασης ανιίσιοιχ α. Το μοντέλο αποκωδικοποίησης του u L σε y L περτγράφεται από την παρακάτω εξίσωση: x k 1 Ax k Bu Lk w k y Lk Cx k k ( 1) όπου x d ένα διάνυσμα κρυφών μεταβλητών, w, μεταβλητές θορύβου και A, B, C πίνακες που περιγράφουν την δυναμική του διανύσματος των κρυφών μεταβλητών, την συνεισφορά του ηλεκτρομυογραφήματος σε αυτήν, καθώς επίσης και την σχέση του διανύσματος με την κίνηση του άνω άκρου ανιίσιοιχ α. Οι πίνακες αυτοί πρέπει να υπολογιθθούν χρησιμοποτώντας δεδομένα εκπαίδευσης, δηλαδή ηλεκτρομυογραφικά σήματα και αντίσιοι χες μεταβλητές κίνησης. Κατά τη διάρκεια της εκπαίδευσης του συστήματος ο χρήστης κινεί ιο άνω άκρο σε τυχαίες σέσεις στο χώρο. Ηλεκτρομυογραφικά σήματα καταγράφονται, καθώς και οι γωνίες των αρθρώσεων, έτστ ώστε να χρησιμοποιηθούν ως δεδομένα εκπαίδευσης για το μοντέλο (1). Μετά την εκπαίδευση του μοντέλου, ξεκινά η φάση τηλεχειρισμού του ρομποιικ ού βραχίονα σε πραγματικό χρόνο. Σε αυτή την φάση, τα ηλεκτρομυογραφικά σήματα που καταγράφονται από τους 11 μύες εισάγονται στο μοντέλο (1). Κάνοντας χρήση των εξισώσεων της (1), τελικά εκιιμ άται το διάνυσμα y L που περιγράφει ιε ν κίνηση του άνω άκρου. Ο ρομποιικ ός βραχίονας ελέγχεται τελικά με κατάλληλο ελεγκτή ροπής ώστε να κινηθεί βασισμένος σιε ν εκτίμηση της τροχιάς του ανθρωπίνου άνω άκρου. 2.2 Προγραμματισμός κίνησης Είναι πολύ σημανιικ ός ο σχεδιασμός και η ανάπτυξη ελεγκτών, που θα επττρέποπν στο ρομποιικ ό βραχίονα να εκτελεί τα καθήκοντά του πάνω σε επιφάνειες, να είναι υποχωρηιικ ός σε συγκεκριμένες καταστάσεις και ταυτόχρονα να αποφεύγει ιις συγκρούσεις με τα αντικείμενα του χώρου μέσα στον οποίο κτνείτατ (Patel, 2005), (Zhang Y, 2004). Επίσης, ένα πολύ σημανιικ ό θέμα άπτεται των ορίων, τα οποία έχουν επιβληθεί από τον κατασκευαστή του ρομποιικ ού βραχίονα, και με βάση τα οποία υπάρχει περιορισμός στο ποια είναι η μέγτστη ταχύτητα με την οποία τα μηχανικά μέρη 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

4 του ρομπότ μπορούν να εκτελέσουν μία κίνηση. Για να ανταπεξέλθουμε σε αυτήν την δυσκολία, έχουμε εντάξει αυτούς τους περιορισμούς στον σχεδιασμό του ελεγκτή του ρομπότ. Η προσπάθεια υλοποίησης των ανωτέρω συνοψίζεται στο πρόβλημα σχεδιασμού ελεγκτή για ρομποιικ ό βραχίονα με πλεονάζοντες βαθμούς, το εύρος της κίνησης των συνδέσμων του οποίου πρέπει να παραμένουν μέσα σε προκαθορισμένα όρια (τα οποία έχει σέσει ο κατασκευαστής). Προκειμένου να επττευχθεί ο στόχος μας, υλοποιούμε συναρτήσεις πλοήγησης (Rimon, 1992), αναλύουμε το σύστημα κλειστού βρόχου και ελέγχουμε την ευστάθεια του συστήματος. Το σύστημα με τη χρήση των ελεγκτών μας, είναι ολικά ομοιόμορφα ασυμπιωιικ ά ευσταθές και σέβετατ όλους οι μηχανολογικούς περιορισμούς. Επιπλέον είναι εφικτό αφενός να σταθεροποιήθοπμε το άκρο του ρομποιικ ού βραχίονα σε ένα συγκεκριμένο σεμείο ή να το οδηγήσουμε ώστε να ακολουσήσει με επττυχία μία προκαθορισμένη τροχιά, πάνω σε μία δυσδιάστατη πολυπλοκότητα (επιφάνεια) που βρίσκεται στον τρτσδτάστατο χώρο και να αποφεύγει όλα τα εμπόδια του περιβάλλοντος ΣΥΝΑΡΤΗΣΗ ΠΛΟΗΓΗΣΗΣ Οι ελεγκτές που υλοποιούμε βασίζονια ι στη δημιουργία τεχνητού δυναμικού πεδίου το οποίο δημιουργείτατ από τη συνάρτηση πλοήγησης και που καθορίζεται στην ουσία από την επιθυμητή σέση όπου το ρομπότ θέλουμε να μεταβεί και από τα εμπόδια που υπάρχουν μέσα στο χώρο δράσης του και που πρέπει να αποφύγει. Το επιθυμητό σεμείο γτα το ρομπότ παράγει το ελκιικ ό δυναμικό που θα τραβήξει το ρομπότ στην τελική σέση, ηνώ τα εμπόδια παράγουν ένα απωθητικό δυναμικό που ωθεί το ρομπότ μακριά του. Η αρνηιικ ή κλίση του συνολικού δυναμικού αντιμετωπίζεται ως μία τεχνητή δύναμη που εφαρμόζεται στο ρομπότ. Σε κάθε σέση του ρομπότ, η κατεύθυνση αυτής της δύναμης θεωρείτατ η πιο πιθανή κατεύθυνση της κίνησης. Η συνάρτηση πλοήγησης μας βοηθά θτον προγραμμαιισμ ό της κίνησης του ρομποιικ ού βραχίονα, οδηγεί το άκρο του ρομπότ προς την επιφάνεια και με τη χρήση του ελεγκτή καθορίζεται η κίνησή του πάνω σε αυτήν. Η πλοήγηση κατά μήκος της επιφάνεια περιλαμβάνει αφενός την σταθηροποίηθη σε κάποιο σεμείο ιε ς, και αφετέρου την παρακολούσηση προκαθορισμένης τροχτάς. Ο όγκος του ρομποιι κού βραχίονα στο χώρο δράσης του ρομπότ μπορεί να αναπαρασταθεί ως σεμείο σε ένα διαφορειικ ό χώρο εργασίας, ακολουθώντας μία σειρά από μετασχημαιισμ ούς. Τα εμπόδια του χώρου ακολουθούν τους ίδιους μετασχημαιισμ ούς και με αυτόν τον τρόπο κατασκευάζεται η συνάρτηση πλοήγησης. Η συνάρτηση πλοήγησης που χρησιμοποιούμε ορίζεια ι στη γενική μορφή της ως εξής : d d B 1 m όπου οι γωνίες των συνδέσμων του ρομπότ, m είναι οι βαθμοί ελευθερίας του ρομπότ, γ d είναι η συνάρτηση που μετρά την απόσταση από την επιθυμητή σέση όπου το ρομπότ θέλουμε να μεταβεί (δημιουργεί ιο ελκιικ ό πεδίο), B ws O s είναι ένα γινόμενο συναρτήσεων που αναπαριστούν εμπόδια και περιορισμούς στην κίνηση του ρομπότ (δημιουργεί ιο απωθηιικ ό δυναμικό). Κάθε μία από αυτές ιις συναρτήσεις έχει τους εξής ρόλους: η συνάρτηση β ws μας εξασφαλίζει όιι το ρομπότ θα παραμείνει μέσα στο χώρο δράσης στο οποίο επττρέπεται να κινηθεί, η συνάρτηση β Ο εξασφαλίζει όιι κάθε τμήμα του ρομπότ δεν κινδυνεύει να έρθει σε ( 2) 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

5 επαφή με το περιβάλλον, γίνεται δηλαδή αποφυγή σύγκρουσης σε όλα τα τμήματα του ρομποιικ ού βραχίονα και όχι μόνο στο άκρο του, ε συνάρτηση β s μοντελοποιεί ια ιδιόμορφα σεμεία ιε ς κινημαιικ ής ως τεχνητά εμπόδια του χώρου δράσης του ρομπότ και μας εγγυάται όιι το ρομπότ θα αποφύγει τα σεμεία αυτά. Τέλος με κ αναπαριστούμε μία θειικ ή και πραγματική παράμετρο, χρήσιμε για την ρύθμιση της συμπεριφοράς του συστήματος. 3 ΑΠΟΤΕΛΕΣΜΑΤΑ Στο Σχήμα 3 φαίνεται η πραγματική και η εκτίμηση της κίνησης του άνω άκρου μέσω των ηλεκτρομυογραφικών σημάτων και του μοντέλου (1). Τα γραφήματα απεικονίζουν την τροχιά του ανθρωπίνοπ χεριού όπως αυτή καταγράφεται από το μαγνηιικ ό σύστημα θέσης στους 3 άξονες του χώρου κίνησης, και την εκτίμηση της τροχιάς μέσω του μοντέλου αποκωδικοποίησης (1). Όπως είναι φανερό από τα γραφήματα, η εκτίμηση της τροχιάς της κίνησης είναι πολύ ακριβής, και δύναται να χρησιμοποιεθεί για τον έλεγχο του ρομποιικ ού βραχίονα, εφόσον η συχνότητα στην οποία γίνεται η εκτίμηση της κίνησης είναι ίση με αυτήν της καταγραφής του ηλεκτρομυογραφήματος, δηλαδή 1 khz. Πραγματοποιήσαμε πειράματα με σκοπό να επαληθεύσουμε την ικανότητα εφαρμογής και την αποτελεσμαιι κότητα της προιηινόμηνης μεθοδολογίας. Ο ρομποιικ ός βραχίονας στον οποίο υλοποιήσαμε τα πειράματα είναι το μοντέλο της Mitsubishi PA10-7C, με m=7 βαθμούς ελευθερίας, στη σέση που απεικονίζει η εικόνα (Σχήμα 4). Στα παρακάτω σχήματα φαίνονται γραφικές αναπαραστάσεις των αποτελεσμάτων με τη χρήση του Matlab, από διαφορειικ ές οπιικ ές γωνίες σε κάθε μία εικόνα. Η τροχιά του άκρου του ρομπότ σχεδιάζεται με την μπλε καμπύλη. Αρχικά το ρομπότ κινείται προς την επιθυμητή σέση (Σχήμα 4) και στη συνέχεια ακολουθεί μία προκαθορισμένη ημττονοητδή τροχιά (Σχήμα 5) πάνω στην επιφάνεια (κίιρινη καμπύλη), ενώ έχει αποφύγει όλα τα εμπόδια του περιβάλλοντος αλλά και τα εμπόδια που είναι ιο ποθετημένα πάνω στην ηπιφάνεια. Σχήμα 3. Πραγματική (real) και εκτιμόμενη (estimates) κίνηση του άνω άκρου μέσω του ηλεκτρομυογραφήματος στους 3 άξονες x, y, z. 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

6 Initial Configuration Trajectory Tracking Closed surface Initial Configuration Closed surface Target Configuration Σχήμα 4: Αναπαράσταση αποτελεσμάτων για σταθεροποίηση του άκρου σε σημείο. Σχήμα 5: Αναπαράσταση αποτελεσμάτων για παρακολούθηση τροχιάς. 4 ΣΥΜΠΕΡΑΣΜΑΤΑ Οι μεθοδολογίες αποκωδικοποίησης κίνησης που αναπτύξαμε επττρέπουν την κίνηση του ρομποιικ ού βραχίονα βασισμένη σε σήματα που προέρχονται από τον ίδιο ιον άνθρωπο, ενώ συγχρόνως είναι εφικτό να αποφεύγονται τα εμπόδια που υπάρχουν στο χώρο δράσης του. Οι μεθοδολογίες μπορούν να εφαρμοθθούν σε ρομποιικ ά συστήματα αποκατάστασης κινηιικ ών δυσκολιών που θα ελέγχονται από σήματα προερχόμενα από τον άνθρωπο, διαιε ρώντας την επιθυμητή αυτονομία και ασφάλεια. 5 ΒΙΒΛΙΟΓΡΑΦΙΑ S. Bitzer and P. van der Smagt, Learning EMG control of a robotic hand: towards active prostheses, Proc. of IEEE Int. Conf. on Robotics and Automation, pages , A. d Avella, A. Portone, L. Fernandez, and F. Lacuaniti, Control of fast-reaching movements by muscle synergy combinations, The Journal of Neuroscience, vol. 25, no. 30, pp , O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka, A human-assisting manipulator teleoperated by EMG signals and arm motions, IEEE Trans. on Robotics and Automation, 19(2): , Patel R., Shadpey F., Ranjbaran F., Angeles J. (2005), A collision avoidance scheme for redundant manipulators: Theory and experiments, Journal of Robotic Systems, vol. 22, no. 12, pp Rimon E. and Koditschek D. (1992), Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp Zhang Y., Wang J. (2004), Obstacle avoidance for kinematically redundant manipulators using a dual neural network, IEEE Transactions on Systems, Man, & Cybernetics - Part B: Cybernetics, vol. 34, no. 1. 1ο Πανελλήνιο Συνέδριο Ρομποτικής, ΤΕΕ, Αθήνα, Φεβρουαρίου,

Εισαγωγή στην Ρομποτική

Εισαγωγή στην Ρομποτική Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις

Διαβάστε περισσότερα

ΣΥΝΕΡΓΑΣΙΑ ΡΟΜΠΟΤ-ΑΝΘΡΩΠΟΥ ΓΙΑ ΤΟΝ ΧΕΙΡΙΣΜΟ ΥΦΑΣΜΑΤΩΝ

ΣΥΝΕΡΓΑΣΙΑ ΡΟΜΠΟΤ-ΑΝΘΡΩΠΟΥ ΓΙΑ ΤΟΝ ΧΕΙΡΙΣΜΟ ΥΦΑΣΜΑΤΩΝ ΣΥΝΕΡΓΑΣΙΑ ΡΟΜΠΟΤ-ΑΝΘΡΩΠΟΥ ΓΙΑ ΤΟΝ ΧΕΙΡΙΣΜΟ ΥΦΑΣΜΑΤΩΝ Παναγιώτης Κουστουμπάρδης *, Νίκος Ασπράγκαθος Πανεπιστήμιο Πατρών, Τμ. Μηχανολόγων & Αεροναυπηγών Μηχανικών, Ερευνητική Ομάδα Ρομποτικής, e-mail:

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA

ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA Δρ. Φασουλάς Ιωάννης, jfasoula@ee.auth.gr jfasoulas@teemail.gr Τμήμα Πληροφορικής και Επικοινωνιών Τεχνολογικό

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ

ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ & ΕΞΟΜΟΙΩΣΗΣ ΓΙΑ ΡΟΜΠΟΤ ΣΤΟ ΔΙΑΣΤΗΜΑ Ευάγγελος Παπαδόπουλος, Ιωσήφ Σ. Παρασκευάς, Θάλεια Φλέσσα, Κώστας Νάνος, Γεώργιος Ρεκλείτης και Ιωάννης Κοντολάτης Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να:

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να: ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Τίτλος Μαθήματος Μεθοδολογίες και Συστήματα Βιομηχανικής Αυτοματοποίησης Κωδικός Μαθήματος Μ3 Θεωρία / Εργαστήριο Θεωρία + Εργαστήριο Πιστωτικές μονάδες 4 Ώρες Διδασκαλίας 2Θ+1Ε Τρόπος/Μέθοδοι

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ Ιωάννης Νταβλιάκος, Ευάγγελος Παπαδόπουλος Σχολή Μηχανολόγων Μηχανικών ΕΜΠ, Εργαστήριο Αυτοµάτου Ελέγχου email: gdavliak@central.ntua.gr,

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ

ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ ΣΥΝΘΕΣΗ ΑΝΘΡΩΠΙΝΩΝ ΜΟΝΤΕΛΩΝ ΓΙΑ ΕΦΑΡΜΟΓΕΣ ΚΙΝΗΣΗΣ ΣΕ Η/Υ ΒΑΣΙΖΟΜΕΝΗ ΣΕ ΚΙΝΗΜΑΤΙΚΑ ΑΠΟΠΛΕΓΜΕΝΕΣ ΡΟΜΠΟΤΙΚΕΣ ΓΕΩΜΕΤΡΙΕΣ Δημήτριος Μ. Εμίρης Τμήμα Βιομηχανικής Διοίκησης & Τεχνολογίας, Πανεπιστήμιο Πειραιώς,

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ

ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ Χ.Δ. Βάλσαμος α, Β.Χ. Μουλιανίτης β, Ν.Α. Ασπράγκαθος α α Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

2/4/2010. ρ. Φασουλάς Ιωάννης. Απαιτούµενες γνώσεις: Ανάγκη εκπαίδευσης των φοιτητών στον προγραµµατισµό και λειτουργία των βιοµηχανικών ροµπότ

2/4/2010. ρ. Φασουλάς Ιωάννης. Απαιτούµενες γνώσεις: Ανάγκη εκπαίδευσης των φοιτητών στον προγραµµατισµό και λειτουργία των βιοµηχανικών ροµπότ Τµήµα Μηχανολογίας Τ.Ε.Ι. Κρήτης ΕΚΠΑΙ ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA ρ. Φασουλάς Ιωάννης Η Ροµ οτική στις σύγχρονες βιοµηχανικές µονάδες αραγωγής

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink Δυναμική Μηχανών I 5 6 Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014 Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 204 ΘΕΜΑ Ο (2,0 μονάδες) Η διαδικασία διεύθυνσης ενός αυτοκινήτου κατά την οδήγησή του μπορεί να περιγραφεί με ένα σύστημα αυτομάτου ελέγχου κλειστού βρόχου.

Διαβάστε περισσότερα

Προσομοίωση, Έλεγχος και Βελτιστοποίηση Ενεργειακών Συστημάτων

Προσομοίωση, Έλεγχος και Βελτιστοποίηση Ενεργειακών Συστημάτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Μαρία Σαμαράκου Καθηγήτρια, Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας Διονύσης Κανδρής Επίκουρος Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής ΡΟΜΠΟΤΙΚΗ: ΟΡΙΣΜΟΣ: Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής, ρομπότ είναι ένας αναπρογραμματιζόμενος και πολυλειτουργικός χωρικός μηχανισμός σχεδιασμένος να μετακινεί υλικά, αντικείμενα, εργαλεία

Διαβάστε περισσότερα

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 467 ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ Βαρυπάτη Αθηνά Φυσικός- Επιμορφώτρια Τ.Π.Ε. avarypat@de.sch.gr Μαστραλέξης Δημήτρης Φυσικός-Επιμορφωτής Τ.Π.Ε. dmastral@de.sch.gr

Διαβάστε περισσότερα

Συγκράτηση αντικειμένου από ρομποτικά δάχτυλα: Μοντελοποίηση χωρίς τη χρήση περιορισμών

Συγκράτηση αντικειμένου από ρομποτικά δάχτυλα: Μοντελοποίηση χωρίς τη χρήση περιορισμών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΙΝΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική εργασία με θέμα: Συγκράτηση αντικειμένου

Διαβάστε περισσότερα

εν υπάρχει συµφωνία ως προς τον ορισµό. 1949 Μηχανή Αριθµητικού Ελέγχου (MIT Servo Lab) Βραχίονες για χειρισµό πυρηνικού υλικού (Master Slave, 1948)

εν υπάρχει συµφωνία ως προς τον ορισµό. 1949 Μηχανή Αριθµητικού Ελέγχου (MIT Servo Lab) Βραχίονες για χειρισµό πυρηνικού υλικού (Master Slave, 1948) Κεφάλαιο 1 Εισαγωγή 1-1 Τι είναι Ροµπότ; εν υπάρχει συµφωνία ως προς τον ορισµό. Σύµφωνα µε το Αµερικανικό Ινστιτούτο Ροµποτικής (Rbt Institute f America, RIA) είναι ένας επαναπρογραµµατιζόµενος βραχίονας

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΡΟΜΠΟΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΧΑΜΗΛΟΥ ΚΟΣΤΟΥΣ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΡΟΜΠΟΤΙΚΗΣ

ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΡΟΜΠΟΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΧΑΜΗΛΟΥ ΚΟΣΤΟΥΣ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΡΟΜΠΟΤΙΚΗΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΡΟΜΠΟΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΧΑΜΗΛΟΥ ΚΟΣΤΟΥΣ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΡΟΜΠΟΤΙΚΗΣ Θωµ. Σακάρος,. Τσόντος, ρ. Γ. Φουσκιτάκης, ρ. Λ. οϊτσίδης Τµήµα Ηλεκτρονικής, Τεχνολογικό Εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή.

Κεφάλαιο 1 Εισαγωγή. Κεφάλαιο 1 Εισαγωγή Αντικείμενο της εργασίας είναι η σχεδίαση και κατασκευή του ηλεκτρονικού τμήματος της διάταξης μέτρησης των θερμοκρασιών σε διάφορα σημεία ενός κινητήρα Ο στόχος είναι η ανάκτηση του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2001 ΘΕΜΑΤΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 29 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΘΕΜΑ 1 ο

Διαβάστε περισσότερα

3 η Εργαστηριακή Άσκηση

3 η Εργαστηριακή Άσκηση 3 η Εργαστηριακή Άσκηση Βρόχος υστέρησης σιδηρομαγνητικών υλικών Τα περισσότερα δείγματα του σιδήρου ή οποιουδήποτε σιδηρομαγνητικού υλικού που δεν έχουν βρεθεί ποτέ μέσα σε μαγνητικά πεδία δεν παρουσιάζουν

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της λειτουργίας της γεννήτριας συνεχούς ρεύματος

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΟΚΙΝΗΣΗΣ ΑΣΥΓΧΡΟΝΟΥ ΚΙΝΗΤΗΡΑ : ΠΛΕΟΝΕΚΤΗΜΑΤΑ, ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΚΑΙ ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΜΕΙΩΣΗΣ ΑΠΩΛΕΙΩΝ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΟΚΙΝΗΣΗΣ ΑΣΥΓΧΡΟΝΟΥ ΚΙΝΗΤΗΡΑ : ΠΛΕΟΝΕΚΤΗΜΑΤΑ, ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΚΑΙ ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΜΕΙΩΣΗΣ ΑΠΩΛΕΙΩΝ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΟΚΙΝΗΣΗΣ ΑΣΥΓΧΡΟΝΟΥ ΚΙΝΗΤΗΡΑ : ΠΛΕΟΝΕΚΤΗΜΑΤΑ, ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΚΑΙ ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΜΕΙΩΣΗΣ ΑΠΩΛΕΙΩΝ Δ. Ράπτης, Α. Κλαδάς Εργαστήριο Ηλεκτρικών Μηχανών και Ηλεκτρονικών Ισχύος Τομέας Ηλεκτρικής

Διαβάστε περισσότερα

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη 6 ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής» Φλώρινα, 20-22 Απριλίου 2012 Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη Σάββας Νικολαΐδης 1 ο

Διαβάστε περισσότερα

r r r r r r r r r r r

r r r r r r r r r r r ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε μια από αυτές βαθμολογείται με 0 βαθμούς.. Χρησιμοποιήστε μόνο το στυλό που υπάρχει

Διαβάστε περισσότερα

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε Πτυχιακή εργασία ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΘΕΣΗΣ ΓΡΑΦΙΔΑΣ ΕΚΤΥΠΩΤΗ ΕΚΠΟΝΗΣΗ: ΚΟΛΙΩΤΣΑ ΜΑΡΙΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΤΣΙΡΙΓΩΤΗΣ

Διαβάστε περισσότερα

Εφαρμογή RFID Αναγνωστών σε Ρομποτικούς Βραχίονες για Βελτιστοποίηση Απόδοσης ηης Γραμμής Παραγωγής

Εφαρμογή RFID Αναγνωστών σε Ρομποτικούς Βραχίονες για Βελτιστοποίηση Απόδοσης ηης Γραμμής Παραγωγής Εφαρμογή RFID Αναγνωστών σε Ρομποτικούς Βραχίονες για Βελτιστοποίηση Απόδοσης ηης Γραμμής Παραγωγής Μαρτίνη Αδαμαντίνη, Ζαχαρής Αλέξανδρος Τμήμα Μηχανικών Υπολογτστών,Τηλεπικοινωνιών και Δικτύων Πανεπτστήμιο

Διαβάστε περισσότερα

ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ

ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ Δρ Γιώργος Α. Δημητρίου Ευφυή Κινούμενα Ρομπότ 139 Ρομποτικός Εντοπισμός Θέσης Δεδομένα Χάρτης του περιβάλλοντος Ακολουθία παρατηρήσεων Ζητούμενο Εκτίμηση της θέσης του

Διαβάστε περισσότερα

Η Ελληνική Πύλη Ρομποτικής στην 77η ΔΕΘ

Η Ελληνική Πύλη Ρομποτικής στην 77η ΔΕΘ Η Ελληνική Πύλη Ρομποτικής στην 77η ΔΕΘ Για δεύτερη συνεχόμενη χρονιά η Διεθνής Έκθεση Θεσσαλονίκης φιλοξένησε την Ελληνική Πύλη Ρομποτικής σε εκθεσιακό περίπτερο στο οποίο παρουσιάστηκαν ρομποτικές εφαρμογές

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ)

Πανεπιστήμιο Κύπρου. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) 26/01/2014 Συνεισφορά του κλάδους ΗΜΜΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ευρύ φάσμα γνώσεων και επιστημονικών

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της αρχής λειτουργίας των μηχανών συνεχούς ρεύματος, β) η ανάλυση της κατασκευαστικών

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 13 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ ΘΕΜΑ B1 Η κίνηση δύο ατόµων ενός µορίου µπορεί να περιγραφεί προσεγγιστικά από ένα a 1 x ax δυναµικό της µορφής V = +, a >, όπου x> η σχετική απόσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (16) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1

Συστήματα Αυτομάτου Ελέγχου 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 1: Βασικές έννοιες Μπλόκ διαγράμματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής Τμήματος Μηχανικών

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές Βιομηχανικοί Ελεγκτές Σημειώσεις Εργαστηρίου Έλεγχος Στάθμης Δοχείου με P.I.D. Ελεγκτή Περιεχόμενα 1. Τρόπος Εισαγωγής στο πρόγραμμα εξομοίωσης. 2. Τρόπος λειτουργίας εξομοιωτή. 3. Αναγνώριση ιδιοτήτων

Διαβάστε περισσότερα

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 2 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 3 ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ 4 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 5 ΓΕΩΡΓΙΟΣ ΘΕΟΔΩΡΟΥ Καθηγητής Α.Π.Θ. ΧΡΙΣΤΙΝΑ ΘΕΟΔΩΡΟΥ Μαθηματικός ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

Μηχανική του στερεού σώματος

Μηχανική του στερεού σώματος Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Δεύτερη Φάση) Κυριακή, 13 Απριλίου 2014 Ώρα: 10:00-13:00 Οδηγίες: Το δοκίμιο αποτελείται από έξι (6) σελίδες και έξι (6) θέματα. Να απαντήσετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

O Ψηφιακός Παλμογράφος

O Ψηφιακός Παλμογράφος Τεχνική Εκπαίδευση O Ψηφιακός Παλμογράφος Παναγιώτης Γεώργιζας BEng Cybernetics with Automotive Electronics MSc Embedded Systems Engineering Θέματα που θα αναλυθούν www.georgizas.gr 1. Γενικά περί παλμογράφων

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία

Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία Βασικές Υποθέσεις (i) Οι αγορές όλων των αγαθών είναι τέλεια ανταγωνιστικές. Οι καταναλωτές και οι επιχειρήσεις

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΟΠΤΙΚΗ ΑΝΑΓΝΩΡΙΣΗ ΓΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΥΤΟΝΟΜΗΣ ΠΤΗΣΗΣ ΕΛΙΚΟΠΤΕΡΟΥ

ΟΠΤΙΚΗ ΑΝΑΓΝΩΡΙΣΗ ΓΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΥΤΟΝΟΜΗΣ ΠΤΗΣΗΣ ΕΛΙΚΟΠΤΕΡΟΥ ΟΠΤΙΚΗ ΑΝΑΓΝΩΡΙΣΗ ΓΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΥΤΟΝΟΜΗΣ ΠΤΗΣΗΣ ΕΛΙΚΟΠΤΕΡΟΥ ιοµήδης Κατζουράκης 1, Νίκος Βιτζηλαίος 2, Νίκος Τσουρβελούδης 2 1 Biomechanical Engineering Group, Mechanical, Maritime and Materials Engineering,

Διαβάστε περισσότερα

Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ

Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Συμπληρωματικό κείμενο στη θέση του Δ.Σ. της ΠΕΚαΠ για την Πληροφορική στην Πρωτοβάθμια Εκπαίδευση. Τελική έκδοση κειμένου: Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΤΟ ΔΗΜΟΤΙΚΟ

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης ύναµη σε ρευµατοφόρους αγωγούς (β) Ο αγωγός δεν διαρρέεται από ρεύμα, οπότε δεν ασκείται δύναμη σε αυτόν. Έτσι παραμένει κατακόρυφος. (γ) Το µαγνητικό

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Εισαγωγή στη Ρομποτική (για αρχάριους) Δημήτρης Πιπερίδης Διαδραστική Έκθεση Επιστήμης & Τεχνολογίας Ίδρυμα Ευγενίδου

Εισαγωγή στη Ρομποτική (για αρχάριους) Δημήτρης Πιπερίδης Διαδραστική Έκθεση Επιστήμης & Τεχνολογίας Ίδρυμα Ευγενίδου Εισαγωγή στη Ρομποτική (για αρχάριους) Δημήτρης Πιπερίδης Διαδραστική Έκθεση Επιστήμης & Τεχνολογίας Ίδρυμα Ευγενίδου Τι είναι ένα ρομπότ; Δεν υπάρχει σαφής ορισμός. Ορισμός: Μια μηχανική κατασκευή που

Διαβάστε περισσότερα

ΓΕΝΕΣΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΠΛΕΓΜΑΤΩΝ

ΓΕΝΕΣΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΠΛΕΓΜΑΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΓΕΝΕΣΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΠΛΕΓΜΑΤΩΝ Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 5 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα: Μοντελοποίηση Μηχανικών- Ηλεκτρικών-Υδραυλικών-Θερμικών Συστημάτων Επανάληψη: Εξισώσεις Lagrange σε συστήματα

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ. Νίκος Αγγελούσης, Επ. Καθηγητής

Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ. Νίκος Αγγελούσης, Επ. Καθηγητής Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ Νίκος Αγγελούσης, Επ. Καθηγητής Γενικά Οι ικανότητες για στάση και για βάδισµα αποτελούν βασικές προϋποθέσεις για την ποιότητα

Διαβάστε περισσότερα

ΑΥΤΟΝΟΜΗ ΠΛΟΗΓΗΣΗ ΜΗ ΕΠΑΝΔΡΩΜΕΝΩΝ ΕΛΙΚΟΠΤΕΡΩΝ

ΑΥΤΟΝΟΜΗ ΠΛΟΗΓΗΣΗ ΜΗ ΕΠΑΝΔΡΩΜΕΝΩΝ ΕΛΙΚΟΠΤΕΡΩΝ ΑΥΤΟΝΟΜΗ ΠΛΟΗΓΗΣΗ ΜΗ ΕΠΑΝΔΡΩΜΕΝΩΝ ΕΛΙΚΟΠΤΕΡΩΝ Νίκος Ι. Βιτζηλαίος, Νίκος Χρ. Τσουρβελούδης Εργαστήριο Ευφυών Συστημάτων & Ρομποτικής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Πολυτεχνείο Κρήτης, 731, Χανιά,

Διαβάστε περισσότερα

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack Χλης Νικόλαος-Κοσμάς Περιγραφή παιχνιδιού Βlackjack: Σκοπός του παιχνιδιού είναι ο παίκτης

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 8 ης εργαστηριακής άσκησης: Αποκωδικοποιητής ΔΗΜΗΤΡΙΟΣ

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Δρ. Ηλίας Ξυδιάς E-mail: xidias@aegean.gr Τηλ.: 22810-97134, 694-9191282

Δρ. Ηλίας Ξυδιάς E-mail: xidias@aegean.gr Τηλ.: 22810-97134, 694-9191282 Η. Ξυδιάς: Βιογραφικό Σημείωμα (Μάιος 12) i Δρ. Ηλίας Ξυδιάς E-mail: xidias@aegean.gr Τηλ.: 22810-97134, 694-9191282 Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων 84100 Ερμούπολη,

Διαβάστε περισσότερα

Εισαγωγή γή στη Φυσική των Επιταχυντών II Γ. Παπαφιλίππου Τμήμα Επιταχυντών -CERN

Εισαγωγή γή στη Φυσική των Επιταχυντών II Γ. Παπαφιλίππου Τμήμα Επιταχυντών -CERN γή στη Φυσική των στη Φυσική τω ων Επιταχυντώ ών Επιταχυντών II Γ. Παπαφιλίππου Τμήμα Επιταχυντών -CERN Επιμορφωτικό πρόγραμμα Ελλήνων καθηγητών CERN, Ιούλιος 2008 1 Βασικές αρχές δυναμικής των επιταχυντών

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ( ) ( ) ( ) β. g( x) Όταν ο τύπος της συνάρτησης περιέχει παρονομαστές αυτοί πρέπει να είναι διάφοροι του Άρα: μηδενός ( ) ( )

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ( ) ( ) ( ) β. g( x) Όταν ο τύπος της συνάρτησης περιέχει παρονομαστές αυτοί πρέπει να είναι διάφοροι του Άρα: μηδενός ( ) ( ) . Δίνεται η συνάρτηση: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ( x) = 3x + 5x α. Να βρείτε το πεδίο ορισμού της. β. Να υπολογίσετε τις τιμές:, και α. Το πεδίο ορισμού της συνάρτησης είναι: Α= β. = 3 + 5 = ( ) = 3 ( ) + 5 ( )

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Το διαστημόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί

Διαβάστε περισσότερα

Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή

Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Ταυτότητα Σεναρίου Τίτλος: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Γνωστικό Αντικείμενο: Πληροφορική Διδακτική Ενότητα: Ελέγχω-Προγραμματίζω τον Υπολογιστή

Διαβάστε περισσότερα

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M, ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο

Διαβάστε περισσότερα

Μηχανολόγος Μηχανικός στο Α.Π.Θ.

Μηχανολόγος Μηχανικός στο Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Μηχανολόγος Μηχανικός στο Α.Π.Θ. Παναγιώτης Σεφερλής Αναπληρωτής Καθηγητής Έχεις το «μικρόβιο» του Μηχανικού; Dilbert 2 Επιστήμη του Μηχανολόγου

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2014 ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-14 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2014 Φυσική Β Λυκείου (Κατεύθυνση) Ημερομηνία: 26 / 05 / 14 Βαθμός: / 100 = / 20 Ώρα: 10:30 π.μ. Ολογράφως:. Χρόνος:

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Παίζουμε μπάσκετ; Εκπαιδευτική δραστηριότητα ρομποτικής στο προγραμματιστικό περιβάλλον Lego Mindstorms

Παίζουμε μπάσκετ; Εκπαιδευτική δραστηριότητα ρομποτικής στο προγραμματιστικό περιβάλλον Lego Mindstorms Παίζουμε μπάσκετ; Εκπαιδευτική δραστηριότητα ρομποτικής στο προγραμματιστικό περιβάλλον Lego Mindstorms Γεώργιος Βουνάτσος Εκπαιδευτικός ΠΕ12 gvounatsos@freemail.gr Ανδριανή Μέγα Εκπαιδευτικός ΠΕ19 adrianim@hotmail.com

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ

ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ 0: ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΤΥΠΟΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Δρ Γιώργος

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα