ΟΠΤΙΚΕΣ ΨΕΥΔΑΙΣΘΗΣΕΙΣ ΚΑΙ ΟΠΤΙΚΕΣ ΤΕΧΝΙΚΕΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΠΤΙΚΕΣ ΨΕΥΔΑΙΣΘΗΣΕΙΣ ΚΑΙ ΟΠΤΙΚΕΣ ΤΕΧΝΙΚΕΣ"

Transcript

1 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΟΠΤΙΚΕΣ ΨΕΥΔΑΙΣΘΗΣΕΙΣ ΚΑΙ ΟΠΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Α. Μ. ΚΟΥΡΝΙΑΤΗ Αρχιτέκτονας Μηχανικός, Λέκτορας Ε.Μ.Π. ΠΕΡΙΛΗΨΗ Το οπτικό ερέθισμα δεν είναι από μόνο του αρκετό για να προκαλέσει την οπτική αντίληψη ενός αντικειμένου. Ο εγκέφαλος επεξεργάζεται το οπτικό σήμα σε συνδυασμό με πλήθος άλλων πληροφοριών και καταλήγει στην αντίληψη η οποία πολλές φορές δεν είναι ταυτόσημη με την πραγματικότητα. Ειδικότερα στις απεικονίσεις, όπου συνήθως έχουμε δισδιάστατη καταγραφή της τρισδιάστατης πραγματικότητας, οδηγούμαστε συχνά σε οπτική πλάνη στην οποία μπορεί να παραμένουμε ακόμα και όταν διαπιστώσουμε την πραγματικότητα της εικόνας. Η συνειδητοποίηση αυτών των οπτικών ψευδαισθήσεων είναι απαραίτητη για την κατανόηση της οπτικής πραγματικότητας. ΕΙΣΑΓΩΓΗ Η αδυναμία της όρασης να αποδώσει την πραγματικότητα είναι γνωστή από την αρχαιότητα 1. Φιλόσοφοι μεταξύ των οποίων ο Αναξαγόρας 2, ο Δημόκριτος 3, ο Πλάτωνας 4 και ο Αριστοτέλης 5 διατύπωσαν θεωρίες γύρω από την οπτική αντίληψη. 1 John Beare, Greek Theories of Elementary Cognition, Clarendon Press, Oxford 1906 David Lindberg, Theories of Vision From Al-Kindi to Kepler, University of Chicago, Chicago and London, Diels-Kranz, Die Fragmente der Vorsokratiker, 6η εκδ. Βερολίνο 1952, Θεοφρ. de sens. (1) κ (27), σελ Diels-Kranz, Die Fragmente der Vorsokratiker, 6η εκδ. Βερολίνο 1952, Θεοφρ. de sens. (1) κ (27), σελ. 78, 79, Πλάτωνος, Τιμαίος 45b-46a. εκδ. Ι. Ζαχαρόπουλος, Αθήνα, σελ Πολιτεία 507e-508a, εκδ. Ι. Ζαχαρόπουλος, Αθήνα, σελ Θεαίτητος 156d-e-508a, εκδ. Ι. Ζαχαρόπουλος, Αθήνα. Μένων 76d, εκδ. Ζαχαρόπουλος, Αθήνα. 5 Αριστοτέλης, Μικρά φυσικά, Περί αισθήσεως και αισθητών, 439α 21-25, Ι. Ζαχαρόπουλος, Αθήνα. Αριστοτέλης, Περί Ψυχής 418b 14-17, εκδ. Ζαχαρόπουλος, Αθήνα.

2 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 2 Μαθηματικοί, με πρώτο τον Ευκλείδη 6, ασχολήθηκαν με την καταγραφή και απόδειξη προτάσεων για την οπτική αντίληψη. Αρχιτέκτονες χρησιμοποίησαν οπτικά τεχνάσματα και δημιούργησαν αριστουργήματα, ενώ οι καλλιτέχνες προβληματίστηκαν με την ανακάλυψη μεθόδων καταγραφής της οπτικής εμπειρίας. Σήμερα γνωρίζουμε ότι το οπτικό ερέθισμα δεν είναι από μόνο του αρκετό για να δημιουργήσει την οπτική αντίληψη ενός αντικειμένου. Ο εγκέφαλος επεξεργάζεται το οπτικό σήμα σε συνδυασμό με πλήθος άλλων πληροφοριών και καταλήγει στην αντίληψη η οποία πολλές φορές δεν είναι ταυτόσημη με την πραγματικότητα. Εξάλλου, το χρώμα 7, το φόντο, η παρουσία άλλων αντικειμένων 8, όπως επίσης δεδομένα αισθητηριακά, μνημονικά 9 και συγκινησιακά επηρεάζουν την οπτική αντίληψη. Ειδικότερα στις απεικονίσεις, όπου συνήθως έχουμε δισδιάστατη καταγραφή της τρισδιάστατης πραγματικότητας, οδηγούμαστε συχνά σε οπτική πλάνη στην οποία μπορεί να παραμένουμε ακόμα και όταν διαπιστώσουμε την πραγματικότητα της εικόνας. Η συνειδητοποίηση αυτών των οπτικών ψευδαισθήσεων είναι απαραίτητη για την κατανόηση της οπτικής μας αντίληψης. Μέσα από το άρθρο αυτό, θα επιχειρήσουμε μία πρώτη προσέγγιση του ζητήματος των οπτικών ψευδαισθήσεων, παρέχοντας γεωμετρικές ερμηνείες, που πιστεύουμε ότι θα βοηθήσουν στην κατανόηση τους. Τις οπτικές ψευδαισθήσεις μπορούμε να τις κατατάξουμε στις ακόλουθες γενικές κατηγορίες. 1. ΟΠΤΙΚΟΓΕΩΜΕΤΡΙΚΕΣ ΨΕΥΔΑΙΣΘΗΣΕΙΣ Αυτές αφορούν σε γεωμετρικούς σχηματισμούς, όπου γίνεται λανθασμένη εκτίμηση σχημάτων και μεγεθών. 6 Euclides, Optica, Opticorum Recensio Theonis, Catoptrica, I. L. Heiberg, Λειψία, Paul Ver Eecke. Euclide, l optique et la catoptrique, A. Blanchard, Paris, Εισαγωγή XΧΧΙΙΙ 7 Arnheim Rudolf, Τέχνη και Οπτική Αντίληψη, Θεμέλιο 1999, Αθήνα. 8 Ε. Γ. Βακαλό, Οπτική Σύνταξη, Νεφέλη, Αθήνα 1988, σελ Σ. Κονταράτου, Η Εμπειρία του Αρχιτεκτονημένου Χώρου και το Σωματικό σχήμα. Αθήνα 1983, σελ. 14.

3 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 3 Εδώ μπορείτε να το διαπιστώσετε Σχήμα 1: Τα κατακόρυφα ευθύγραμμα τμήματα του σχήματος είναι ίσα ή άνισα; Εδώ μπορείτε να το διαπιστώσετε Σχήμα 2: Τα ευθύγραμμα τμήματα του σχήματος είναι ίσα μεταξύ τους ; Εδώ μπορείτε να το διαπιστώσετε Σχήμα 3: Οι κεντρικοί κύκλοι των δύο σχημάτων είναι ίσοι ή άνισοι;

4 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 4 Εδώ μπορείτε να το διαπιστώσετε Σχήμα 4: Τα ευθύγραμμα τμήματα του σχήματος είναι μεταξύ τους παράλληλα; Εδώ μπορείτε να το διαπιστώσετε Σχήμα 5: Τα ευθύγραμμα τμήματα του σχήματος είναι μεταξύ τους παράλληλα; 2. ΥΠΟΚΕΙΜΕΝΙΚΑ ΠΕΡΙΓΡΑΜΜΑΤΑ Πρόκειται για σχήματα, τα οποία φαίνονται να υπάρχουν χωρίς ποτέ να έχουν υλοποιηθεί. Αυτό οφείλεται στην ιδιότητα του εγκεφάλου, να οριοθετεί αυτόματα περιοχές σε απλούς σχηματισμούς 10, ώστε να γίνει αντιληπτή η σύνθεση της εικόνας, 10 Ninio Jacques, Η Επιστήμη των ψευδαισθήσεων, Εκδόσεις Κάτοπτρο, 2000, σελ. 88.

5 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 5 Σχήμα 6: Εικόνες του Gaestano Kanizsa. Στο σχήμα φαίνεται να υπάρχει ένα λευκό τρίγωνο, το οποίο επικαλύπτει το σκούρο. Επιπλέον, το λευκό τρίγωνο ξεχωρίζει από το φόντο από το οποίο φαίνεται λευκότερο. Το ίδιο ισχύει και για τα υπόλοιπα σχήματα της εικόνας. Σχήμα 7: Παρατηρώντας την εικόνα, δημιουργείται η εντύπωση ότι ανάμεσα στα τετράγωνα υπάρχουν μικρότερα γκρίζα σχήματα.

6 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 6 3. ΤΑ ΑΜΦΙΡΡΟΠΑ ΣΧΗΜΑΤΑ Σχήμα 8: Ψευδαίσθηση του Ehrenstein. Κοιτάζοντας τον ημιτελή κάνναβο, βλέπουμε να υπάρχουν λευκές κυκλικές περιοχές και διαγώνιες ζώνες. Ο ίδιος σχηματισμός οπτικών ερεθισμάτων μπορεί να οδηγεί σε διαφορετικές αντιληπτές εικόνες, τα αμφίρροπα σχήματα. Βρισκόμαστε τότε εμπρός σε μία ψευδαίσθηση. Η εντύπωση για την εικόνα αλλάζει από τη μία στιγμή στην άλλη. Ο εγκέφαλος δεν μπορεί να αποφασίσει για την αίσθηση του βάθους. Τα αμφίρροπα σχήματα ήσαν γνωστά από την αρχαιότητα, όπως φανερώνουν αρχαία κείμενα αλλά και ψηφιδωτά. Οι πρώτες παρατηρήσεις για αμφίρροπους σχηματισμούς καταγράφονται από τον Ευκλείδη 11 στην Οπτική του. Συγκεκριμένα, στην πρόταση 57, περιγράφοντας το σχήμα 9, παρατηρεί ότι άλλοτε φαίνεται κοίλο και άλλοτε κυρτό. Σχήμα 9 11 Euclides, Optica, Opticorum Recensio Theonis, Catoptrica, I. L. Heiberg, Λειψία 1895, σελ

7 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 7 Ο Πλάτωνας, εξάλλου, αναφέρει στην Πολιτεία 12 ότι τα ίδια αντικείμενα άλλοτε φαίνονται κοίλα και άλλοτε κυρτά, λόγω της απάτης, που προκαλείται στην όραση εξαιτίας των χρωμάτων και όπως συνεχίζει, οι απάτες αυτές βάζουν σε μεγάλη ταραχή την ψυχή. Το φαινόμενο της διφορούμενης αντίληψης του βάθους, ήταν γνωστό και στους καλλιτέχνες της αρχαιότητας 13, όπως μπορούμε να διαπιστώσουμε παρατηρώντας διάφορα ψηφιδωτά της Αντιόχειας του 3 ου μ.χ. αιώνα. Σχήμα 10α: Ψηφιδωτό από οικία της Αντιόχειας του 2 ου π.χ. αιώνα. Σχήμα 10β: Ψηφιδωτό από οικία της Αντιόχειας του 3 ου π.χ. αιώνα Πολλοί σύγχρονοι καλλιτέχνες και επιστήμονες έχουν ασχοληθεί με τα αμφίρροπα σχήματα. Τα πλέον γνωστά παραδείγματα είναι ο κύβος του Necker, το βιβλίο του Mach, οι κύβοι και η σκάλα του Jastrow, το βάζο του Rubin και πλήθος άλλων. 12 Πλάτωνος, Πολιτεία 602d. εκδ. Ι. Ζαχαρόπουλος, Αθήνα. 13 Combrich E. H., Τέχνη και ψευδαίσθηση, Εκδ. Νεφέλη, Αθήνα, 1995.

8 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 8 Ποιες ακμές είναι μπροστά και ποιες πίσω (Παρατηρείστε πως μεταβάλλεται η οπτική αντίληψη). Σχήμα 11: Ο κύβος του Necker Σχήμα 12: Οι κύβοι του Jastrow. Σχήμα 13: Η σκάλα του Jastrow

9 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 9 Το βάζο του Rubin Σχήμα 14: Ένα βάζο ή δύο πρόσωπα; 4. ΠΡΟΟΠΤΙΚΕΣ ΨΕΥΔΑΙΣΘΗΣΕΙΣ Οι ψευδαισθήσεις αυτές προκύπτουν από προοπτική ερμηνεία του χώρου, όπου η προοπτική σμίκρυνση με την απομάκρυνση και οι χρωματικές αλλοιώσεις εξαιτίας της ατμόσφαιρας αποτελούν ενδείξεις μεγέθους και απόστασης. Εδώ μπορείτε να το διαπιστώσετε Σχήμα 15: Από τα δύο κατακόρυφα τμήματα, ποιο είναι το μεγαλύτερο;

10 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 10 Σχήμα 16: Οι δύο φιγούρες του σχήματος φαίνονται άνισες. Είναι πράγματι; Εδώ μπορείτε να το διαπιστώσετε Όταν παρατηρούμε επίπεδες εικόνες, οι οποίες υποδηλώνουν πιθανές τρισδιάστατες σκηνές, ο εγκέφαλος τις αναλύει και καταλήγει σε συμπεράσματα μεγέθους ή βάθους. Πολλές φορές όμως, παρασυρόμενος από σχεδιαστικές πληροφορίες, συμβαίνει να οδηγείται σε ανακριβή συμπεράσματα. Στα σχήματα 15, 16 και 17 ίσα μεγέθη εκλαμβάνονται ως άνισα εξαιτίας κάποιας ένδειξης βάθους, που υπονοεί το σχέδιο. Σύμφωνα με την οπτική μας αντίληψη, όσο απομακρύνεται ένα αντικείμενο από τον παρατηρητή, τόσο μικραίνει το φαινόμενο μέγεθός του. Η έννοια της απομάκρυνσης στο σχέδιο ταυτίζεται με την προσέγγιση προς το σημείο φυγής. Κατά συνέπεια, όταν δύο αντικείμενα φαίνονται ότι βρίσκονται σε διαφορετική απόσταση από το σημείο όρασης και έχουν το ίδιο μέγεθος, τότε αυτό που είναι πλησιέστερα στο σημείο όρασης, φαίνεται να είναι μικρότερο.

11 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 11 Εδώ μπορείτε να το διαπιστώσετε Σχήμα 17: Τι συμβαίνει με τις φιγούρες του σχήματος; Σχήμα 18: Δημιουργία της ίδιας ψευδαίσθησης με τη βοήθεια Η/Υ Οι πρώτες παρατηρήσεις για τη σχέση φαινομένου μεγέθους και απόστασης καταγράφονται από τον Ευκλείδη 14 τον 3 ο π.χ. αιώνα στην Οπτική του. Ο Ευκλείδης, έχοντας μελετήσει όλες τις μέχρι τότε γνώσεις γύρω από την όραση και τις ιδιομορφίες της και γνωρίζοντας τους κανόνες που ήδη είχαν διατυπωθεί μέσα από την εμπειρία και είχαν εφαρμοστεί σε έργα τέχνης και αρχιτεκτονικής, επιχειρεί να δώσει 14 Η παρατήρηση αυτή, διατυπώθηκε αρχικά από τους αρχαίους φιλοσόφους και αποδείχτηκε από τον Ευκλείδη στην Οπτική του (Πρόταση 5). Euclides, Optica, Opticorum Recensio Theonis, Catoptrica, I. L. Heiberg, Λειψία 1895, σελ. 8.

12 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 12 μία γεωμετρική ερμηνεία της οπτικής αντίληψης. Ορίζει 15 ότι το φαινόμενο μέγεθος του αντικειμένου εκφράζεται από την οπτική γωνία, δηλαδή την γωνία που σχηματίζουν οι οπτικές ακτίνες και υπό την οποία φαίνεται το αντικείμενο από το σημείο όρασης. Επίσης, αποδεικνύει ότι τα φαινόμενα μεγέθη των αντικειμένων είναι συσχετισμένα με την απόσταση από το σημείο όρασης όχι όμως με σχέση αναλογίας υπό την έννοια ισότητας των λόγων. Συγκεκριμένα 16 στην πρόταση 5 αναφέρει ότι μεταξύ ίσων μεγεθών, αυτό που είναι πλησιέστερα στο σημείο όρασης, φαίνεται μεγαλύτερο. Όμως συμπληρώνει στην πρόταση 8, τα ίσα μεγέθη, που απέχουν άνισες αποστάσεις από το σημείο όρασης δεν φαίνονται ανάλογα 17 προς τις αποστάσεις (με την έννοια πάντα της ισότητας των λόγων.) Επίσης, στην πρόταση 56 της Οπτικής του παρατηρεί ότι όταν ένα αντικείμενο αυξάνει σε μέγεθος, δίνει την εντύπωση ότι είναι πλησιέστερα 18 στο σημείο όρασης. Σημαντικές επίσης, είναι οι άμεσες ή έμμεσες αναφορές του στην καμπυλόμορφη αντίληψη του χώρου. Τα επίπεδα, που βρίσκονται κάτω από το επίπεδο του ματιού φαίνονται κοίλα, ενώ αυτά που βρίσκονται ψηλότερα από το μάτι φαίνονται κυρτά 19, συμπεραίνει στην πρόταση 10. Στα έργα τέχνης της κλασσικής αρχαιότητας, οι γνώσεις για την οπτική αντίληψη αποτυπώνονται με τη μορφή ηθελημένων οπτικών επεμβάσεων, με κορυφαίο παράδειγμα τον Παρθενώνα. Σχήμα 19: Ο Παρθενών 15 Οι ορισμοί 4, 5 και 6 της Ευκλείδειας οπτικής είναι τα βασικά αξιώματα, που στηρίζουν τη γεωμετρική ερμηνεία των φαινομένων μεγεθών. Με τα αξιώματα αυτά καθορίζεται η σχέση του μεγέθους του αντικειμένου με το μέγεθος της οπτικής γωνίας, υπό την οποία φαίνεται από το σημείο όρασης. 16 Euclides, Optica, Opticorum Recensio Theonis, Catoptrica, I. L. Heiberg, Λειψία 1895, σελ Ο.π. σελίδα Ο.π. σελίδα, Ο.π. σελίδα 16.

13 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 13 Οι περίφημες «οπτικές εκλεπτύνσεις» του Παρθενώνα είναι, σε πολλές περιπτώσεις, οι τεχνικές στις οποίες κατέφυγε ο αρχιτέκτονας για να εξουδετερώσει αφ ενός τις οπτικές απάτες, που θα κατέστρεφαν το έργο του και να τονίσει αφετέρου κάποια στοιχεία, που θα αναδείκνυαν τη σύνθεσή του. Όλο το μνημείο και κάθε τμήμα του χωριστά συνεργάζονται για να εντείνουν τα αποτελέσματα της προοπτικής 20. Ετσι, ο στυλοβάτης καμπυλώνει και ανασηκώνεται, οι κίονες γέρνουν ελαφρά προς τον τοίχο του Ναού, οι εσωτερικοί κίονες χαμηλώνουν και λεπταίνουν ελαφρά, αυξάνοντας την αίσθηση της απόστασης και συνολικά τονίζεται η εντύπωση της προοπτικής σύγκλισης, με αποτέλεσμα το όλο μνημείο να φαίνεται ελαφρύτερο και να υποβάλλει το αίσθημα της ανάτασης. Ο Φειδίας, αλλοιώνει ηθελημένα τις αναλογίες στα γλυπτά του, προκειμένου να πετύχει εύρυθμο αποτέλεσμα. Το ανέκδοτο 21, που αναφέρει ο Βυζαντινός συγγραφέας Ι. Τζέτζης (Χίλ. VIII, 353) για τον Φειδία, καθρεπτίζει ακριβώς αυτή την άποψη. Σύμφωνα με το συγγραφέα, οι Αθηναίοι ανέθεσαν στο Φειδία και τον Αλκαμένη την κατασκευή δύο αγαλμάτων της Αθηνάς, που επρόκειτο να τοποθετηθούν πάνω σε ψηλούς κίονες. Ο Φειδίας, γνωρίζοντας οπτική και γεωμετρία, έκαμε τέτοιες παραμορφώσεις στο πρόσωπο του αγάλματος που όταν το είδαν οι Αθηναίοι το θεώρησαν ασέβεια προς την Θεά, και λίγο έλειψε να λιθοβολήσουν τον καλλιτέχνη. Αντίθετα, το άγαλμα του Αλκαμένη φαινόταν ωραιότατο. Όταν όμως τα αγάλματα τοποθετήθηκαν πάνω στους κίονες για τους οποίους προορίζοντο, τότε αντελήφθησαν τη σοφία του Φειδία. Το ύψος προκαλούσε παραμορφώσεις στο πρόσωπο και το σώμα της Θεάς, τις οποίες όμως ο καλλιτέχνης είχε προβλέψει. Αντίθετα, η συμμετρία του ανθρώπινου σώματος, που είχε κατασκευάσει ο Αλκαμένης φαινόταν τώρα ασυμμετρία και τον προηγούμενο θαυμασμό στον Αλκαμένη ακολούθησε χλευασμός. 20 Οι θεωρίες περί των οπτικών επεμβάσεων εκλεπτύνσεων στον Παρθενώνα είναι πολλές και πολυσυζητημένες. Ο Βιτρούβιος, στο 3 ο βιβλίο της αρχιτεκτονικής του, αναφέρεται σε οπτικές επεμβάσεις στους δωρικούς ναούς. Θα αναφέρουμε επίσης την άποψη του καθηγητή Π. Μιχελή, ο οποίος στο άρθρο του, «η Αισθητική της οπτικής απάτης στην Αρχιτεκτονική», αναφερόμενος στις οπτικές επεμβάσεις, που παρατηρούνται στα έργα της κλασσικής αρχιτεκτονικής παρατηρεί : «...Οι Ελληνες δεν εσκόπευαν να αποκαταστήσουν απλώς τις άψυχες γεωμετρικές ευθείες, τις απότομες κάθετες και τις σκληρές οριζόντιες, που δεν τις αντικρύζουμε πουθενά στη φύση. Αυτή θα ήταν η αρχιτεκτονική του σχεδιαστηρίου, η έκφραση της μετριότητας. Αλλά ήθελαν να τονίσουν την αλήθεια που ζεί και δρά για να πραγματοποιήσει έστω και αληθοφάνειες, αφού χωρίς αυτές η αλήθεια δεν αξίζει... Εμψύχωσαν έτσι τα κτίρια, ετόνωσαν και ετόνισαν την αρμονία τους παλλόμενη στο φως...» (Τεχνικά Χρονικά 1939) 21 Τζέτζης Ι.Χιλ. VIII, 353 Overbeck, αρ. 772, σελ. 139.

14 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 14 Σχήμα 20: Η είσοδος προς τα Προπύλαια της Ακρόπολης κατά τον A. Choisy. Πέραν όμως των οπτικών αυτών επεμβάσεων, εκλεπτύνσεων των μορφών όπως συνήθως λέγεται, μέσω των οποίων επιτυγχάνεται η ευρυθμία του συνόλου, οι οπτικές ακτίνες, όπως ορίζονται στην Οπτική του Ευκλείδη, σε συνδυασμό με τις γωνίες που σχημάτιζαν και με τις αποστάσεις, έπαιζαν καθοριστικό ρόλο στη χωροθέτηση των κτισμάτων στα Πολεοδομικά συγκροτήματα των αρχαίων Ελλήνων. Ο Α. Choisy 22 κάνει τις ακόλουθες παρατηρήσεις αναφερόμενος στα Προπύλαια της Ακρόπολης. Στο σημείο Α της εισόδου (Σχ 20), από όπου δημιουργείται η πρώτη εντύπωση στον επισκέπτη, υπάρχει ένας άξονας ο οποίος καθορίζει την πορεία και ο οποίος είναι άξονας συμμετρίας της σύνθεσης όσον αφορά στις οπτικές γωνίες. Η πτέρυγα αριστερά των προπυλαίων είναι σαφώς φαρδύτερη από τη δεξιά, αλλά η οπτική γωνία, που καθορίζεται από τον άξονα και την οπτική ακτίνα ΑY είναι ίση με τη γωνία, που σχηματίζεται από τον άξονα και την ΑΧ. Από την δεξιά πτέρυγα έχει αφαιρεθεί ένα τμήμα, με αποτέλεσμα ο Ναός της Απτέρου Νίκης να μην επικαλύπτει τμήμα του πίσω κτίσματος και να προβάλλεται όπως και τα υπόλοιπα κτίσματα, ολόκληρος με φόντο τον ουρανό. Παρατηρείται ακόμα μία οπτική συνέχεια στις μάζες. Εκεί που οπτικά τελειώνει το ένα κτίριο αρχίζει το άλλο, χωρίς να μεσολαβεί κάποιο κενό. 22 Α. Choisy, Histoire de l architecture, Τόμος I. Architecture Grecque, σελ. 414.

15 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 15 Ο Κ. Δοξιάδης, στην μελέτη του Περί του τρόπου συνθέσεως των μνημειακών Πολεοδομικών συγκροτημάτων υπό των Αρχαίων Ελλήνων, υποστηρίζει 23 ότι η χωροθέτηση των κτισμάτων στα διάφορα συγκροτήματα των αρχαίων γινόταν βάσει κάποιου οπτικού συστήματος, το οποίο αναπτύχθηκε και τελειοποιήθηκε σταδιακά με την ανάπτυξη του Ελληνικού πνεύματος, και το οποίο ήταν βασισμένο στις οπτικές ακτίνες και στις οπτικές γωνίες που αυτές σχημάτιζαν. Οι οπτικές αρχές τις οποίες συγκέντρωσε, οργάνωσε, διατύπωσε και απέδειξε ο Ευκλείδης και οι οποίες καθόριζαν αποφασιστικά τις θέσεις και τις μορφές των Ναών στην κλασσική και Ελληνιστική περίοδο, χρησιμοποιήθηκαν σε πολλές περιπτώσεις από τους καλλιτέχνες της Αναγέννησης, κυρίως δε του Μπαρόκ, με τη μορφή προοπτικών τεχνασμάτων. Ενδεικτικά θα αναφερθούμε σε κάποια παραδείγματα. Σχήμα 21: Δύο απόψεις της πλατείας του Καπιτωλίου, Ρώμη (1539) 23 Κ. Δοξιάδη, Περί του τρόπου συνθέσεως των μνημειακών πολεοδομικών συγκροτημάτων υπό των Αρχαίων Ελλήνων. Τεχνικά Χρονικά, Ιανουάριος 1938, σελ. 15. C.A. Doxiadis, Architectural Space in Ancient Greece, The MIT Press, Cambridge, Massachusetts,and London,England, 1972.

16 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 16 Στην πλατεία του Καπιτωλίου (Σχ.21, 22), ο Μιχαήλ Άγγελος (1539), με την απόκλιση των πλάγιων κτιρίων από τον κεντρικό άξονα, πέραν του ότι επιτρέπει την ορατότητα του κεντρικού κτιρίου καθ όλο το πλάτος του, φέρνει την πρόσοψη του κεντρικού κτιρίου πιο κοντά προς τον παρατηρητή και διευρύνει την πλατεία. Σχήμα 22: Ερμηνεία της προοπτικής εντύπωσης στην πλατεία Καπιτωλίου. Ο παρατηρητής, που βρίσκεται στη θέση Ο1 (Σχ 22), αντί για τα αποκλίνοντα κτίρια ΑΒ και ΓΔ νομίζει ότι βλέπει τα ΒΒ1 και ΔΔ1 που είναι παράλληλα προς τον άξονα προσπέλασης και μικρότερα από τα πραγματικά. Έτσι, από τη θέση αυτή η πλατεία φαίνεται ευρύτερη και η απόσταση του κεντρικού κτιρίου από τον παρατηρητή μικρότερη. Αντίθετα, όταν ο παρατηρητής βρίσκεται στη θέση Ο2, η εντύπωσή του για τις διαστάσεις της πλατείας είναι διαφορετική. Του φαίνεται πιο στενή και πιο επιμήκης, (Σχ. 22).

17 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 17 Σχήμα 23: Άποψη της εισόδου της στοάς του Borromini Στο Palazzo Spada στη Ρώμη, ο αρχιτέκτονας του Μπαρόκ Francesco Borromini 24 ( ), θέλοντας να αυξήσει το βάθος της θολωτής κιονοστοιχίας, που οδηγούσε στο Palazzo και να αναδείξει το άγαλμα του πολεμιστή, που βρισκόταν στο τέλος της στοάς, έδωσε στην κάτοψη της στοάς ένα σχήμα τραπεζίου (Σχ 24, 25). 24 Rudolf Arnheim, Art and Visual Perception, Faber and Faber. London, 1969 σελ Rudolf Arnheim, Buildings As Percepts, Via 6 Architecture and Visual Perception. The Graduate School of Fine Arts University of Pennsylvania and M.I.T Press 1983, σελ. 13. M.H. Pirenne, Οptics, Painting and Photography, Cambridge 1970 Great Britain, σελ. 152.

18 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 18 Σχήμα 24: Σχηματική προοπτική απεικόνιση της στοάς του Borromini. Σχήμα 25: Σχηματική ερμηνεία της προοπτικής εντύπωσης αύξησης του βάθους. Ακολούθως, για να ολοκληρώσει την ψευδαίσθηση, μείωσε σχεδόν στο μισό το ύψος της τελευταίας αψίδας. Η τελική μορφή, που πήρε η στοά φαίνεται σχηματικά στα Σχήματα 24 και 25. Οι τοίχοι συγκλίνουν, το έδαφος ανασηκώνεται ελαφρά και η οροφή έχει κλίση προς τα κάτω. Ο παρατηρητής, που στέκεται στην είσοδο της στοάς, βλέπει ένα μακρύ τούνελ 25 και στο τέλος του ένα επιβλητικό άγαλμα. 25 Συνηθισμένος να βλέπει ορθογωνικής κάτοψης στοές να συγκλίνουν με παρόμοιο τρόπο.

19 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 19 Σχήμα 26: Σχηματική φωτορεαλιστική απεικόνιση της στοάς του Borromini. Αυτό συμβαίνει διότι ο παρατηρητής, που κοιτάζει από το σημείο Ο τη στοά, βλέπει στη θέση των κιονοστοιχιών ΑΓ και ΒΔ ( Σχ. 25), τις κιονοστοιχίες ΑΓ και ΒΔ, που αντιστοιχούν σε ορθογώνια κάτοψη και προκαλούν την ίδια οπτική εντύπωση με τις πρώτες. Έτσι η στοά φαίνεται μακρύτερη. Εάν στη θέση Κ, στέκεται ένας άνθρωπος επειδή θα νομίζεται ότι βρίσκεται στη θέση Κ, που είναι πολύ πιο μακριά, θα εντυπωσιάζει με το ύψος του. Το ίδιο συμβαίνει με το άγαλμα που βρίσκεται στο τέλος της στοάς ( Σχ. 26). Η ψευδαίσθηση αποκαλύπτεται όταν ο παρατηρητής κινηθεί στη στοά και φθάσει στο άγαλμα του πολεμιστή, το οποίο έκπληκτος βρίσκει πολύ μικρότερο απ ότι το φαντάσθηκε στην αρχή. Αντίθετα, ο παρατηρητής που κοιτάζει τη στοά από το άλλο άκρο της, έχει την εντύπωση ότι το βάθος της είναι πολύ μικρό.

20 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 20 Σχήμα 27: Αγιος Πέτρος, Ρώμη. Ο Bernini, χρησιμοποιεί το ίδιο τέχνασμα 26 στον Άγιο Πέτρο της Ρώμης (σχ. 27) Με την απόκλιση των κιονοστοιχιών, φέρνει πιο κοντά την πρόσοψη του Ναού και ταυτόχρονα εξαίρει το όλο κτίσμα δίνοντας μια ανηφορική κλίση στον κύριο άξονα προσπέλασης. Ο αρχιτέκτονας Guarino Guarini ( ), αφοσιωμένος με πάθος στα προβλήματα της Γεωμετρίας και της Προοπτικής, σχεδίασε τον τρούλο της εκκλησίας της Αγίας Σινδόνης στο Τορίνο 27 κατά τρόπο ώστε να εντυπωσιάζει με το ύψος του τον θεατή, που βρίσκεται στο εσωτερικό του Ναού, (Σχ. 28). Χώρισε εσωτερικά το τρούλο του Ναού σε οριζόντιες ζώνες των οποίων το ύψος και η διάμετρος μειώνεται προοδευτικά. Έτσι, ο παρατηρητής στη θέση Ο (Σχ 29), ενώ βλέπει το θόλο ΑΒΓΔ, που είναι χωρισμένος σε άνισες ζώνες, έχει την εντύπωση ότι βλέπει τον κατά πολύ υψηλότερο θόλο Α Β Γ Δ, όπου οι οριζόντιες ζώνες θα ήσαν ισοϋψείς. 26 Π. Μιχελή, Αισθητικά θεωρήματα, Τόμος 1 ος, Ίδρυμα Π. & Ε. Μιχελή, Αθήνα, Ottorino Rosati, Interpretazioni architettoniche delle Prospettive Accelerate e Rallentate, Ed. Quaderni di studio,torino, 1969.

21 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 21 Σχήμα 28: Άποψη του θόλου της Αγίας Σινδόνης του Guarino Guarini στο Τορίνο.

22 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 22 Σχήμα 29: Σχηματική ερμηνεία της προοπτικής εντύπωσης αύξησης του ύψους στον τρούλο της Αγίας Σινδόνης.

23 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 23 Στα έργα ζωγραφικής επίσης, κυρίως της Αναγέννησης, όπου οι αρχές της Ευκλείδειας οπτικής γίνονται αντικείμενο μελέτης, μπορούμε να παρατηρήσουμε τη διερεύνηση της σχέσης εικόνας, οπτικής γωνίας και σημείου όρασης μέσα από τα έργα μεγάλων καλλιτεχνών, όπως ο Pierro della Francesca, ο Μιχαήλ Άγγελος, ο Albrecht Dürer, ο Carlo Urbino κ.α. Στο έργο του Μιχαήλ Αγγέλου «η Δευτέρα Παρουσία» (Σχ.30), η σύνθεση διαρθρώνεται σε τρεις οριζόντιες ζώνες 28, που αυξάνουν προοδευτικά δημιουργώντας ένα δυναμικό σύνολο. Εάν παρατηρήσουμε το όλο θέμα αξονικά, η στάθμη κάθε ζώνης αντιστοιχεί στην ίδια οπτική γωνία. Η τεχνική είναι ανάλογη με αυτή, που προτείνει ο Albrecht Dürer (Σχ. 31) για τις επιγραφές και τις τοιχογραφίες. Σχήμα 30: Η Δευτέρα Παρουσία. Μιχαήλ Άγγελος, ( ). Καπέλα Σιξτίνα, Ρώμη 28 Baltrusaitis Jurgis, Anamorphoses, Les perspectives depravées, Flamarion, Paris 1984, σελ.13.

24 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 24 Στην στήλη του Α. Dürer, η επιγραφή χωρίζεται σε τρεις ανισοϋψείς ζώνες έτσι ώστε από το σημείο όρασης να φαίνονται ισοϋψείς λόγω της ισότητας των οπτικών γωνιών. Το ίδιο ισχύει και για τα γράμματα κάθε σειράς. Το μέγεθός τους καθορίζεται από την οπτική γωνία η οποία είναι ενιαία για όλες τις σειρές. Σχήμα 31: Γράμματα σε ένα τοίχο. Albrecht Dürer (1525) Σχήμα 32: Carlo Urbino, Προοπτικές παραμορφώσεις του ανθρώπινου σώματος. Σπουδή με οπτικές γωνίες.(1570) Περί το 16ο αιώνα οι αρχές και οι τεχνικές της προοπτικής απεικόνισης εφαρμόσθηκαν κατά τέτοιο τρόπο, ώστε να προκύπτουν εικόνες έντεχνα και έντονα αλλοιωμένες, παρασύροντας και εξαπατώντας τη οπτική αντίληψη 29. Οι εικόνες, που προέκυψαν ονομά- 29 Baltrusaitis Jurgis, Anamorphoses, Les perspectives depravées,flamarion, Paris 1984, σελ. 5.

25 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 25 σθηκαν αναμορφωτικές εικόνες (anamorphoses) και είτε είχαν χαρακτήρα προοπτικών παιχνιδιών είτε είχαν κάποιο χαρακτήρα μεταφοράς πολιτικών ή πνευματικών μηνυμάτων. Ενδεικτικά αναφέρουμε τους Πρεσβευτές του Hans Holbein (1533) (Σχ 33) και το πορτραίτο του πρίγκιπα Εδουάρδου του 6ου, του Ουίλιαμ Σκρότς (1546) (Σχ. 34). Σχήμα 33: «Οι Πρεσβευτές.». Hans Holbein (1533), Λονδίνο, National Portrait Gallery Οι αναμορφωτικές αυτές εικόνες έχουν προκύψει λόγω του ότι οι οπτικές ακτίνες, που κατευθύνονται από το σημείο όρασης προς το αντικείμενο απεικόνισης συναντούν τον πίνακα, σχηματίζοντας πολύ μικρές γωνίες και παίρνουν την κανονική τους μορφή όταν παρατηρηθούν από το κατάλληλο σημείο όρασης. Για την κατασκευή μιας τέτοιας εικό-

26 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 26 νας, επιλέγεται κατάλληλα το σημείο όρασης ώστε οι οπτικές ακτίνες να συναντούν το επίπεδο του πίνακα σχηματίζοντας με αυτό γωνίες όχι μεγαλύτερες από 5 ο. Στο σχήμα 35 έχει κατασκευαστεί η προοπτική εικόνα ενός κατακόρυφου τετραγώνου πλευράς αβ. Η αβ έχει θεωρηθεί ότι ανήκει στο επίπεδο του εδάφους. Το σημείο όρασης έχει τοποθετηθεί σε τέτοια θέση ως προς τον πίνακα και το αντικείμενο, ώστε οι οπτικές ακτίνες Ο α και Ο β να συναντούν τον πίνακα σχηματίζοντας με αυτόν πολύ μικρές γωνίες. Το προοπτικό ΑΒΓΔ του τετραγώνου εμφανίζεται παραμορφωμένο. Σχήμα 34: «Ο πρίγκιπας Εδουάρδος» Ουίλιαμ Σκροτς (1546), Λονδίνο, National Portrait Gallery Σχήμα 35: Κατασκευή προοπτικής εικόνας Στα σχήματα 36, 37 και 38, παρατηρούμε σύγχρονες εφαρμογές των αναμορφώσεων σε θέματα οδικής σήμανσης. Τα σήματα αυτά είναι σχεδιασμένα στο οδόστρωμα και απευθύνονται σε οδηγούς οχημάτων οπότε οι γωνίες υπό τις οποίες φαίνονται από τα σημεία όρασης είναι πολύ μικρές. Προκειμένου λοιπόν οι εικόνες αυτές να φαίνονται με τις κανονικές τους διαστάσεις, σχεδιάζονται παραμορφωμένες ή με αλλοιωμένες αναλογίες. Στο σχήμα 36 το ποδήλατο της αριστερά εικόνας είναι σχεδιασμένο στο οδόστρωμα με αλλοιωμένη μορφή ώστε οι οδηγοί να το βλέπουν όπως φαίνεται στην δεξιά εικόνα.

27 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 27 Στο σχήμα 37 τα γράμματα στην επιγραφή είναι ισοϋψή με αποτέλεσμα την αναμενόμενη σμίκρυνση με την απομάκρυνση. Το βέλος όμως που δείχνει την πορεία έχει σχεδιασθεί σαφώς μεγαλύτερο από τα γράμματα (σχήμα 38) ώστε να φαίνεται ότι έχει το ίδιο ύψος με αυτά. Από την εποχή που ο Φειδίας, παραμόρφωνε ηθελημένα τις αναλογίες στα γλυπτά του για να εξουδετερώσει τις προοπτικές παραμορφώσεις, έχουν περάσει περίπου 2500 χρόνια, οι αρχές όμως της προοπτικής παραμένουν οι ίδιες. Σχήμα 36: Η αναμορφωμένη και η ορθή εικόνα ποδηλάτου Σχήμα 37: Το σήμα που δείχνει την πορεία, φαίνεται να έχει το ίδιο μέγεθος με τα γράμματα

28 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 28 Σχήμα 38: Στην πραγματικότητα το σήμα είναι μεγαλύτερο Ένας χώρος κατασκευασμένος στις ίδιες αρχές με τη στοά του Borromini, είναι το δωμάτιο του Ames. Σχήμα 39: Οι κορυφές του δωματίου του Ames, βρίσκονται στις ίδιες οπτικές ακτίνες, που προβάλλουν τις κορυφές ενός χώρου ορθογωνικής κάτοψης Πρόκειται για ένα πολυεδρικό 30 δωμάτιο Α1Β1Γ1Δ1Ε1Ζ1Η1Θ1. Στην έδρα Α1Β1Ζ1Ε1 του χώρου αυτού υπάρχει μία μικρή οπή, η οποία είναι το σημείο όρασης Ο, από το οποίο ο παρατηρητής βλέπει το εσωτερικό του χώρου. Οι κορυφές του πολυεδρικού δωματίου είναι σημεία των οπτικών ακτίνων που, από το σημείο όρασης Ο, προβάλλουν τις κορυφές ΑΒΓΔΕΖΗΘ, ενός ορθογωνικής κάτοψης χώρου. (Σχ.39), 30 Ninio Jacques, Η Επιστήμη των ψευδαισθήσεων, Εκδόσεις Κάτοπτρο, 2000, σελ. 115.

29 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 29 Σχήμα 40: Το εσωτερικό ενός δωματίου του Ames, όπως φαίνεται από το σημείο όρασης Ο. Ο παρατηρητής ο οποίος παρατηρεί από το σημείο όρασης Ο, το εσωτερικό του χώρου Α1Β1Γ1Δ1, έχει εντύπωση ότι βλέπει τον χώρο ΑΒΓΔ. Ένα άτομο όμως ή ένα αντικείμενο που κινείται παράλληλα προς την έδρα Γ1Δ1Θ1Η1, φαίνεται, κατά περίεργο τρόπο, να μεγαλώνει ή να μικραίνει καθώς μετατοπίζεται από το Δ1 προς το Γ1 και αντίστροφα (Σχ. 40). Ένας τέτοιος χώρος μπορεί να κατασκευαστεί ως εξής: Υποθέτουμε αρχικά ότι υπάρχει ένας χώρος ΑΒΓΔΕΖΗΘ, σχήματος ορθογωνίου παραλληλεπιπέδου, του οποίου οι διαστάσεις είναι γνωστές. Το σημείο όρασης Ο, έχει τοποθετηθεί στην έδρα ΑΒΖΕ, και μάλιστα στο κέντρο της. (Σχ. 41 και 42) Θεωρούμε τις οπτικές ακτίνες, που διέρχονται από τις κορυφές του ΑΒΓΔΕΖΗΘ, σημεία των οποίων είναι και οι κορυφές του χώρου Α1Β1Γ1Δ1Ε1Ζ1Η1Θ1. Οι λύσεις είναι άπειρες και επιλέγουμε, χάρη σχεδιαστικής ευκολίας, οι παράπλευρες έδρες του χώρου που θα προκύψει, να είναι κατακόρυφες. Οι κορυφές Α1, Β1,Ζ1 και Ε1, είναι σημεία του επιπέδου ΑΒΖΕ. Επιλέγουμε επί της ΟΑ το Α1 και επί της Οβ το Β1, οπότε προκύπτει το Α1Β1Ζ1Ε1. Εάν υποθέσουμε ότι οι έδρες Α1Δ1Θ1Ε1 και Β1Γ1Η1Ζ1 είναι παράλληλες προς την ΑΔΘΕ, οι υπόλοιπες κορυφές του χώρου προκύπτουν ως τομές των οπτικών ακτίνων με τα κατακόρυφα αυτά επίπεδα. Κατακλίνοντας τις παράπλευρες κατακόρυφες έδρες του χώρου σε ένα οριζόντιο επίπεδο (Σχήμα 42), μπορούμε να έχουμε το πραγματικό τους μέγεθος, ώστε να είναι δυνατή η υλοποίηση του χώρου.

30 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 30 Σχήματα 41, 42: Γεωμετρική κατασκευή ενός δωματίου Ames

31 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ ΑΔΥΝΑΤΕΣ ΚΑΤΑΣΚΕΥΕΣ Πρόκειται για ένα συνδυασμό γεωμετρικών χαράξεων, που συνθέτουν μία παράδοξη πραγματικότητα. Εικόνες, με μία φαινομενικά άψογη προοπτική ή αξονομετρία, συνδυασμένες κατά αφύσικο τρόπο, απεικονίζουν ένα κόσμο, όπου δεν ισχύουν οι γνωστοί νόμοι της φυσικής, όπως ο νόμος της βαρύτητας και όπου το κοίλο ή το κυρτό, το επάνω και το κάτω, το μέσα και το έξω, χάνουν το νόημά τους. «Αδύνατα τρίγωνα» Σχήμα 43: Αδύνατο τρίγωνο Η σκάλα του Penrose. Σχήμα 44: Η σκάλα του Penrose

32 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 32 Σχήμα 45: Ascending and Descending λιθογραφία, 1960,M. C. Escher. Είναι εμπνευσμένη από την σκάλα του Penrose, η οποία πάντα ανεβαίνει.

33 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 33 Σχήμα 46: «Διαρκής κίνηση» λιθογραφία, 1961,M. C. Escher.

34 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 34 ΕΝΑ ΑΛΛΟΣ ΚΟΣΜΟΣ Σχήμα 47: «Άλλος κόσμος» ξυλογραφία, 1947,M. C. Escher.

35 ΙΑΝΟΥΑΡΙΟΣ-ΦΕΒΡΟΥΑΡΙΟΣ 2005 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 35 Σχήμα 48: «Κοίλο και κυρτό» λιθογραφία, 1955,M. C. Escher. Μπορούμε, τελικά, να καταλήξουμε στο συμπέρασμα ότι η ανακάλυψη, η ανάπτυξη και εφαρμογή των νόμων της Οπτικής - Προοπτικής έδωσαν και δίνουν στον καλλιτέχνη πολύ μεγάλες δυνατότητες δημιουργίας καταστάσεων, που απέχουν μεν από την πραγματικότητα αλλά που την αναδημιουργούν ή την αναπλάθουν κατά τρόπο θαυμαστό. Η γνώση της οπτικής και η τεχνική του οπτικού τεχνάσματος ιστορικά βαδίζουν με το ίδιο βήμα. Η πραγματικότητα και η ψευδαίσθηση είναι οι δύο πόλοι, φαινομενικά αντίθετοι, γύρω από τους οποίους κινείται η Προοπτική για να διορθώσει ή να αλλοιώσει εντυπώσεις.

Ο Π Τ Ι Κ Ε Σ Ψ Ε Υ Δ Α Ι Σ Θ Η Σ Ε Ι Σ Κ Α Ι Ο Π Τ Ι Κ Ε Σ Τ Ε Χ Ν Ι Κ Ε Σ

Ο Π Τ Ι Κ Ε Σ Ψ Ε Υ Δ Α Ι Σ Θ Η Σ Ε Ι Σ Κ Α Ι Ο Π Τ Ι Κ Ε Σ Τ Ε Χ Ν Ι Κ Ε Σ Ο Π Τ Ι Κ Ε Σ Ψ Ε Υ Δ Α Ι Σ Θ Η Σ Ε Ι Σ Κ Α Ι Ο Π Τ Ι Κ Ε Σ Τ Ε Χ Ν Ι Κ Ε Σ Α. Μ. ΚΟΥΡΝΙΑΤΗ Η αδυναμία της όρασης να αποδώσει την πραγματικότητα είναι γνωστή από την αρχαιότητα 1. Φιλόσοφοι μεταξύ των

Διαβάστε περισσότερα

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

ΑΝΑΜΟΡΦΩΣΕΙΣ. Ιστορικά

ΑΝΑΜΟΡΦΩΣΕΙΣ. Ιστορικά ΑΝΑΜΟΡΦΩΣΕΙΣ Ιστορικά Στις αρχές του 16 ου αιώνα ήταν ήδη γνωστές οι αρχές της γραμμικής προοπτικής, περίπου όπως την ξέρουμε σήμερα. Την περίοδο αυτή καλλιτέχνες, γλύπτες και αρχιτέκτονες άρχισαν να πειραματίζονται

Διαβάστε περισσότερα

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αρχιτεκτόνων Μηχανικών Τομέας III : Αρχιτεκτονικής Γλώσσας, Επικοινωνίας & Σχεδιασμού ntua ACADEMIC OPEN COURSES Ανθή Μαρία Κουρνιάτη Επίκουρη Καθηγήτρια, Σχολή Αρχιτεκτόνων

Διαβάστε περισσότερα

β. Πιο κάτω από τη βάση τοποθετούμε το εστιακό σημείο του παρατηρητή, σε κάτοψη.

β. Πιο κάτω από τη βάση τοποθετούμε το εστιακό σημείο του παρατηρητή, σε κάτοψη. Προβολές σε άλλα επίπεδα - Προοπτικές απεικονίσεις Μπορεί να γίνει προβολή ως προς σημείο το οποίο μπορεί να είναι το ανθρώπινο μάτι, ή ακριβέστερα το εστιακό σημείο του ανθρώπινου ματιού: Η απεικόνιση

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας,

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας, ΠΡΟΟΠΤΙΚΗ Εισαγωγή Αυτό που στην εφαρμοσμένη γεωμετρία ονομάζουμε συχνά γραμμική προοπτική είναι ένα σύστημα αναπαράστασης του τρισδιάστατου χώρου σε επιφάνεια δύο διαστάσεων. Η μέθοδος αυτή απεικόνισης

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα

ΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ.

ΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ. ΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ. Πρόκειται για εικόνες τις οποίες μπορούμε να παρατηρήσουμε χρησιμοποιώντας κατάλληλες ανακλαστικές επιφάνειες, οι οποίες συνήθως είναι κωνικές ή κυλινδρικές

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Αναστασία Πέτρου Κωνσταντίνος Χρήστου Β 3 ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Ο Πυθαγόρας ο Σάμιος, υπήρξε σημαντικός Έλληνας φιλόσοφος, μαθηματικός, γεω μέτρης και θεωρητικός της μουσικής. Είναι ο κατεξοχήν

Διαβάστε περισσότερα

Γραμμές. 4.1 Γενικά. 4.2 Είδη και πάχη γραμμών

Γραμμές. 4.1 Γενικά. 4.2 Είδη και πάχη γραμμών 4 Γραμμές 4.1 Γενικά Στα σχέδια, προκειμένου να απεικονίσουμε με σαφή και κατανοητό τρόπο το σχεδιαστικό μας αντικείμενο, χρησιμοποιούμε ποικίλες γραμμές, που καθεμιά έχει διαφορετική σημασία και διαφορετικές

Διαβάστε περισσότερα

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT Βασιλίσιν Μιχάλης, Δέφτο Χριστίνα, Ιλινιούκ Ίον, Κάσα Μαρία, Κουζμίδου Ελένη, Λαμπαδάς Αλέξης, Μάνε Χρισόστομος, Μάρκο Χριστίνα, Μπάμπη Χριστίνα, Σακατελιάν Λίλιτ, Σαχμπαζίδου

Διαβάστε περισσότερα

Σχεδιασμός αρχιτεκτονικών σχεδίων

Σχεδιασμός αρχιτεκτονικών σχεδίων 4. Σχεδιασμός αρχιτεκτονικών σχεδίων ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΕΙΣ Σαμίρ Μπαγιούκ Για να κάνουμε αντιληπτό ένα αντικείμενο στον χώρο, μπορούμε να χρησιμοποιήσουμε τη φωτογράφιση με πολλαπλές λήψεις από διάφορες

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ

ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ ΑΡΜΟΝΙΚΕΣ ΧΑΡΑΞΕΙΣ ΣΤΟ ΕΡΓΟ ΤΟΥ ΣΠ. ΠΑΠΑΛΟΥΚΑ α) Ειρήνη Χρυσοβαλάντη Ρουμπάνη β) Μαρία Πανακάκη «Το τοπίο είναι αντικείμενα σε διάφορες αποστάσεις, που χαρακτηρίζονται με χρώματα, σε διάφορες πλάκες, οριζόντιες,

Διαβάστε περισσότερα

0,1,1,2,3,5,8,13,21,34,55,89...

0,1,1,2,3,5,8,13,21,34,55,89... ΧΡΥΣΗ ΤΟΜΗ: Β ΜΕΡΟΣ 0,1,1,2,3,5,8,13,21,34,55,89... Οι παραπάνω αριθμοί ονομάζονται Ακολουθία Fibonacci το άθροισμα των 2 προηγουμένων αριθμών ισούται με τον επόμενο αριθμό στην ακολουθία. Το πηλίκο τον

Διαβάστε περισσότερα

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά Ερευνητική Εργασία - Ζωγραφική και Μαθηµατικά Ηλίας Νίνος Ερευνητική Εργασία µε θέµα: Μαθηµατικά και Τέχνη Υποθέµα: Μαθηµατικά και Ζωγραφική Οµάδα: Μαρία Βαζαίου- Ηρώ Μπρούφα- Μαθηµατικά εννοούµε την επιστήµη

Διαβάστε περισσότερα

Στα 1849 ο Sir David Brewster περιγράφει τη μακροσκοπική μηχανή λήψης και παράγονται οι πρώτες στερεοσκοπικές φωτογραφίες (εικ. 5,6).

Στα 1849 ο Sir David Brewster περιγράφει τη μακροσκοπική μηχανή λήψης και παράγονται οι πρώτες στερεοσκοπικές φωτογραφίες (εικ. 5,6). ΣΤΕΡΕΟΣΚΟΠΙΑ Η στερεοσκοπία είναι μια τεχνική που δημιουργεί την ψευδαίσθηση του βάθους σε μια εικόνα. Στηρίζεται στο ότι η τρισδιάστατη φυσική όραση πραγματοποιείται διότι κάθε μάτι βλέπει το ίδιο αντικείμενο

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ (μάθημα κατεύθυνσης) Τι είναι η δομή και η σύνθεση ενός εικαστικού έργου. Είναι η οργάνωση όλων των στοιχείων ενός έργου σε ένα ενιαίο σύνολο με στόχο να εκφράσουν κάποια

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης)

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΣΧΕΔΙΟ (Ελεύθερο και Προοπτικό) και που ενδέχεται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία

Ευκλείδεια Γεωμετρία Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αρχιτεκτόνων Μηχανικών Τομέας III : Αρχιτεκτονικής Γλώσσας, Επικοινωνίας & Σχεδιασμού ntua ACADEMIC OPEN COURSES Ανθή Μαρία Κουρνιάτη Επίκουρη Καθηγήτρια, Σχολή Αρχιτεκτόνων

Διαβάστε περισσότερα

Κεφάλαιο 7 Γεωμετρικές Κατασκευές

Κεφάλαιο 7 Γεωμετρικές Κατασκευές Κεφάλαιο 7 Γεωμετρικές Κατασκευές Συντομεύσεις Ακρωνύμια... 2 Σύνοψη... 3 Προαπαιτούμενη γνώση... 3 7.1. Κατασκευή ευθύγραμμων τμημάτων... 3 7.2. Κατασκευή γωνιών... 8 7.3. Κατασκευή πολυγώνων... 11 7.4.

Διαβάστε περισσότερα

2. τα ρωμαϊκά, που το λούκι έχει μετασχηματιστεί σε επίπεδο και έχει ενσωματωθεί στο καπάκι

2. τα ρωμαϊκά, που το λούκι έχει μετασχηματιστεί σε επίπεδο και έχει ενσωματωθεί στο καπάκι Οι αριθμοί αντιμετωπίζονται με τον ίδιο τρόπο, αλλά είναι σημαντικό να μελετήσουμε τον τρόπο που σημειώνονται οι αριθμοί που αποδίδουν στα σχέδια τις διαστάσεις του αντικειμένου. Οι γραμμές διαστάσεων

Διαβάστε περισσότερα

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΤΙ ΡΩΤΑΜΕ ΜΙΑ ΕΙΚΟΝΑ ; ΤΙ ΜΑΣ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΠΩΣ ΜΑΣ ΤΟ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Μιχάλης Μακρή EFIAP. www.michalismakri.com

Μιχάλης Μακρή EFIAP. www.michalismakri.com Μιχάλης Μακρή EFIAP www.michalismakri.com Γιατί κάποιες φωτογραφίες είναι πιο ελκυστικές από τις άλλες; Γιατί κάποιες φωτογραφίες παραμένουν κρεμασμένες σε γκαλερί για μήνες ή και για χρόνια για να τις

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

Σταυρούλα Πατσιομίτου

Σταυρούλα Πατσιομίτου Αριστοτέλους Μεταφυσικά 1078 α 30 Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Σ υνδέονται τα Μαθηματικά με την Αισθητική, με την Τέχνη, με την Τεχνολογία. Πόσο σημαντικό είναι να γνωρίζουμε την Ιστορία τους;

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

6 Γεωμετρικές κατασκευές

6 Γεωμετρικές κατασκευές 6 Γεωμετρικές κατασκευές 6.1 Γενικά Στα σχέδια εφαρμόζουμε γεωμετρικές κατασκευές, προκειμένου να επιλύσουμε προβλήματα που απαιτούν μεγάλη σχεδιαστική και κατασκευαστική ακρίβεια. Τα γεωμετρικά - σχεδιαστικά

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ Προοπτική Αξονομετρία Ορθές προβολές «κατ εκδοχήν»

ΠΡΟΛΟΓΟΣ Προοπτική Αξονομετρία Ορθές προβολές «κατ εκδοχήν» ΠΡΟΛΟΓΟΣ Σκοπός της παραστατικής Γεωμετρίας είναι η απεικόνιση των δισδιάστατων και των τρισδιάστατων αντικειμένων στο επίπεδο, δηλαδή στο χαρτί σχεδίασης. Αναλύοντας τα δισδιάστατα και τα τρισδιάστατα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3 Σύμβολα και σχεδιαστικά στοιχεία Μάθημα 3 Τα αρχιτεκτονικά σύμβολα αποτελούν μια διεθνή, συγκεκριμένη και απλή γλώσσα. Είναι προορισμένα να γίνονται κατανοητά από τον καθένα, ακόμα και από μη ειδικούς.

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο)

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο) ΤΕΙ ΛΑΡΙΣΑΣ - Παράρτημα Καρδίτσας ΤΜΗΜΑ ΣΧΕΔΙΑΣΜΟΥ & ΤΕΧΝΟΛΟΓΙΑΣ ΞΥΛΟΥ ΕΠΙΠΛΟΥ ΣΗΜΕΙΩΣΕΙΣ ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ ΙΙ (Μέρος πρώτο) - ΠΛΑΓΙΑ ΠΡΟΒΟΛΗ - ΑΞΟΝΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ - ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ ΚΟΛΛΑΤΟΣ ΓΕΩΡΓΙΟΣ

Διαβάστε περισσότερα

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D 1 Φύλλο 2 Δράσεις με το λογισμικό Cabri-geometry 3D Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο με το αντίστοιχο λογισμικό του Cabri II. Περιέχει γενικές εντολές και εικονίδια που συμπεριλαμβάνουν

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

(ΤΑ ΑΓΑΘΑ ΚΟΠΟΙΣ ΚΤΩΝΤΑΙ)

(ΤΑ ΑΓΑΘΑ ΚΟΠΟΙΣ ΚΤΩΝΤΑΙ) (ΤΑ ΑΓΑΘΑ ΚΟΠΟΙΣ ΚΤΩΝΤΑΙ) 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Περίμετρος ενός τριγώνου λέγεται το άθροισμα των μηκών των πλευρών του). Μια περίπτωση είναι οι πλευρές του να έχουν μήκος

Διαβάστε περισσότερα

Κεφάλαιο 10 Γεωμετρικές κατασκευές Στα αιτήματα του Ευκλείδη περιλαμβάνονται μόνο τρία που αναφέρονται στη δυνατότητα κατασκευής ενός σχήματος. Ηιτήσθω από παντός σημείου επί παν σημείον ευθείαν γραμμήν

Διαβάστε περισσότερα

Κατακόρυφη πτώση σωμάτων

Κατακόρυφη πτώση σωμάτων Κατακόρυφη πτώση σωμάτων Τα ερωτήματα Δύο σώματα έχουν το ίδιο σχήμα και τις ίδιες διαστάσεις με το ένα να είναι βαρύτερο του άλλου. Την ίδια στιγμή τα δύο σώματα αφήνονται ελεύθερα να πέσουν μέσα στον

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΠΡΟΟΠΤΙΚΟΥ ΣΕ ΠΛΑΓΙΟ ΠΙΝΑΚΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD

ΚΑΤΑΣΚΕΥΗ ΠΡΟΟΠΤΙΚΟΥ ΣΕ ΠΛΑΓΙΟ ΠΙΝΑΚΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD Σύμφωνα με τους ορισμούς, το προοπτικό είναι η κεντρική προβολή (από τη θέση του ματιού του παρατηρητή) ενός σχήματος πάνω στο επίπεδο του πίνακα. Οι παράλληλες ευθείες του αρχικού σχήματος

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

1ο χειμ. Εξαμηνο, 2013-2014

1ο χειμ. Εξαμηνο, 2013-2014 1ο χειμ. Εξαμηνο, 2013-2014 Συνθεση πινακίδας παρουσίασης συνθετικά και γεωμετρικά στοιχεία Εισαγωγη στην Αρχιτεκτονικη Συνθεση Θεμα 1ο ΜΑΡΓΑΡΙΤΑ ΓΡΑΦΑΚΟΥ Καθηγήτρια της Σχολης Αρχιτεκτονων Ε.Μ.Π. Εικονογραφηση

Διαβάστε περισσότερα

Κατακόρυφη πτώση σωμάτων. Βαρβιτσιώτης Ιωάννης Πρότυπο Πειραματικό Γενικό Λύκειο Αγίων Αναργύρων Μάιος 2015

Κατακόρυφη πτώση σωμάτων. Βαρβιτσιώτης Ιωάννης Πρότυπο Πειραματικό Γενικό Λύκειο Αγίων Αναργύρων Μάιος 2015 Κατακόρυφη πτώση σωμάτων Βαρβιτσιώτης Ιωάννης Πρότυπο Πειραματικό Γενικό Λύκειο Αγίων Αναργύρων Μάιος 2015 Α. Εισαγωγή Ερώτηση 1. Η τιμή της μάζας ενός σώματος πιστεύετε ότι συνοδεύει το σώμα εκ κατασκευής

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Γ' Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΕΛΕΥΘΕΡΟ-ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ( Εικαστική και Αρχιτεκτονική

Διαβάστε περισσότερα

1 ο Πρότυπο Πειραματικό Γυμνάσιο Σημειώσεις στη Γεωμετρία Α Γυμνασίου

1 ο Πρότυπο Πειραματικό Γυμνάσιο Σημειώσεις στη Γεωμετρία Α Γυμνασίου 1. Γωνία Ο Δημήτρης ζωγράφισε ένα δέντρο στο δωμάτιο του. Το δέντρο απλώνει τα κλαδιά του στα δυο επίπεδα των τοίχων του δωματίου και στο επίπεδο της οροφής. Στη γωνία αυτή θα τοποθετήσει όλα τα παιχνίδια

Διαβάστε περισσότερα

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την Κεφάλαιο 11 Αναλογίες, Ομοιότητα Η έννοια του λόγου ορίζεται στο πέμπτο βιβλίο των Στοιχείων του Ευκλείδη ως εξής: Λόγος εστί δύο μεγεθών ομογενών η κατά πηλικότητά ποια σχέσις Λόγον έχειν προς άλληλα

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Τεχνικό Σχέδιο Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Διάλεξη 2η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ

Διαβάστε περισσότερα

Μηχανισµοί της όρασης. Βασική ανατοµία του µατιού

Μηχανισµοί της όρασης. Βασική ανατοµία του µατιού Μηχανισµοί της όρασης Βασική ανατοµία του µατιού Σχέση οπτικής γωνίας και µεγέθους/απόστασης Οπτική γωνία είναι η γωνία που σχηµατίζεται από τις πλευρές ενός αντικειµένου, µε κορυφήτοµάτι µας. Όσο το µέγεθος

Διαβάστε περισσότερα

Η προσεγγιση της. Αρχιτεκτονικης Συνθεσης. ΜΑΡΓΑΡΙΤΑ ΓΡΑΦΑΚΟΥ Καθηγητρια της Σχολης Αρχιτεκτονων Ε.Μ.Π.

Η προσεγγιση της. Αρχιτεκτονικης Συνθεσης. ΜΑΡΓΑΡΙΤΑ ΓΡΑΦΑΚΟΥ Καθηγητρια της Σχολης Αρχιτεκτονων Ε.Μ.Π. 1ο χειμ. Εξαμηνο, 2013-2014 Η προσεγγιση της Αρχιτεκτονικης Συνθεσης Εισαγωγη στην Αρχιτεκτονικη Συνθεση Θεμα 1ο ΜΑΡΓΑΡΙΤΑ ΓΡΑΦΑΚΟΥ Καθηγητρια της Σχολης Αρχιτεκτονων Ε.Μ.Π. Εικονογραφηση υπομνηση του

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

Θυμάμαι σαν χθες (παρόλου που πέρασαν μερικά χρονάκια) τον Μαθηματικό μας, να μας λέει με δυνατή και σοβαρή φωνή:

Θυμάμαι σαν χθες (παρόλου που πέρασαν μερικά χρονάκια) τον Μαθηματικό μας, να μας λέει με δυνατή και σοβαρή φωνή: Τουρναβίτης Στέργιος Eπαναληπτικές ασκήσεις Γεωμετρίας Β Γυμνασίου Θυμάμαι σαν χθες (παρόλου που πέρασαν μερικά χρονάκια) τον Μαθηματικό μας, να μας λέει με δυνατή και σοβαρή φωνή: «Ένα καλό σχήμα σε άσκηση

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..

Διαβάστε περισσότερα

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ 1 ΦΩΣ Στο μικρόκοσμο θεωρούμε ότι το φως έχει δυο μορφές. Άλλοτε το αντιμετωπίζουμε με τη μορφή σωματιδίων που ονομάζουμε φωτόνια. Τα φωτόνια δεν έχουν μάζα αλλά μόνον ενέργεια. Άλλοτε πάλι αντιμετωπίζουμε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Στη μορφολογία πρέπει αρχικά να εξετάσουμε το γενικό σχήμα του προσώπου.

Στη μορφολογία πρέπει αρχικά να εξετάσουμε το γενικό σχήμα του προσώπου. ΜΟΡΦΟΛΟΓΙΑ Στη μορφολογία πρέπει αρχικά να εξετάσουμε το γενικό σχήμα του προσώπου. Διακρίνουμε τα εξής σχήματα - Οβάλ - Οβάλ μακρύ - Ορθογωνικό - Στρογγυλό - Τετραγωνικό - Τριγωνικό - Εξαγωνικό - Τραπεζοειδές

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Η θεώρηση και επεξεργασία του θέματος οφείλει να γίνεται κυρίως από αρχιτεκτονικής απόψεως. Προσπάθεια κατανόησης της συνθετικής και κατασκευαστικής

Η θεώρηση και επεξεργασία του θέματος οφείλει να γίνεται κυρίως από αρχιτεκτονικής απόψεως. Προσπάθεια κατανόησης της συνθετικής και κατασκευαστικής ΑΝΑΓΝΩΣΗ - ΠΕΡΙΓΡΑΦΗ ΜΝΗΜΕΙΟΥ ΝΑΟΣ ΤΟΥ ΗΦΑΙΣΤΟΥ Η θεώρηση και επεξεργασία του θέματος οφείλει να γίνεται κυρίως από αρχιτεκτονικής απόψεως. Προσπάθεια κατανόησης της συνθετικής και κατασκευαστικής δομής

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση Κυματική οπτική Η κυματική οπτική ασχολείται με τη μελέτη φαινομένων τα οποία δεν μπορούμε να εξηγήσουμε επαρκώς με τις αρχές της γεωμετρικής οπτικής. Στα φαινόμενα αυτά περιλαμβάνονται τα εξής: Συμβολή

Διαβάστε περισσότερα

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

Ενδεικτικό Φύλλο Εργασίας 1. Ορθογώνιο Παραλληλεπίπεδο - Κύβος

Ενδεικτικό Φύλλο Εργασίας 1. Ορθογώνιο Παραλληλεπίπεδο - Κύβος Διδακτική των Μαθηματικών με Τ.Π.Ε Σελίδα 1 από 6 Ενδεικτικό Φύλλο Εργασίας 1. Ορθογώνιο Παραλληλεπίπεδο - Κύβος Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Κάντε κλικ στο URL https://www.geogebra.org/m/msrbdbc5.

Διαβάστε περισσότερα

ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ

ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ Η ΟΜΑΔΑ μας ανέλαβε το θέμα της σχέσης των Μαθηματικών με τη ΖΩΓΡΑΦΙΚΗ!!! ΠΑΡΟΥΣΙΑΣΗ-ΕΠΙΜΕΛΕΙΑ: ΓΟΥΛΑ ΕΙΡΗΝΗ, ΡΑΛΛΙΟΥ ΕΥΑΝΘΙΑ, ΤΣΙΜΗΤΡΑ ΑΓΓΕΛΙΚΗ. ΙΣΤΟΡΙΚΗ

Διαβάστε περισσότερα

ΒΙΚΥ ΤΣΑΛΑΜΑΤΑ ΑΣΤΙΚΑ ΤΟΠΙΑ

ΒΙΚΥ ΤΣΑΛΑΜΑΤΑ ΑΣΤΙΚΑ ΤΟΠΙΑ ΒΙΚΥ ΤΣΑΛΑΜΑΤΑ ΑΣΤΙΚΑ ΤΟΠΙΑ «Πλάθω τις εικόνες μου χαράζοντας κατευθείαν πάνω στο υλικό μου, όπως ο ζωγράφος σχεδιάζει ή πλάθει τις εικόνες του πάνω στον καμβά.» Η Βίκυ Τσαλαματά γεννήθηκε στην Αθήνα και

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;

Διαβάστε περισσότερα

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης Μορφή της σύνθεσης Δομή της σύνθεσης ΟΠΤΙΚΗ ΔΟΜΗ ΤΗΣ ΣΥΝΘΕΣΗΣ Βασικό λεξιλόγιο

Διαβάστε περισσότερα

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΕΞΕΤΑΣΗ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ 17 Σεπτεμβρίου 2014 ΘΕΜΑ: Σύνθεση με τρία

Διαβάστε περισσότερα

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΥΤΕΡΑ 17 ΙΟΥΝΙΟΥ 2013 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ

AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΥΤΕΡΑ 17 ΙΟΥΝΙΟΥ 2013 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ AΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙ ΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΥΤΕΡΑ 17 ΙΟΥΝΙΟΥ 2013 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕ ΙΟ ΘΕΜΑ: Σύνθεση με τέσσερα αντικείμενα. ΓΕΝΙΚΕΣ Ο ΗΓΙΕΣ: Το προς σχεδίαση

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων.

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων. ΜΑΘΗΜΑ 1 αόριστες έννοιες Έννοιες που είναι τόσο απλές και οικείες από την εμπειρία μας, ώστε δεν μπορούμε να βρούμε πιο απλές με τη βοήθεια των οποίων να τις περιγράψουμε Σημείο Επίπεδο ο χώρος η ευθεία

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Ο Παρθενώνας, ναός χτισμένος προς τιμήν της Αθηνάς, προστάτιδας της πόλης της Αθήνας, υπήρξε το αποτέλεσμα της συνεργασίας σημαντικών αρχιτεκτόνων

Ο Παρθενώνας, ναός χτισμένος προς τιμήν της Αθηνάς, προστάτιδας της πόλης της Αθήνας, υπήρξε το αποτέλεσμα της συνεργασίας σημαντικών αρχιτεκτόνων Ο Παρθενώνας, ναός χτισμένος προς τιμήν της Αθηνάς, προστάτιδας της πόλης της Αθήνας, υπήρξε το αποτέλεσμα της συνεργασίας σημαντικών αρχιτεκτόνων και γλυπτών στα μέσα του 5ου π.χ. αιώνα. Η εποχή της κατασκευής

Διαβάστε περισσότερα

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης Τομέας Παιδαγωγικής Ιστορίας, και Φιλοσοφίας των Μαθηματικών «Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης 01-0-016 ΘΕΜΑ 1α [] Σε τυχαίο ορθογώνιο τρίγωνο ΑΒΓ ( Α=90 Ο ) η διχοτόμος

Διαβάστε περισσότερα