ДОКУМЕНТАЦИЈА ТЕХНИЧКОГ РЕШЕЊА
|
|
- Άκανθα Νικηφόρος Ζωγράφου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ДОКУМЕНТАЦИЈА ТЕХНИЧКОГ РЕШЕЊА Хибридни равни пријемник Сунчеве енергије ХРП ЛАБ Аутори техничког решења Проф. Др Милорад Бојић, ред. проф, Машински факултет у Крагујевцу Проф. Др Ненад Марјановић, ред. проф, Машински факултет у Крагујевцу Др Лукић Небојша, ред.проф., Машински факултет у Крагујевцу Др Милан Деспотовић, ван.проф., Машински факултет у Крагујевцу Др Вања Шуштерчић, ван.проф., Машински факултет у Крагујевцу Др Весна Марјановић, доцент, Машински факултет у Крагујевцу Др Мирко Благојевић, доцент, Машински факултет у Крагујевцу МрТарановић Драган, асистент, Машински факултет у Крагујевцу Наручилац техничког решења Euro Heat - Крагујевац Пројекат ресорног министарства НПЕЕ 2713 Корисник техничког решења Euro Heat - Крагујевац Машински факултет Крагујевац - Лабораторија за термодинамику и термотехнику Година када је техничко решење урађено 26. Област технике на коју се техничко решење односи Машинство, енергетика
2 1. Опис проблема који се решава техничким решењем Соларна енергија се обично користи за добијање топлоте или електричне енергије. Веома често је потребно добити и користити и топлоту и електричну енергију истовремено па се због тога развијају хибридни пријемници соларне енергије (ХП). Међутим додатни разлог је јер такви уредјаји омогућавају да се потпуније искористи Сунчева енергија која пада на површину Соалрних пријемника. Коришћење енергије сунца је веома актуелно како у Европи тако и у свету, међутим код нас још увек није узело пуно маха. Ово је један од покушаја коришћња соларне енергије ради добијања електроенергије и топлоте. Сматра се да је количина соларне енергије која је на располаганју на землјиној површини 2 хиљада пута већа него потребе за електро енергијом. Постоје озбиљни разлози зашто је допринос соларних електрана снабдевању света електро енергијом тако незначајан. Неки од њих су веома велики габарит електрана, њихова ниска осетљивост на дифузно зрачење, потреба тачног праћења сунца са великом количином покретних делова, значајни трошкови одржавања и слаб развој тржишта што све зависи од претходно споменутих ограничења. Овај уређај развијен је као лабораторијски прототип који треба да покаже колика је могућност концентрисања соларног зрачења и његовог коришћења за производњу електричне енергије и топлоте. 2. Стање решености проблема у свету приказ и анализа постојећих решења Научни радници UNESCO-вог Chair у Сверуском Истраживачком Институту за Електрификацију у Пољопривреди који води професор Д. Стребков пројектовали су хибридне системе соларних концентратора. Системи су веома високе ефикасности. Циљ развоја соларног модула је повећање ефикасности искоришћења соларне енергије и смањење цене добијене топлотне енергије, а такође и израда ефективних соларних уређаја уграђених у фасаде и кровове зграда ради њиховог обезбеђења електричном енергијом, топлотом, врућом водом Суштина техничког решења Циљ је развој хибридног соларног пријемника за добијање топлоте и електро-. Такође се индентификују најоптималнија решења за ХП. При овоме се инсистира на што већој енергетској ефикасности, еколошкој одрживости, економији извођења и коришћења те конструкције у различитим експлоатационим условима у Србији. Превиђено је да се демонстрира исплативост рада ових технологија и утицати на њихову пенетрацију како код грађанства тако и у привреди. При развој хибридног Соларног пријемника прво су сагледане могућности конфигурација прототипа хибридног соларног пријемника. Дошло се до закључка да се прототип може
3 остварити у четири конфигурација: SPVA, PVA, SVPA и PA. Те различите конфигурације хибридних пријемника имају различит положај употребљених стакала, фото-ћелијског панела и апсорбера. Као прототипови урајдене су две конфигурације и то типа SPVA и SVPA. У прототиповима користи се специјална врста фотоћелијских панела - бифацијални соларни панел. Апсорбер се прави од специјално обликованог алуминијумског профила и биће истих димензија као фотоћелијски панел. 4. Детаљан опис техничког решења (укључујући и пратеће илустрације и техничке цртеже) У оба прототипа користиће се специјална врста фотоћелијских панела - бифацијални соларни панел типа MSWb 4(12)/24. Његове главне карактеристике по којима се разликује од конвенционалних фотоћелијских модула су да је транспарентан тј. пропушта део инфрацрвеног сунчевог зрачења, и има два лица тј. његове обе стране (предња и задња) реагују на светлост и претварају светлосну енергију у електричну енергију. На предњој страни бифацијалног модула, соларне ћелије су заштићене стаклом које је отпорно на удар док су са задње стране заштићене транспарентним заштитним филмом. На својој предњој страни, соларне ћелије реагују на сунчево зрачење више него на задњој и производе дупло више електроенергије. Димензије панела и неке од електро енергетских карактеристика овог панела су дате у Табели 1. Табела 1 Димензије и параметри електричне енергије бифацијалног фотоћелијског панела MSWb 4(12) Димензије Параметри струје Напред Позади Дужина 598 мм Снага ± 5% 4 W 24 W Ширина 587 мм Називна јачина струје Имп 2.35 А 1.41 А Висина кућишта 38 мм Називан напон Вмп 17 В 17 В Номиналан напон 12 В 12 В Број ћелија 36 (4x9) Струја кратког споја Исц 2.7 А 1.75 А (конфигурација) Тежина [кг] 4. кг Напон отвореног кола Воц 21.6 В 21.2 В Апсорбер је истих димензија као одговарајући фотоћелијски панел. Његове карактеристике су дате у Табели 2. Апсорбер се прави од специјално обликованог алуминијумских профила који је приказан на слици 1а, а бакарне цеви се убацују у цевни простор у алуминијумском апсорберу као што је приказано на на слици 1б. Цевни регистар од бакра, који се налази у апсорберу, састоји се из 6 паралелних цеви које полазе из једног и враћају се у други заједнички сабирник. Табела 2 Карактеристике апсорбера пројектованог соларног пријемника Карактеристике Вредности Карактеристике Вредности Димензије 598x587мм Изолација Минерална вуна 2 Нето површина,351м2 Доња заштитна плоча Ал лим дебљине,5 мм Тежина 9.25 кг Садржај флуида,538 литара Апсорбер Al профил 1 Прикључци Φ15, Φ18 или Φ22 Покривач Стакло 3мм Коефицијент апсорпције,95 Рам- Ал профил дебљине 2мм Коефицијент рефлексије,14 Хидраулични круг Цу цев Φ15/13 Степен искоришћења,78 Сабирник- бакарна цев Φ22/2 Век трајања 4 година
4 1 Аl профил је специјално обликован и електрохемијски пресвучен селективном превлаком 2 Минерална вуна тврдо пресована пресвучена Аl рефлектујућом фолијом Слика1 а) Попречни пресек једног од елемената апсорбера б) детаљ апсорбера (Cu цев је увуцена у Аl цев) Могуће је направити прототип хибридног Соларног пријемника у четири конфигурације: SPVA, PVA, SVPA и PA које се медјусобно разликују по положају употребљеног стакла, фотоћелијског панела и апсорбера. Конфигурације су описане у Табели 3. Табела 3 Пут сунчевог зрака до апсорбера кроз хибридни панел при разнм варијантама његове израде Медијум SPBA + PVА* SPBA + PVА* ПВ/Т Н=С,ПВ ПВ/Т Н=ПВ ПВ/Т Н=1 ПВ/Т Н= 1 Стакло ПВ панел Стакло ПВ панел 2 Ваздух Ваздух Ваздух Апсорбер 3 ПВ панел Апсорбер ПВ панел 4 Ваздух Апсорбер 5 Апсорбер + Реализовани уређаји *Уређаји који могу да се направе тако што се при испитивању склони покривно стакло Током рада реализована су два пријемника и то: један типа SPVA, и други типа SVPA. Реализован прототип типа SPVA приказан је на Слици 2а и 2б. Ови типови соларних пријемника су предмет истраживачких разматрања током израде овог пројекта. Foto panel Staklo Apsorber Izolacija Слика 2 Хибридни пријемник SVPA: (а) Схема пресека и (б) реализован прототип Анализа рада ХП на годишнјем нивоу дат је на следећим сликама
5 korisna toplota elektricna energija 14 3 kwh/god PV/T(N=1) PV/T(N=PV) PV/T(N=) PV/T(N=S,PV) kwh/god PV/T(N=1) PV/T(N=PV) PV/T(N=) PV/T(N=S,PV) alfa alfa Slika 3 Zavisnost korisne toplote i električne energije od koeficijenta apsorpcije (alfa) Наиме, уколико се фотоћелијски панел налази на апсорберу, тада се повећањем коефицијента апсорпције повећава и количина произведене електричне енергије. Ако фотоћелијски није на апсорберу, произведена електрична енергија скоро да и не зависи од коефицијента апсорпције. Разматране су три вредности степена ефикасности фотоћелоијског панела (5%; 1%; 15%). Резултати су приказани на слици 4. Очигледно је да што је већи степен ефикасности, пријемник током године даје мању количину топлоте, већу количину електричне енергије док добијена укупна енергија остаје на истом нивоу. korisna toplota elektricna energija 16 kwh/god % 1% 15% efikasnost solarnih celija PV/T(N=1) PV/T(N=PV) PV/T(N=) PV/T(N=S,PV) % 1% 15% ef ikasnost solar nih celija PV/ T(N=1) PV/ T(N=PV) PV/ T(N=) PV/ T(N=S,PV) Slika 4 Zavisnost korisne toplote, i električne energije od stepena efikasnosti fotoćelijskog panela Анализирана су три различита угла нагиба испитиваних ХП (3 ; 5 ; 7 ). korisna toplota elektricna energija kwh/god PV/T(N=1) PV/T(N=PV) PV/T(N=) PV/T(N=S,PV) kwh/god FPC PV/T(N=1) PV/T(N=PV) PV/T(N=) PV/T(N=S.PV) ugao nagiba kolektora ugao nagiba kolektora Slika 5 Zavisnost korisne toplote i električne energije od ugla nagiba Резултати су приказани на слици 5. Види се да постоји угао нагиба за који добијамо максималну количину топлоте и електричне енергије. Оптимални угао нагиба пријемника за Крагујевац (44 географске ширине) је 54 што и показују обављена истраживања у оквиру овог рада. У табели 6 дате су базне вредности конструкцијских параметара за испитивани ХП.
6 Табела 6 Вредности базних параметра хибридног равног соларног пријемника Параметри пријемника Параметри пријемника Површина пријемника (m 2 ) 2 Коефицијент апсорпције.92 апсорбера Коефицијент емисије апсорбера.9 Температурски коефицијент.4 фотоћелијског панела (%/ o C) Коефицијент емисије стакла.88 Фактор ефикасности пријемника.9 Коефицијент проводјења.23 Ефикасност фотоћелиског панела.1 топлоте изолације (W/Km) Дебљина изолације (mm) 5 На Машинском факултету, у Центру за Грејање, Климатизацију и Соларну инсталиран је уређај Слика 12 Инсталирани хибридни пријемник 5 Литература 1. Bojić i ostali, Hibridni solarni prijemnici: realizacija i merenja, Masinski fakultet u Kragujevcu, Univerzitet u Kragujevcu, Bojić i ostali, Tehnoekonomske analize investicija u hibridne solarne kolektore, Mašinski fakultet u Kragujevcu, Bojic, M., Prikaz Projekta Development and investigation on hybid solar collector for heat and eletricity generation, Apstrakt na engleskom, MNZZS, Bojić, M., Taranović, D., Demonstraciono postrojenje hibridnog solarnog ravnog prijemnika, Alternativni izvori energije i budućnost njihove primene, Crnogorska akademija nauka i umetnosti, Budva, Bojić, M., Blagojević, M., Janković, R.,Analiza rada različitih hibridnih solarnih prijemnika na godišnjem nivou, Alternativni izvori energije i budućnost njihove primene, Crnogorska akademija nauka i umetnosti, Budva, Bojić, M., Šušterčić, V., Janković, R.,Toplotna efikasnost hibridnog i običnog ravnog solarnog prijemnika u zavisnosti od njihovih konstrukcijskih parametara, Zbornik Radova na CD Romu, Energetika, Efikasnost, Tehnologija, 12ti simpozijum termičara Srbije i Crne Gore, Soko Banja, Bojić, M., Despotović, M. Razvoj hibridnog ravnog solarnog prijemnika, Zbornik Radova na CD Romu, Energetika, Efikasnost, Tehnologija, 12ti simpozijum termičara Srbije i Crne Gore, Soko Banja,
7 8. Bojić, M, Despotović, M., Čukić, R., Janković, R. Analyses of installation parameters to performances of hybrid solar collectors (Analiza uticaja parametara instalacije na performanse hibridnih solarnih prijemnika) (in Serbian), Procedings of XXXVI international congress in heating, refrigeration, and air conditioning, Belgrade, SMEITS, pp (25). 9. M.Bojić, Development and investigation on hybrid plane collector for heat and electricity generation (Razvoj i ispitivanje hibridnog ravnog prijemnika sunčeve energije za toplotno i električno pretvaranje), Power point presentation, Conference Renewable Energy Sources in Serbia - possibilities, development and financing, Beogradsko sedište Privredne komore Srbije, Resavska 13-15, Beograd, 22. dec. 25.
8
9
10
ДОКУМЕНТАЦИЈА ТЕХНИЧКОГ РЕШЕЊА
ДОКУМЕНТАЦИЈА ТЕХНИЧКОГ РЕШЕЊА Стационарни соларни концентратор за добијање топлотне енергије ЦП ЛАБ Аутори техничког решења Проф. Др Милорад Бојић, ред. проф, Машински факултет у Крагујевцу Проф. Др Ненад
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
Коришћење соларне фотонапонске енергије у Србији
Коришћење соларне фотонапонске енергије у Србији Миодраг Лазић Факултет техничких наука, Чачак Техника и информатика, мастер, 2013. miodrag.lazic76@gmail.com Ментор рада: Проф. др Снежана Драгићевић Апстракт
Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла
Количина топлоте и топлотна равнотежа
Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
Предмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
Анализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
Слика 1. Слика 1.2 Слика 1.1
За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика
4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима
50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?
6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала
Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја
3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
Анализа техно-економских услова изградње соларне електране на крову пословне зграде Електротехничког института Никола Тесла
Стручни рад UDK:621.311.243 BIBLID:0350-8528(2014),24.p.41-56 doi:10.5937/zeint24-4934 Анализа техно-економских услова изградње соларне електране на крову пословне зграде Електротехничког института Никола
Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10
Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење
8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2
8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или
6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23
6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
Писмени испит из Метода коначних елемената
Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан
ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА
ЕЛЕКТРОНСКОМ ФАКУЛТЕТУ У НИШУ ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА У складу са одредбама Правилника о поступку и начину вредновања, и квантитавном исказивању научноистраживачких резултата истраживача, који
b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
5.2. Имплицитни облик линеарне функције
математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.
L кплп (Калем у кплу прпстпперипдичне струје)
L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве
Слика бр.1 Површина лежишта
. Конвенционалне методе процене.. Параметри за процену рудних резерви... Површина лежишта Површине лежишта ограничавају се спајањем тачака у којима је истражним радом утврђен контакт руде са јаловином.
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
TAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ
ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.
ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),
Флукс, електрична енергија, електрични потенцијал
Флукс, електрична енергија, електрични потенцијал 1 Електрични флукс Ако линије поља пролазе кроз површину A која је нормална на њих Производ EA је флукс, Φ Генерално: Φ E = E A cos θ 2 Електрични флукс,
Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:
Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине
ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ
ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације
Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика
Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање
Анализа производње електричне енергије из соларне електране у Димитровграду
Анализа производње електричне енергије из соларне електране у Димитровграду Наталија Милановић Факултет техничких наука у Чачку Техника и информатика, 2013/2014 natalija.milanovic65@gmail.com проф. др
I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )
Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО
Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ
Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног
предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
I Наставни план - ЗЛАТАР
I Наставни план - ЗЛААР I РАЗРЕД II РАЗРЕД III РАЗРЕД УКУО недељно годишње недељно годишње недељно годишње годишње Σ А1: ОАЕЗНИ ОПШЕОРАЗОНИ ПРЕДМЕИ 2 5 25 5 2 1. Српски језик и књижевност 2 2 4 2 2 1.1
ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).
СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која
ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА
ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић
Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
ОСНОВА ЕЛЕКТРОТЕНИКЕ
МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1
4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова
4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид
Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)
ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу
ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева
ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним
ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА
МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ
Р Е Ш Е Њ Е О ОДОБРЕЊУ ТИПА МЕРИЛА године
САВЕЗНА РЕПУБЛИКА ЈУГОСЛАВИЈА САВЕЗНО МИНИСТАРСТВО ПРИВРЕДЕ И УНУТРАШЊЕ ТРГОВИНЕ САВЕЗНИ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 328-2736, телефакс:
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,
I област. 1. Када је у колу сталне струје приказаном на слици 1 I g1. , укупна снага Џулових губитака је. Решење: a) P Juk
I област. Када је у колу сталне струје приказаном на слици I g = Ig = Ig, укупна снага Џулових губитака је P Juk = 5 W. Колика је укупна снага Џулових губитака у колу када је I g = Ig = Ig? Решење: a)
Ротационо симетрична деформација средње површи ротационе љуске
Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну
Мерење електричних параметара соларног система за напајање
Мерење електричних параметара соларног система за напајање Игор Шарац Факултет техничких наука, Чачак Електротехничко и рачунарско инжењерство, Рачунарско инжењерство, 2012/2013. sharacigor@gmail.com Ментор
ДИЈАГРАМИ И ТАБЛИЦЕ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ. Приредио: Александар Милетић
- ПТО ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ ДИЈАГРАМИ И ТАБЛИЦЕ Приредио: Александар Милетић 1 С т р а н а - ПТО Садржај Пренос топлоте... 3 Цементација...15
Примена првог извода функције
Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први
Мониторинг соларне електране ЕЛЕКТРОВАТ Чачак
Мониторинг соларне електране ЕЛЕКТРОВАТ Чачак Богољуб Златић Факултет техничких наука, Чачак Мехатроника, 2014/15 bogoljubzlatic1987@gmail.com Ментор рада Небојша Митровић Апстракт У овом мастер раду су
Апсорпција γ зрачења
Универзитет у Крагујевцу Природно математички факултет Мр Владимир Марковић Предмет: Нуклеарна физика Експериментална вежба: Апсорпција γ зрачења Када сноп γ зрачења пролази кроз материју, његов интензитет
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1
1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ. Томсонов ефекат. семинарски рад. Нови Сад, 2010.
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Томсонов ефекат семинарски рад професор: Светлана Р. Лукић студент: Драгиња Прокић87/06 Нови Сад, 00. Термоелектричне
Закони термодинамике
Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо
Р Е Ш Е Њ Е О ОДОБРЕЊУ ТИПА МЕРИЛА године
СРБИЈА И ЦРНА ГОРА МИНИСТАРСТВО ЗА УНУТРАШЊЕ ЕКОНОМСКЕ ОДНОСЕ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 328-2736, телефакс: (011) 181-668 На основу
Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:
Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом
ПРИЈЕМНИ ИСПИТ. Јун 2003.
Природно-математички факултет 7 ПРИЈЕМНИ ИСПИТ Јун 00.. Одредити све вредности параметра m за које су оба решења једначине x x + m( m 4) = 0 (a) реална; (b) реална и позитивна. Решење: (а) [ 5, + (б) [
ЈАКОСТ НА МАТЕРИЈАЛИТЕ
диј е ИКА ски ч. 7 ч. Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил и Скопје Методиј во Скопје Машински факултет МОМ ТЕХНИЧКА МЕХАНИКА професор: доц. др Виктор Гаврилоски. ТОРЗИЈА
Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,
Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да
Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q
Разлика потенцијала Разлика потенцијала између тачака A и B се дефинише као промена потенцијалне енергије (крајња минус почетна вредност) када се наелектрисање q помера из тачке A утачку B подељена са
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем
< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5
05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)
Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије
Могућности и планови ЕПС на пољу напонско реактивне подршке Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије 1 Обавезе ЈП ЕПС као КПС... ЗАКОН О ЕНЕРГЕТИЦИ ЧЛАН 94. Енергетски
Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
ЈЕДНОСМЈЕРНИ ПРЕТВАРАЧИ ЧОПЕРИ (DC-DC претварачи)
ЈЕДНОСМЈЕРНИ ПРЕТВАРАЧИ ЧОПЕРИ (D-D претварачи) Задатак. Анализирати чопер са слике. Слика. Конфигурација елемената кола са слике одговара чоперу спуштачу напона. Таласни облици означених величина за континуални