ЈЕДНОСМЈЕРНИ ПРЕТВАРАЧИ ЧОПЕРИ (DC-DC претварачи)
|
|
- Καλυψώ Ζωγράφος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ЈЕДНОСМЈЕРНИ ПРЕТВАРАЧИ ЧОПЕРИ (D-D претварачи) Задатак. Анализирати чопер са слике. Слика. Конфигурација елемената кола са слике одговара чоперу спуштачу напона. Таласни облици означених величина за континуални (непрекидни) и дисконтинуални (прекидни) режим рада дати су на сликама и 3. prvljčki impulsi log log + c + i i mx i min i s i D Слика. i s i D i s + Слика 3.
2 а) Континуални режим Средња вриједност излазног напона је: D У случају кад води прекидач важи следећа једначина: di i d di i () d У тренутку прекидач се укључује. Почетни услови су: ; i ; min Рјешење диференцијалне једначине () је: i e min e, У тренутку (кад се прекидач гаси) важи: i mx e min e Диода D проведе за (, mx () i ) и важи једначина: di i, d Рјешење диференцијалне једначине је: i e mx e За ( ) i min, (*) i e e min mx Из једначина () и (3) слиједи: (3) mx e e min e e Ако прекидач води континуално ( )
3 mx min б) Дисконтинуалани режим Средња вриједност излазног напона је: x Прелаз из континуалног у дисконтинуални режим рада дешава се при min Из једначине () слиједи: x mx e, (4) Из једначина (*) и (4) i e e e (5) За ) је i па из једначине (5) слиједи: x ( x x ln e e x представља границу између континуалног и дисконтинуалног режима. ц) У многим случајевима струја i може се одредити помоћу Фуријеове анализе. u cos n b sin n c sin( n ) n n n n n n n n cos sin sin x n n u n d n n b u sin n d cos n cos n n x n n За x b n n sin n n cosn n Како је cn n bn ; n rcg b За x слиједи n n
4 c n cosn n sin n n rcg cosn Додатак: Максимална струја прекидача је за s mx струја i је константна Ако је cons Струја диоде је: D DD D је максимална за D D di d D mx, 5 Ефективна вриједност струје диоде је: и D,5 Def DD Def је максимална за Def mx,385 di Def d D 3
5 Задатак. За коло чопера са слике 4 познато је = V, = mh, =,5 Ω, c = V, =,5 ms, = ms. а) одредити једносмјерни излазни напон и струју, б) одредити максималну и минималну вриједност излазне струје, ц) израчунати ефективне вриједности првог хармоника излазног напона и струје, д) нацртати таласне облике: управљачког сигнала (i G ),, i, i D и i s. Сматрати да је излазна струја континуална. i G i s i i D D c Слика 4. а) Једносмјерни излазни напон и струја су редом: ms 44V,5ms 3A б) Максимална и минимална вриједност струје је: mx e 65A e min e 99,9A e ц) Ефективна вриједност првог хармоника напона и струје је: 53 rd / s c eff cos cos 47,V eff eff 8, 65A
6 д) Таласни облици тражених сигнала су приказани на слици 5: Слика 5.
7 Задатак 3. За коло чопера са слике 6 познато је = V, =, mh, =,5 Ω, c = 4 V, =,5 ms, =,5 ms. а) одредити једносмјерни излазни напон и струју, б) одредити максималну и минималну вриједност излазне струје, ц) израчунати ефективне вриједности првог хармоника излазног напона и струје, д) нацртати таласне облике: управљачког сигнала (i G ),, i, i D и i s. Сматрати да је излазна струја континуална. Слика 6. x а) Замјеном бројних вриједности добија се да је, 75ms па како је, 5ms значи да струја i није континуална, па важи: x ln e e, 94ms x израчунамо из формуле за минималну струју при чему важи min. Једносмјерни излазни напон и струја су редом: x 64V 96A б) Максимална и минимална вриједност струје је: mx e A A min ц) Ефективна вриједност првог хармоника напона и струје је: 53 rd / s
8 , 6V b 59, 3V c eff b 4,9V eff eff 76, 4A д) Таласни облици тражених сигнала су приказани на слици 7: prvljčki impulsi log log =,5 =,94 =,5 [ms] [V] = V =4 V i [A] mx = i D [A] mx = i s [A] mx = AK [V] = V - =7 V Слика 7.
9 Задатак 4. На слици 8 је приказан чопер спуштач напона код кога је улазни напона = V, средња вриједност напона на потрошачу p =6 V а средња вриједност струје потрошача p = A. Фреквенција чопера је khz. Промјена амплитуде напона потрошача услијед таласности (pek o pek) је,5%, промјена амплитуде струје је 5% и промјена струје индуктивитета e je % p. а) Одредити e, e и, б) Нацртати таласне облике напона на кондензатору, струје кондензатора и струје пригушнице e. Слика 8. а) Промјена напона на потрошачу је:, 5,5V p e p Отпор потрошача је: p 6 3A p Однос времена вођења прекидача и периода је: p p 6,5455 Струја извора је: i ul p, 5455, 9A Промјена струје потрошача и индуктивитета e је:, 5 A p, A e p p Ако се e мијења линеарно, тада важи: e e e p e p e e e p e p (води прекидач) (води диода)
10 Пошто важи: ee ( ) ( ) p( p) e, 68mH e p p Ако таласност па кроз кондензатор тече сва наизмјенична компонента p e e струје. Промјена напона на кондензатору је: e e e e e d Ампер-секундни баланс 4 8 f e e e e 8 f e 8,33μF Ако од струја потрошача линеарно расте p e p p p 4,9μH б) Таласни облици су приказани на слици 9: Слика 9.
11 Задатак 5. Анализирати чопер са слике. Слика. Конфигурација елемената кола са слике одговара чоперу подизачу напона. Таласни облици означених величина за континуални (непрекидни) и дисконтинуални (прекидни) режим рада дати су на сликама и. Слика. Слика.
12 Док води прекидач важи: di d i Ds За Ds imx Кад прекидач не води: За D i D s i за прекидни режим Аналитички облик промјене струје пригушнице је: i i D D s s i D i D D D s s s D D D s D D D D Ds D D D D M M D D D D M за прекидни режим За непрекидни режим важи да је D. M D Из једнакости снага (идеалне компоненте) слиједи: ul P P P izl Излазна снага је P Улазна снага је: Pul ul mx D P Pul mx D Изједначавањем максималних вриједности струја пригушнице одредимо однос излазног и улазног напона: D s DD D s
13 M s D D Ds M D M M D s M D s M M M Одакле слиједи: M D s Ако је D n M s s s n Пошто је: M n n D D D n M D D Одакле слиједи критично које је граница између прекидног и непрекидног режима. n D n D D n n D D D kr Ds D Додатак (кад диода води): D min mx s min mx s D D s mx min ** Из једначина * и ** слиједи: mx min D s D D s D *
14 Задатак за домаћу задаћу: Чопер подизач напона напаја потрошач струјом од 4 А. Улазни напон чопера је 6 V, док је напон на потрошачу 8 V. Прекидачка фреквенција чопера је f s = khz, а индуктивност пригушнице =67μF. Одредити режим рада чопера и максималну индуктивност која обезбјеђује прекидни режим. 8 M, F 3,35s n fs,335 s M D, 48 M n n D D 3,8 n D D Пошто је D чопер ради у непрекидном режиму. Максимална индуктивност која обезбјеђује прекидни режим је: Ds kr D 4,F
15 ТИРИСТОРСКИ ЧОПЕРИ Задатак 6. За коло са слике 3 нацртати таласне облике ig, ig, i, i, i, i, u, u, u Слика 3. Слика 4.
16 Задатак 7. За коло са слике 5: а) Одредити вриједности главних комутационих елемената ако је Е= V, p =5 Ω, вријеме опоравка тиристора q =35 μs и трајање радног интервала кола 5 μs. б) Одредити максималну радну фреквенцију за дато коло. (Сматрати да напон на кондензатору достиже своју номиналну вриједност за три временске константе) u E Слика 5. q -E Слика 6. а) Промјена напона на кондензатору (када води други тиристор) је: E Ee ; Напон кондензатора је једнак нули за односно кад је q ln,7 q Из услова q F,7 Бирамо прву већу вриједност капацитета кондензатора тј. F Индуктивност одредимо из релације: 5H б) Минимално вријеме периода потребно за несметан рад чопера са слике је: min 3 s Вријеме вођења тиристора се може свести на вријеме преполаризације кондензатора, односно одмах послије преполаризације пали се други тиристор. Максимална фреквенција је тада: fmx 5kHz min
17 Задатак 8. У тренутку паљења тиристора чопера са слике 7, напон на кондензатору = μf износи c = V. Чопер је оптерећен струјним извором =5 A. Одредити тако да се промјена поларитета напона на кондензатору обави за r =5 μs. Нацртати таласни облик струје кроз тиристор и израчунати њену ефективну вриједност, ако је вријеме вођења тиристора = ms, а учестаност чопера f= Hz (прекидачка фреквенција). i i E i i D D D Слика 7. Слика 8.
18 r r,53mh mx, 6A i sinr 5,6sinr 3 rd r f s r r Ефективна вриједност струје тиристора износи: eff i d 33A Задатак 9. У чоперу са слике 9, тиристор Т води струју оптерећења = A, а почетни напон на кондензатору је =E= V. а) Израчунати колики треба да буде капацитет k да би се при гашењу тиристора Т обезбиједило вријеме одмарања од 3 μs. б) Које је најкраће вријеме када треба укључити тиристор Т 3 прије тиристора Т да би се извршила благовремена промјена поларитета напона комутационог кондензатора k? Комутациона индуктивност је k =8 μh. Све губитке занемарити. Слика 9. а) Осцилаторно коло прије гашења тиристора Т приказано је на слици : Слика.
19 k i E sin, k k k u E c=ecosω q -E π k k Слика. u u E u q k E q 3F k б) Најкраће вријеме када треба упалити тиристор Т 3 прије тиристора Т једнако је полупериоди напона на кондензатору у осцилаторном колу k k. 48,67s k k Напомена: Тиристоре Т и Т 3 укључујемо истовремено. Задатак. За чопер са слике одредити и. Напон напајања је Е= V. Тиристор може да поднесе максималну струју од 5 А, а његово вријеме одмарања мора бити веће од 4 μs. Максимална струја пражњења кондензатора је два пута већа од струје оптерећења. Слика.
20 i - cmx u E q - k -E i + cmx u izl E E- k E μ Слика 3. Кад се тиристор укључи важе једначине: i sin u cos Како је mx mx mx 3 5A 5A mx 3 mx A Комутација се завршава за i u k
21 Па из релације за струју слиједи: sin mx mx 3 3 k cos cos E Промјена напона на кондензатору послије гашења тиристора је: u k d За u q k q k q mx q Па су вриједности тражених комутационих елемената: mx q,3f k E 3H mx Задатак. Вријеме укључености чопера са слике 4 је константно и износи uk =,5 ms. а) Израчунати фреквенцију паљења тиристора да би мотор имао брзино обртања од 4 o/min, при оптерећењу моментом који захтјева струју од 9, А. Контраелектромоторна сила има константу к Е =,495 Vs/rd, а отпор ротора је r =3 Ω. Струја је непрекидна, а напон напајања Е= V. б) Ако је максимална струја комутације mx = A и ако је вријеме укључености приближно половини периоде осциловања кола, израчунати и. E D M Слика 4. а) Излазни напон је: uk E f uk E uk isk Контраелектромоторна сила: rd EM ke n 7,6V n 4 6 s
22 Једначина напонске равнотеже кола ротора: E,V M r Фреквенција паљења је: f 8Hz E uk б) На основу израза и uk mx E Добија се: E F uk mx 7,3 E 8, 75mH mx
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 2 ТРОФАЗНИ ПУНОУПРАВЉИВИ МОСТНИ ИСПРАВЉАЧ СА ТИРИСТОРИМА 1. ТЕОРИЈСКИ УВОД
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ
Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,
L кплп (Калем у кплу прпстпперипдичне струје)
L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве
b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 008 ТРАНСФОРМАТОРИ Једнофазни регулациони трансформатор направљен је као аутотрансформатор Примар је прикључен на напон 0 V Сви губици засићење
Трофазни систем - фазни и линијски напони
Трофазни систем - фазни и линијски напони Таласни облици ФАЗНИ напони U a U b U c U c n U a ω 120 120 a, b, c a, b, c n max n max u u u U sin t k, u 0 симетричан систем 1 2 2 f, f Hz,, k 0,1,2,... BrojFaza
ОСНОВА ЕЛЕКТРОТЕНИКЕ
МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1
Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
ОСНОВА ЕЛЕКТРОТЕХНИКЕ
МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ПЕТНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 3
Осцилације система са једним степеном слободе кретања
03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)
C кплп (Кпндензатпр у кплу прпстпперипдичне струје)
C кплп (Кпндензатпр у кплу прпстпперипдичне струје) i u За кплп са слике на крајевима кпндензатпра ппзнате капацитивнпсти C претппставићемп да делује ппзнат прпстпперипдичан наппн: u=u m sin(ωt + ϴ). Услед
Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,
Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да
R 2. I област. 1. Реални напонски генератор електромоторне силе E. и реални напонски генератор непознате електромоторне силе E 2
I област. Реални напонски генератор електромоторне силе = 0 V и унутрашње отпорности = Ω и реални напонски генератор непознате електромоторне силе и унутрашње отпорности = 0, 5 Ω везани су у коло као на
предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
Слика 1. Слика 1.2 Слика 1.1
За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика
ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА
МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ
2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
Катедра за електронику, Основи електронике
Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1
Енергетски трансформатори рачунске вежбе
16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ
TAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
I област. 1. Када је у колу сталне струје приказаном на слици 1 I g1. , укупна снага Џулових губитака је. Решење: a) P Juk
I област. Када је у колу сталне струје приказаном на слици I g = Ig = Ig, укупна снага Џулових губитака је P Juk = 5 W. Колика је укупна снага Џулових губитака у колу када је I g = Ig = Ig? Решење: a)
Ротационо симетрична деформација средње површи ротационе љуске
Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну
Писмени испит из Метода коначних елемената
Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан
[5] Претварач Ее - саставни дијелови. Управљачка електроника. Улазна енергија. Излазнa енергија. Улазни С филтер. Извршни орган.
$>Ее1:DC-DC.Увод Претварач/конвертор - појединачни степен за претварање ел. енергије (њених параметара), заснован на снажним полупроводничким прекидачима. Ниска цијена, велика поузданост и ефикасност,
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 005 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор има сљедеће податке: 50kVA 0 / 0kV / kv Yy6 релативна реактанса кратког споја је x %
P = 32W. Колика је укупна снага Џулових губитака у овом колу када је I = I = 2Ig?
(1) I област 1. Када је у колу сталне струје приказаном на слици 1 I = I = Ig, укупна снага Џулових губитака је P = 3W. Колика је укупна снага Џулових губитака у овом колу када је I = I = Ig? () Решење:
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR
INFOTEH-JAHORINA Vol. 10, Ref. F-36, p. 1061-1065, March 2011. САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR Глуховић Владимир, Електротехнички факултет Источно Сарајево Садржај-У
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
Предмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
Реализована вежба на протоборду изгледа као на слици 1.
Вежбе из електронике Вежба 1. Kондензатор три диоде везане паралелно Циљ вежбе је да ученици повежу струјно коло са три диоде везане паралелно од којих свака има свој отпорник. Вежба је успешно реализована
АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 3 ИСПРАВЉАЧИ И ФИЛТРИ.. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ У ЛАБОРАТОРИЈИ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
Вежба 19 Транзистор као прекидач
Вежба 19 Транзистор као прекидач Увод Једна од примена транзистора у екектроници јесте да се он користи као прекидач. Довођењем напона на базу транзистора, транзистор прелази из једног у други режима рада,
ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ
Универзитет у Источном Сарајеву Електротехнички факултет НАТАША ПАВЛОВИЋ ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Источно Сарајево,. године ПРЕДГОВОР Збирка задатака је првенствено намијењена
ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (13Е013ЕНТ) колоквијум новембар 2016.
ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (1Е01ЕНТ) колоквијум новембар 016. Трофазни уљни трансформатор са номиналним подацима: S = 8000 kva, 1 / 0 = 5 / 6. kv, f = 50 Hz, спрега Yd5, испитан је у огледима празног хода
40. Савезно такмичење из физике Петровац Експериментални задаци Општа група
Друштво физичара Србије и Црне Горе Министарство просвете и спорта Републике Србије Министарство просвјете и науке Републике Црне Горе Министарство за просвјету, науку и културу Републике Српске 4 Савезно
Утицај интерфазних трансформатора и комутационих пригушница на дељење струја тиристорских мостова у осамнаестоимпулсним исправљачима
Оригинални научни рад UDK: 621.314.63 BIBLID: 0350-8528(2015), 25.p.1-30 doi:10.5937/zeint25-9150 Утицај интерфазних трансформатора и комутационих пригушница на дељење струја тиристорских мостова у осамнаестоимпулсним
ДВАДЕСЕТПРВО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ПРВОГ РАЗРЕДА
МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТПРВО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ПРВОГ
Скрипта ријешених задатака са квалификационих испита 2010/11 г.
Скрипта ријешених задатака са квалификационих испита 00/ г Универзитет у Бањој Луци Електротехнички факултет Др Момир Ћелић Др Зоран Митровић Иван-Вања Бороја Садржај Квалификациони испит одржан 9 јуна
Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10
Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика
Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике
Анализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
Вежба 18 Транзистор као појачавач
Вежба 18 Транзистор као појачавач Увод Jедна од најчешћих примена транзистора јесте у појачавачким колима. Најчешће се користи веза транзистора са заједничким емитором. Да би транзистор радио као појачавач
Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
ДИОДА КАО ПРЕКИДАЧКИ ЕЛЕМЕНТ
О С Н О В И Е Л Е К Т Р О Н И К Е I mrvojn \. Kerlet а - С К Р И П Т А - ДИОДА КАО ПРЕКИДАЧКИ ЕЛЕМЕНТ. А ТОМСКА СТРУ КТУРА МАТЕРИ ЈЕ Сваки атом се састоји од језгра око кога круже негативно наелектрисане
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,
Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала
Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја
Вежба 17 Kарактеристикa транзистора
Вежба 17 Kарактеристикa транзистора Увод Проналазак транзистора означава почетак нове ере у електроници. Проналазачи транзистора Бардин (Bardeen), Братеин (Brattain) и Шокли (Shockley) су за своје откриће
2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
Колоквијум траје 150 минута. Дозвољено је поседовање само једне свеске за рад и концепт. Прецртати оно што није за преглед.
Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Колоквијум децембар 8. Трофазни уљни енергетски трансформатор има следеће
Прототип: Прототип електронског кола за тестирање вишефазних спрегнутих индуктора
Прототип: Прототип електронског кола за тестирање вишефазних спрегнутих индуктора Руководилац пројекта: ред. проф. др Владимир Срдић, Одговорно лице: ред. проф. др Горан Стојановић Аутори: Никола Лечић,
Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је:
Три кондензатора познатих капацитивности 6 nf nf и nf везани су као на слици и прикључени на напон U Ако је позната количина наелектрисања на кондензатору капацитивности одредити: а) Напон на који је прикључена
ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (13Е013ЕНТ) Септембар 2017.
Универзитет у Београду Електротехнички факултет Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (ЕЕНТ) Септембар 7. Трофазни уљни дистрибутивни трансформатор има номиналне податке:
6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
Елементи електроенергетских система
Универзитет у Београду Електротехнички факултет Елементи електроенергетских система рачунске вежбе СИНХРОНИ ГЕНЕРАТОРИ Жељко Ђуришић Београд, 004 ЗАДАТАК : Турбогенератор у ТЕ Морава има следеће параметре:
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.
УПУТСТВО ЗА ИЗРАДУ ВЕЖБИ
Алекса Вучићевић Ненад Стаменовић УПУТСТВО ЗА ИЗРАДУ ВЕЖБИ КОНСТРУКТОРСКО МОДЕЛОВАЊЕ Техничко и информатичко образовање за осми разред основне школе УВОД Oбјашњење рада на протоборду Протоборд служи за
Физичка Електроника Скрипта
Физичка Електроника Скрипта .Не оптерећен и оптерећен разделник напона -Веома распрострањени и често примењивани делови електричног кола. Просто речено, то је коло за дати улазни напон придукује очекивани
8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2
8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или
Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)
ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање
Семинарски рад из линеарне алгебре
Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a
Кондензатор је уређај који се користи
Kондензатори 1 Кондензатор Кондензатор је уређај који се користи у великом броју електричних кола Капацитет, C, кондензатора се дефинише као количник интензитета наелектрисања на његовим плочама и интернзитета
8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези
Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте
I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )
Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P
10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (13Е013ЕНТ) јануар 2017
ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (1Е1ЕНТ) јануар 17 Трофазни уљни дистрибутивни трансформатор има следеће номиналне податке: S = kv, U 1 /U = 1 x%/.4 kv, 5 Hz, спрега Dy5, P k =.6 kw, u k = 5 %, P = 4 W, j =
. Одредити количник ако је U12 U34
област. У колу сталне струје са слике познато је = 3 = и =. Одредити количник λ = E/ E ако је U U34 =. Решење: а) λ = b) λ = c) λ = 3 / d) λ = g E 4 g 3 3 E Слика. област. Дата је жичана мрежа у облику
8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: PI регулација брзине напонски управљаним микромотором једносмерне струје
Регулација електромоторних погона 8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: регулација брзине напонски управљаним микромотором једносмерне струје Увод Simulik модел На основу упрошћеног блок дијаграма
ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ
Универзитет у Крагујевцу Машински факултет Краљево ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Краљево, март 011. године 1 Публикација Збирка решених задатака за пријемни испит из математике
ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.
ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),
[5] Претварач Ее- саставни дијелови 4
ЕТФ Источно Сарајево Еe-Енергетска електроника 1 DC-AC ACпретварачи $-Миломир Шоја milomir.soja@etf.unssa.rs.ba 1 Енергетска електроника 1 DC-ACпретварачи Увод Напонски инвертори Струјни инвертори Резонантни
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака
7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
ОСНОВE ЕЛЕКТРОТЕХНИКЕ 1
ОСНОВ ЕЛЕКТРОТЕХНИКЕ 1 - примери испитних питања за завршни испит - Електростатика Временски константне струје Напомене: - ово су само примери, али не и потпуни списак питања, - на испиту се не морају
Разорна пражњења у далеководима
Разорна пражњења у далеководима Диелектрична чврстоћа је онај напон који изолатор може да поднесе. Конвенциони напон опрема мора увек да издржи. Прескочни напон у ваздуху зависи од облика електрода, од
брзина којом наелектрисања пролазе кроз попречни пресек проводника
Струја 1 Електрична струја Кад год се наелектрисања крећу, јавља се електрична струја Струја је брзина којом наелектрисања пролазе кроз попречни пресек проводника ΔQ I Δtt Јединица за струју у SI систему
Закони термодинамике
Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо
Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака.
Основе механике флуида и струјне машине 1/11 Са неким, до сада неуведеним појмовима из теоријских основа турбомашина, упознаћемо се кроз израду следећих задатака 1задатак Познате су следеће величине једнe
Теорија линеарних антена
Теорија линеарних антена Антене су уређаји који претварају електричну енергију у електромагнетну (предајне антене) и обрнуто (пријемне антене) Према фреквентном опсегу, антене се деле на каналске (за узан