Merni instrumenti - Digitalna elektronika 5. SEKVENCIJALNA LOGIKA. Prosta kola sa povratnom spregom Lečevi Flip-flopovi okidani na ivicu
|
|
- Σιληνός Γερμανός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 FTN Novi ad Merni instrumenti - Digitalna elektronika 5. EKVENCIJALNA LOGIKA 8-mar.-7 dr Zoran Mitrović ekvencijalna logika ekvencijalna kola Prosta kola sa povratnom spregom Lečevi Flip-flopovi okidani na ivicu Vremenska metodologija kaskadiranje flip-flopova za željenu operaciju micanje signala takta (clock skew) Asinhroni ulazi Metastabilnost i sinhronizacija Osnovni registri Pomerački registri 8-mar.-7 Merni instrumenti - Digitalna elektronika 2
2 ekvencijalna kola Kola sa povratnom spregom Izlazi = f(ulaza, prethodnih ulaza, prethodnih izlaza) Osnova za pravljenje "memorije" u logičkim kolima Elektronska brava za vrata je primer sekvencijalnog kola tanje je memorija tanje je izlaz" i ulaz" u kombinacionu logiku Kombinacioni elementi za pamćenje podataka su takođe memorije vrednost C C2 C3 multiplekser komparator mux kontrola novi jednako reset komb. logika stanje takt jednako otvoreno/zatvoreno 8-mar.-7 Merni instrumenti - Digitalna elektronika 3 Kola sa povratnom spregom Kako se kontroliše povratna sprega? Šta sprečava da vrednosti ne idu beskonačno u krug? X X2 Xn prekidačka mreža Z Z2 Zn 8-mar.-7 Merni instrumenti - Digitalna elektronika 4
3 Najprostija kola sa povratnom spregom Dva invertora formiraju statičku memorijsku ćeliju Čuvaće vrednost dok god postoji napajanje "" "" upamćena vrednost" Kako uneti novu vrednost u memorijsku ćeliju? elektivno raskinuti putanju povratne sprege Uneti novu vrednost u ćeliju pamti" podatak" unos" upamćena vrednost" 8-mar.-7 Merni instrumenti - Digitalna elektronika 5 Memorija sa ukrštenim gejtovima Ukršteni NILI gejtovi lično paru invertora, sa sposobnošću da se izlaz postavi na (reset=) ili (set=) 8-mar.-7 Merni instrumenti - Digitalna elektronika 6 Ukršteni NI gejtovi lično paru invertora, sa sposobnošću da se izlaz postavi na (reset=) ili (set=) ' ' ' ' ' '
4 Vremensko ponašanje ' eset Zadrži et eset et Trka \ 8-mar.-7 Merni instrumenti - Digitalna elektronika 7 Dijagram stanja - leča Kombinaciona tabela ponašanja - leča ' ' čuvaj nestabilno ' ' 8-mar.-7 Merni instrumenti - Digitalna elektronika 8
5 Teoretsko ponašanje - leča Dijagram stanja tanja: moguće vrednosti Tranzicije: promene bazirane na ulazima = = moguće oscilacije između stanja and ' = = = = = = = ' ' = = = = ' = = = 8-mar.-7 Merni instrumenti - Digitalna elektronika 9 Posmatrano ponašanje - leča Veoma je teško posmatrati ponašanje - leča u stanju - Jedan od ili obično se prvi promeni Dvoznačno se vraća u stanje - ili - takozvana trka ("race condition ) ili nedeterministička tranzicija = = ' = = = = ' = = = = ' = = = 8-mar.-7 Merni instrumenti - Digitalna elektronika
6 Analiza - leča askidamo putanju povratne sprege (t) ' (t+δ) (t) (t+δ) X X čuvaj reset set nije dozvoljeno (t) X X karakteristična jednačina (t+δ) = + (t) 8-mar.-7 Merni instrumenti - Digitalna elektronika - leč sa gejtovima Kontrolišemo kad ulazi i imaju uticaj ' U suprotnom, enable' najmanji glič na ili dok je enable na ' niskom nivou može da prozrokuje promenu upamćene vrednosti et eset ' ' ' enable' ' 8-mar.-7 Merni instrumenti - Digitalna elektronika 2
7 Takt (clock) Koriste se da se zadrži vreme Čekamo dovoljno dugo da se ulazi (' and ') smire Zatim dozvoljavamo da deluju na upamćenu vrednost ignali takta (clock) su regularni periodični signali Period (vreme između tikova ) Duty-cycle (izražava se u procentima perioda vreme za koje je takt navisokom nivou) duty cycle (u ovom slučaju, 5%) period 8-mar.-7 Merni instrumenti - Digitalna elektronika 3 Takt (clock) (nastavak) Kontrolisanje - leča signalom takta Ne dozvoljava se promena i dok je takt aktivan amo tokom jedne polovine perioda signala takta dozvoljava se propagacija promene ulaznih signala ignali moraju da budu stabilni tokom druge polovine takta ' takt' ' ' stabilan ' i ' menja se stabilan menja se stabilan takt 8-mar.-7 Merni instrumenti - Digitalna elektronika 4
8 Kaskadiranje lečeva pajanje izlaza jednog leča na ulaz drugoga Kako da sprečimo da promene protrče kroz lanac? Treba kontrolisati protok podataka od jednog leča ka drugom vaki period takta jedan leč u lancu Obratiti pažnju na logiku između lečeva (strelice na slici) koja je prebrza ' ' takt 8-mar.-7 Merni instrumenti - Digitalna elektronika 5 Master-lave struktura Propagacija se zaustavlja alternacijom takta Pozitivan takt se koristi da se pamti stanje u jednom - leču Negativan takt se koristi da se pamti stanje u jednom - leču Par se posmatra kao jedna struktura master-slave flip-flop dvostruko više logike izlaz se menja nekoliko kašnjenja gejta nakon padajuće ivice takta, ali ne utiče na flip-flopove u kaskadi master stepen P' ' slave stepen ' P 8-mar.-7 Merni instrumenti - Digitalna elektronika 6
9 D Flip-Flop i su komplementarni Ne može samo da pamti prethodnu vrednost (mora da ima stabilnu vrednost na ulazu u svakom periodu takta) Vrednost D neposredno pre nego što takt ide na LOW se pamti u flip-flopu Može da se napravi - flip-flop dodavanjem logike da se napravi D = + ' master stepen slave stepen P' ' ' ' D P gejtova 8-mar.-7 Merni instrumenti - Digitalna elektronika 7 Flip-flopovi okidani ivicom signala takta Efikasnije rešenje: samo 6 gejtova osetljivo na ulaze samo blizu ivice signala takta (ne dok je takt HIGH) Clk= D D zadržava D' kad takt ode na LOW negativnom ivicom okidan D flip-flop (D-FF) 4-5 kašnjenja gejta moraju da se poštuju vremena uspostavljanja u zadržavanja signala da bi se uspešno uhvatilo stanje ulaza D D zadržava D kad takt ode na LOW karakteristična jednačina (t+) = D 8-mar.-7 Merni instrumenti - Digitalna elektronika 8
10 Vezivanje ivicom okidanih flip-flopova u kaskadu Pomerački registar Nova vrednost ide u prvi stepen Prethodna vrednost iz prvog stepena ide u sledeći stepen Obratiti pažnju na vremena uspostavljanja / zadržavanja / propagacije (propagacija mora da bude veća od vremena zadržavanja) IN D D OUT IN 8-mar.-7 Merni instrumenti - Digitalna elektronika 9 Pregled lečeva i flip-flopova azvoj D-FF Osetljiv na nivo, koristi se u integrisanim kolima posebne namene može da se napravi sa 4 prekidača Okidanje ivicom koristi se u programabilnim logičkim kolima dobar izbor za memorijska kola anije je J-K FF bio popularan, ali se sad skoro ne koristi ličan sa -; stanje - koristi se da se komplementira izlaz Dobar u vreme TTL/I (kompleksnija ulazna funkcija: D = J' + K' Nije dobar izbor zapal/pla jer zahteva 2 ulaza Može uvek da se implementira korišćenjem D-FF Preset i clear ulazi su korisni kod flip-flopova Koriste se na početku rada, ili da se kolo resetuje u poznato stanje 8-mar.-7 Merni instrumenti - Digitalna elektronika 2
11 egistri Kolekcija flip-flopova sa sličnom logikom i kontrolnim signalima Upamćene vrednosti su povezane (tj., formiraju binarnu vrednost) Zajednički takt, reset i set lična logika u svim stepenima Primeri Pomerački registri Brojači "" OUT OUT2 OUT3 OUT4 D D D D IN IN2 IN3 IN4 8-mar.-7 Merni instrumenti - Digitalna elektronika 2 Pomerački registar Pamti odmerke ulaza Pamti npr. 4 poslednje ulazne vrednosti u sekvenci 4-bitni pomerački registar: OUT OUT2 OUT3 OUT4 IN D D D D 8-mar.-7 Merni instrumenti - Digitalna elektronika 22
12 Univerzalni pomerački registar Pamti 4 vrednosti erijski ili paralelni ulazi erijski ili paralelni izlazi Dozvoljava pomeranje ulevo ili udesno Nova vrednost se ubacuje sleva ili zdesna levo_ulaz levo_izlaz clear s s izlaz ulaz desno_izlaz desno_ulaz takt clear postavlja sadržaje registra i izlaz na s i s definišu funkciju pomeranja s s funkcija hold stanje pomeranje udesno pomeranje ulevo unos nove vrednosti 8-mar.-7 Merni instrumenti - Digitalna elektronika 23 truktura univerzalnog pomeračkog registra Posmatrajmo jedan od 4 flip-flopa Nova vrednost u sledećem ciklusu takta: N-ta ćelija ka N--voj ćeliji D ka N+-voj ćeliji clear s s nova vrednost izlaz izlazna vrednost FF sa leva (pomeranje udesno) izlazna vrednost FF sa desna (pomeranje ulevo) ulaz [N-] (levo) CLEA s i s 2 3 kontrola mux Ulaz[N] [N+] (desno) 8-mar.-7 Merni instrumenti - Digitalna elektronika 24
13 Primena pomeračkog registra Paralelno-serijska konverzija za serijski prenos paralelni izlazi paralelni ulazi serijski prenos 8-mar.-7 Merni instrumenti - Digitalna elektronika 25 Kolo za prepoznavanje sleda vrednosti Kombinaciona funkcija ulaznih odmeraka U ovom slučaju, prepoznaje se sled vrednosti na jednom ulaznom signalu OUT OUT OUT2 OUT3 OUT4 IN D D D D 8-mar.-7 Merni instrumenti - Digitalna elektronika 26
14 Brojači ekvencijalno kroz fiksni set vrednosti U ovom slučaju:,,, Ako je jedna od vrednosti početno stanje (upisom ili pomoću set/reset) OUT OUT2 OUT3 OUT4 IN D D D D Mebijusov (ili Džonsonov) brojač U ovom slučaju,,,,,,,, OUT OUT2 OUT3 OUT4 IN D D D D 8-mar.-7 Merni instrumenti - Digitalna elektronika 27 Binarni brojač Logika između registara (nije običan multiplekser) XO odlučuje kad bit treba da se promeni Uvek najniži bit, samo kad je prvi bit TUE za drugi bit, itd. OUT OUT2 OUT3 OUT4 D D D D "" 8-mar.-7 Merni instrumenti - Digitalna elektronika 28
15 Četvorobitni binarni sinhroni brojač na gore tandardna komponenta sa mnoštvom primena Positivnom ivicom okidani FFovi sa sinhronim load i clear ulazima Paralelni upis podataka sa D, C, B, A Enable ulaz: mora da bude aktivan da se dozvoli brojanje CO: ripple-carry izlaz koristi se za kaskadiranje brojača high kad je brojač u najvećoj vrednosti implementira se korišćenjem I gejta (2) CO ide na HIGH (3) Najviša 4 bita se inkrementiraju () Najniža 4-bita = EN D C CO B A D C LOAD B A CL 8-mar.-7 Merni instrumenti - Digitalna elektronika 29 Brojači sa pomerajem Početni broj sinhroni upis npr.,,,,,,,,,,,... Krajnji broj komparator za krajnju vrednost npr.,,,,...,,, Ako se izlaz komparatora veže za reset, brojač će imati vrednosti između početne i krajnje (promenjen moduo brojača) 8-mar.-7 Merni instrumenti - Digitalna elektronika 3 "" "" "" "" "" "" "" "" "" "" "" EN CO D D C C B B A A LOAD CL EN CO D D C C B B A A LOAD CL
16 Pregled sekvencijalne logike Osnovni blok za gradnju kola sa stanjem Leč iflip-flop - leč, - master/slave, D master/slave, ivicom okidani D FF Vremenska metodologija Upotreba signala takta Kaskadno vezani FF rade zato što su kašnjenja zbog propagacije veća od vremena držanja Asinhroniulaziiproblemi koje mogu da unesu Osnovni tipovi registara Pomerački registri Detektori sleda vrednosti Brojači 8-mar.-7 Merni instrumenti - Digitalna elektronika 3
FTN Novi Sad 3. IMPLEMENTACIJA KOMBINACIONE LOGIKE. Merni instrumenti - Digitalna elektronika. Implementacija kombinacione logike.
TN Novi Sad Merni instrumenti - igitalna elektronika 8-Mar-7 3. IMPLEMENTIJ KOMINIONE LOGIKE dr oran Mitrović Implementacija kombinacione logike Logika u dva nivoa Implementacija logike u dva nivoa NN/NOR
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Slika 1.1 Tipičan digitalni signal
1. DIGITALNA KOLA Kola u digitalnim sistemima i digitalnim računarima su napravljena da rade sa signalima koji su digitalne prirode, što znači da ovi signali mogu da imaju samo dve moguće vrednosti u datom
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Komponente digitalnih sistema. Kombinacione komponente Sekvencijalne komponente Konačni automati Memorijske komponente Staza podataka
Komponente digitalnih sistema Kombinacione komponente Sekvencijalne komponente Konačni automati Memorijske komponente Staza podataka Standardne digitalne komponente (moduli) Obavljaju funkcije za koje
IV. FUNKCIJE I STRUKTURA PREKIDAČKIH MREŽA IV.1 OSNOVNI POJMOVI IV.2 LOGIČKI ELEMENTI IV.3 STRUKTURA KOMBINACIONIH MREŽA IV.4 MEMORIJSKI ELEMENTI
IV. OSNOVNI POJMOVI IV.2 LOGIČKI ELEMENTI IV.3 STRUKTURA KOMBINACIONIH MREŽA IV.4 MEMORIJSKI ELEMENTI IV.4. ASINHRONI FLIP-FLOPOVI IV.4.2 TAKTOVANI FLIP-FLOPOVI IV.5 STRUKTURA SEKVENCIJALNIH MREŽA IV.
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
7. SEKVENCIJALNA KOLA
7 SEKVENIJALNA KOLA 7 Odnos između kombinacionih i sekvencijalnih kola Na logičkom nivou digitalna kola se dele na dve velike klase: ona koja ne poseduju memoriju nazivamo kombinacionim kolima, dok su
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Digitalna mikroelektronika
Digitalna mikroelektronika Z. Prijić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 27. Deo I Kombinaciona logička kola Kombinaciona logička kola Osnovna kombinaciona logička kola 2 3
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Primjeri sinteze sekvencijalnih mreža. Vanr.prof.dr.Lejla Banjanović- Mehmedović
Logički automati Primjeri sinteze sekvencijalnih mreža Vanr.prof.dr.Lejla Banjanović- Mehmedović Definicija sekvencijalnih mreža x 1 (t) x 2 (t) x N (t)... DIGITALNI SISTEM... z 1 (t) z 2 (t) z p (t) Opšti
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
MERNO-AKVIZICIONI SISTEMI U INDUSTRIJI A/D KONVERTORI SA SUKCESIVNIM APROKSIMACIJAMA
MERNO-AKVIZICIONI SISTEMI U INDUSTRIJI A/D KONVERTORI SA SUKCESIVNIM APROKSIMACIJAMA 1 1. OSNOVE SAR A/D KONVERTORA najčešće se koristi kada su u pitanju srednje brzine konverzije od nekoliko µs do nekoliko
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Merni instrumenti - Digitalna elektronika 2. KOMBINACIONA LOGIKA. Logičke funkcije, kombinacione tabele i prekidači
FTN Novi Sad Merni instrumenti - Digitalna elektronika 2. KOMINION LOGIK 15-Mar-07 dr Zoran Mitrović Kombinaciona logika Logičke funkcije, kombinacione tabele i prekidači NE (NOT), I (ND), ILI (OR), NI
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Sortiranje prebrajanjem (Counting sort) i Radix Sort
Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting
Simulacija PLC kontrolera preko mikrokontrolera PIC16F877A
VISOKA POSLOVNA ŠKOLA STRUKOVNIH STUDIJA ČAČAK MASTER RAD Simulacija PLC kontrolera preko mikrokontrolera PIC16F877A Mentor: Profesor: Student: Br.Indeksa: Mesto, mesec, godina ELEKTRONSKI FAKULTET Katedra
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Poglavlje 7. Blok dijagrami diskretnih sistema
Poglavlje 7 Blok dijagrami diskretnih sistema 95 96 Poglavlje 7. Blok dijagrami diskretnih sistema Stav 7.1 Strukturni dijagram diskretnog sistema u kome su sve veliqine prikazane svojim Laplasovim transformacijama
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić
OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Zadatak Vul[V] Vul[V]
Zadatak 11.1. a) Projektovati kolo A/D konvertora sa paralelnim komparatorima koji ulazni napon u opsegu 0 8V kovertuje u 3 bitni binarni broj prema karakteristici sa Slike 11.1.1. a). U slučaju kada je
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Prikaz sustava u prostoru stanja
Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
6. BULOVA ALGEBRA I LOGIČKA KOLA
6. ULOVA ALGERA I LOGIČKA KOLA Poznato je da se pojam algebre odnosi na oblast matematike koja se bavi proučavanjem opštih svojstava brojnih sistema i opštih metoda rešavanja problema pomoću jednačina.
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Enkodiranje i dekodiranje
Kombinaciona kola Vanr.prof.dr.Lejla Banjanović Mehmedović Enkodiranje i dekodiranje Enkodiranje je proces postavljanja sekvenc ekarkatera (slova, brojevi i određeni simboli)u specijalizirani digitalni
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
Logičko i fizičko stanje digitalnog kola
LOGIČKA KOLA Kao što smo već istakli, obrada podataka u digitalnom račuanaru se realizuje pomoću električnih veličina (napon, struja), odnosno elektronski sklopovi računara obrađuju električne veličine
Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.
Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Algoritmi zadaci za kontrolni
Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Osnove mikroelektronike
Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj 1 MOSFET - model za male signale 2 Struja kroz i disipacija snage Model za male
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Καταχωρητες (Registers) Μετρητες (Counters)
Καταχωρητες (Registers) Μετρητες (Counters) Καταχωρητής (register) Ομαδα από flip-flops μαζί με συνδυαστικο κυκλωμα για εκτελεση διαφορων λειτουργιων όπως μεταφορα, αποθηκευση και επεξεργασια πληροφοριων.
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 4: Formiranje blok dijagrama sistema u SIMULINKu
OSNOVI UTOMTSKOG UPRVLJNJ PROCESIM Vežba br. : ormiranje blok dijagrama sistema u SIMULINKu I ormiranje blok dijagrama u Simulinku Linearni dinamički sistemi u Laplace-ovom domenu se mogu prikazati i grafički
D 1. brisanje S B 1 R
11. Standardni sekvencijski moduli Standardni sekvencijski moduli sekvencijski moduli registri posmačni registri asinkrona brojila sinkrona brojila generatori sekvencije memorije FER-Zagreb, Digitalna