Μονοτονία - Ακρότατα Αντίστροφη Συνάρτηση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση"

Transcript

1 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε, Δ f < f με < ισχύει: Γνησίως φθίνουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε, Δ με < ισχύει: f > f Οι γνησίως αύξουσες και οι γνησίως φθίνουσες συναρτήσεις γενικά λέγονται γνησίως μονότονες. Όταν λέμε ότι μια συνάρτηση είναι γνησίως μονότονη (γνησίως αύξουσα ή γνησίως φθίνουσα) και δεν αναφέρεται το διάστημα, θα εννοούμε ότι είναι γνησίως μονότονη στο πεδίο ορισμού της. Αποδεικνύεται ότι η μονοτονία των συναρτήσεων ακολουθεί κάποιους κανόνες όσον αφορά τις πράξεις και τη σύνθεση μεταξύ των συναρτήσεων. Έτσι, για παράδειγμα, αν οι συναρτήσεις f, g είναι γνησίως αύξουσες (φθίνουσες) και η συνάρτηση f +g είναι γνησίως αύξουσα (φθίνουσα). Αν οι συναρτήσεις f,g είναι γνησίως αύξουσες σ ένα διάστημα Δ και f(), g() > 0 για κάθε Δ τότε και η συνάρτηση f. g είναι γνησίως αύξουσα στο Δ. Ακρότατα συνάρτησης Για μια συνάρτηση f με πεδίο ορισμού Α θα λέμε ότι: Παρουσιάζει στο o Α (ολικό) μέγιστο, το f ( 0 ), όταν ισχύει : f f( 0 ), για κάθε Α. Παρουσιάζει στο o Α (ολικό) ελάχιστο, το f ( 0 ), όταν ισχύει : f f( 0 ), για κάθε Α. Το μέγιστο και το ελάχιστο μιας συνάρτησης λέγονται ακρότατα. Είναι φανερό ότι μία συνάρτηση μπορεί να μην έχει ακρότατα. Αν το σύνολο τιμών μιας συνάρτησης είναι κλειστό διάστημα, τα άκρα του είναι τα ακρότατα της συνάρτησης

2 58. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση Συνάρτηση Μια συνάρτηση λέγεται (ένα προς ένα) στο πεδίο ορισμού της αν όταν και μόνον όταν για οποιαδήποτε, του πεδίου ορισμού της με έπεται f f. Συνέπεια του ορισμού είναι η πρόταση: Μια συνάρτηση είναι, αν και μόνο αν για οποιαδήποτε, του πεδίου ορισμού της f = f ισχύει: = με Αν μια συνάρτηση είναι, τότε σε κάθε στοιχείο y του συνόλου τιμών της αντιστοιχεί ένα μόνο στοιχείο του πεδίου ορισμού της.γραφικά αυτό σημαίνει ότι κάθε ευθεία παράλληλη προς τον άξονα ', δηλαδή της μορφής y = α, τέμνει την γραφική παράσταση της συνάρτησης το πολύ σε ένα σημείο. Αν μια συνάρτηση f είναι γνησίως μονότονη στο Δ συμπεραίνουμε ότι είναι και - στο Δ (επειδή λαμβάνει κάθε τιμή της ακριβώς μια φορά). y y o o Το αντίστροφο δεν ισχύει, για παράδειγμα οι παραπάνω συναρτήσεις είναι - αφού κάθε οριζόντια ευθεία τέμνει τις γραφικές τους παραστάσεις το πολύ σε ένα σημείο και όμως δεν είναι γνησίως μονότονες. Αντίστροφη συνάρτηση Έστω συνάρτηση f με πεδίο ορισμού Α και σύνολο τιμών f(a) η οποία είναι - στο Α. Ορίζεται τότε η συνάρτηση f - με πεδίο ορισμού f(a) και σύνολο τιμών A και ισχύει η ισοδυναμία: f = y = f ( y) Η f - λέγεται αντίστροφη συνάρτηση της f. Σύμφωνα με τον τρόπο που ορίζεται η αντίστροφη μιας συνάρτησης f, έχουμε ότι: i. To πεδίο ορισμού της αντίστροφης συνάρτησης f είναι το σύνολο τιμών της συνάρτησης f, και ii. Tο σύνολο τιμών της f είναι το πεδίο ορισμού Α της f. iii. Οι συναρτήσεις f και f έχουν το ίδιο είδος γνήσιας μονοτονίας. H σύνθεση δύο αντίστροφων συναρτήσεων είναι η ταυτοτική συνάρτηση. Έτσι, αν f είναι αντιστρέψιμη συνάρτηση,με πεδίο ορισμού Α και σύνολο τιμών f(a) ισχύουν : ( ) f f =, για κάθε A f f ( y) = y, για κάθε y f( A)

3 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 59. Οι γραφικές παραστάσεις δύο αντίστρoφων συναρτήσεων είναι συμμετρικές ως προς την διχοτόμο της πρώτης και τρίτης γωνίας των αξόνων, δηλαδή την ευθεία με εξίσωση y =. Αποτέλεσμα αυτού, είναι ότι οι εξισώσεις : f f,f f = ) είναι = = ή ( ισοδύναμες στο σύνολο A f ( A),όπου Α το πεδίο ορισμού της f μόνο όταν η f (ή f ) είναι γνησίως αύξουσα. (Βλέπε στις λυμένες ασκήσεις, άσκηση 9) Αν γνωρίζουμε δε, τη γραφική παράσταση μιας συνάρτησης, μπορούμε να σχεδιάσουμε και τη γραφική παράσταση της αντίστροφής της. Σχόλιο: Μια συνάρτηση μπορεί να μην αντιστρέ-φεται στο πεδίο ορισμού της άλλά σε ένα υποσύνολο του π.χ. f() = δεν αντιστρέφεται στο R (όχι ) όμως αντιστρέφεται στο (,0) και στα διαστήματα (0, + ) και ( ). Β. ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Κατηγορία Μέθοδος Για να δείξουμε ότι μια συνάρτηση είναι γνησίως μονότονη εργαζόμαστε ως εξής : Θεωρούμε τυχαία, A με < και προσπαθούμε να "δημιουργήσουμε" μια ανισοτική σχέση μεταξύ των f και f ( ). Αν καταλήξουμε σε f f είναι γνησίως αύξουσα στο Α, ενώ αν αν καταλήξουμε σε f( ) f( ) φθίνουσα στο Α. Παράδειγμα 4- f = + και g = Δίνονται οι συναρτήσεις f και g με τύπους : Να εξεταστούν ως προς τη μονοτονία. Το πεδίο ορισμού της f είναι το R. Έστω, Rμε <. Τότε < < + < + f( ) < f( ) Άρα η f είναι γνησίως αύξουσα στο R. Το πεδίο ορισμού της g είναι τα R για τα οποία ισχύει 4 0 Είναι οπότε A g = (,4]. < η f > η f είναι γνησίως

4 60. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση Έχουμε: Κατηγορία, Μέθοδος (,4] µε < 4 > 4 4 > 4 Έστω 4μια συνάρτηση 4 f με y = f ορισμένη στο διάστημα Δ. > g > g f f που Βρίσκουμε σημαίνει ότι το η πρόσημο g είναι γνησίως του λόγου φθίνουσα λ = στο διάστημα με A, g = (,4]. Δ και Αν λ > 0 η συνάρτηση είναι γνησίως αύξουσα στο Δ. Αν λ < 0 η συνάρτηση είναι γνησίως φθίνουσα στο Δ. Αν λ = 0 η συνάρτηση είναι σταθερή στο Δ. Παράδειγμα Έστω η συνάρτηση f με f Πρέπει + 0. =. Να εξεταστεί ως προς τη μονοτονία. + Άρα το πεδίο ορισμού της συνάρτησης είναι το Α = ( ) ( + ) f,, Έστω, Α f με (χωρίς βλάβη της γενικότητας υποθέτουμε ότι < ). Είναι : λ f( ) f( ) = = = Για < < είναι + < 0 και + < 0 οπότε λ > 0. Επομένως η f είναι γνησίως αύξουσα στο διάστημα (, ). Αν < < τότε + > 0 και + > 0 οπότε λ > 0. Επομένως η f είναι γνησίως αύξουσα στο διάστημα (, + ). Η συνάρτηση f είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα που αποτελούν το πεδίο ορισμού της. Δεν μπορούμε όμως να ισχυριστούμε ότι είναι γνησίως αύξουσα στο πεδίο ορισμού της αφού για παράδειγμα απο - 4 < παίρνουμε f ( - 4 ) = 6 > f ( ) =. Η συνάρτηση f είναι γνησίως αύξουσα κατά διαστήματα. Κατηγορία Μέθοδος Για να προσδιορίσουμε τα ακρότατα μιάς συνάρτησης (αν έχει τέτοια) εργαζόμαστε ως εξής : f A = k,λ είναι Προσδιορίζουμε το σύνολο τιμών της συνάρτησης. Αν για παράδειγμα [ ] το σύνολο τιμών της συνάρτησης το k είναι το ελάχιστο και το λ το μέγιστο, ενώ αν f ( A ) = [k, + ) ή[k,λ) το κ είναι το ελάχιστο της συνάρτησης ενώ η συνάρτηση δεν έχει μέγιστο. Ανάλογα ισχύουν όταν f ( A ) = (,λ] ή ( κ,λ ] ή.... Παράδειγμα Δίνεται η συνάρτηση f με τύπο : υπάρχουν). f = +.Να προσδιορίσετε τα ακρότατα της f (αν

5 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 6. Βρίσκουμε το πεδίο ορισμού της συνάρτησης. Πρέπει 0. Άρα Α f = (,] f για Επομένως : κάθε που ανήκει στο πεδίο ορισμού της f. Άρα το σύνολο τιμών της συνάρτησης είναι το f( A ) [, ) έχει ελάχιστη τιμή το για =. = + και επειδή f() = η συνάρτηση Κατηγορία Μέθοδος 4 Για να δείξουμε, ότι μία συνάρτηση είναι -:. Δεχόμαστε ότι f f δείχνουμε, ότι f( ) f( ) = και δείχνουμε, ότι = ή δεχόμαστε ότι και. Αρκεί να δείξουμε ότι η συνάρτηση είναι γνησίως μονότονη.. Δείχνουμε ότι η εξίσωση f() = y έχει μοναδική λύση ως προς για κάθε y που ανήκει στο σύνολο τιμών της συνάρτησης f. 4. Εκμεταλλευόμαστε την γραφική παράσταση (αν είναι γνωστή). Παράδειγμα 4 Να δείξετε ότι η συνάρτηση f = είναι -. + Το πεδίο ορισμού της συνάρτησης είναι το R - { - }. Έχουμε: Για κάθε, Αf με: f = f = ( + ) = ( + ) = + = Επομένως η f είναι - στο πεδίο ορισμού της. Παράδειγμα 5 Δίνεται η συνάρτηση f με Κατηγορία Μέθοδος 5 Για να προσδιορίσουμε την αντίστροφη μια συνάρτησης f κάνουμε τα εξής βήματα: i. Προσδιορίζουμε το πεδίο ορισμού της συνάρτησης f. ii. Δείχνουμε ότι η f είναι -, άρα αντιστρέψιμη. iii. Θέτουμε y = f() και λύνουμε ως προς για να βρούμε τον τύπο της αντίστροφης. Οι περιορισμοί για το y που τυχον θα προκύψουν μας δίνουν το σύνολο τιμών της συνάρτησης f που είναι και το πεδίο ορισμού της αντίστροφης f. f e Είναι A f = R. Εξετάζουμε αν η f είναι -. =. Nα βρεθεί η αντίστροφή της f (εφόσον υπάρχει).

6 6. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση Για κάθε, R με f = f e = e e = e = Άρα η f είναι - και συνεπώς ορίζεται η αντίστροφη συνάρτηση αυτής. Για να βρούμε τον τύπο της αντίστροφης λύνουμε την εξίσωση y = f () y+ Eίναι : y = f y = e e = () Επειδή e > 0 πρέπει τύπος της αντίστροφης είναι Κατηγορία Μέθοδος 6 Επίλυση εξισώσεων y+ y+ > 0 y >. Έτσι η () γίνεται = ln µε y > και ο f = ln µε >. + Αν η f είναι - ισχύει η ισοδυναμία f( g( λ) ) = f( h( λ) ) g( λ) = h( λ) Επίλυση ανισώσεων Αν η f είναι γνησίως μονότονη ισχύει η ισοδυναμία g ( ) < f( h( λ) ) ( λ ) < g( λ) > f g λ h λ αν η f είναι γνησίως αύξουσα h λ αν η f είναι γνησίως φθίνουσα Παράδειγμα 6 Έστω f = α, με 0 < α < και R. i. Να δείξετε ότι η f είναι γνησίως φθίνουσα στο R. ii. Να λυθεί η εξίσωση λ λ λ α + λ = α + λ λ. α > α = + είναι γνησίως φθίνουσα στο R διότι αν < τότε > οπότε i. Η f α α > α f > f λ ii. Η εξίσωση λ λ λ α + λ = α + λ λ λ λ α λ λ α ( λ ) ( ) = ( ) f λ λ f λ = Επειδή η f είναι γνησίως φθίνουσα στο R είναι και - στο R οπότε: = ( ) = λ λ λ λ λ λ λ λ = 0 λ = ή λ = Κατηγορία Μέθοδος 7 Εύρεση του τύπου της αντίστροφης f όταν γνωρίζουμε μια συναρτησιακή σχέση για την f.

7 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 6. Παράδειγμα 7 Δίνεται f :R R που ικανοποιεί τη σχέση f + f + = 0 (), για κάθε R. Να δείξετε ότι η f αντιστρέφεται και να βρείτε την f. Έστω f( ) = f( ) τότε f ( ) f( ) + = () f + f = =. Άρα η f είναι - στο R οπότε αντιστρέφεται. Έστω f = y η εξίσωση γίνεται y + y+ = 0 =y y, y R. f Άρα. =, R Παράδειγμα 8 Για την f :R R ισχύουν τα παρακάτω: i. f( R) = R, ii. f ( α + βy) = αf + βf ( y),, y R (), iii. Η f είναι - στο R. Να δείξετε ότι f ( α βy) αf βf ( y) + = +. Στη σχέση (), θέτουμε όπου, f και όπου y, f ( y) οπότε έχουμε: ( ) ( ) ( ) f αf + βf y = αf f + βf f y = α + βy (αφού ( f f ) = και f( f ( y) ) = y για κάθε, y R ). Επομένως ( f f αf βf ( y) ) f + = α + βy αf βf ( y) f ( α βy) Γ. ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ + = +. Άσκηση Δίνεται η συνάρτηση f με f = + ln. Να εξετασθεί ως προς τη μονοτονία. Το πεδίο ορισμού της f είναι το (0, + ). Έστω 0< < () και επειδή η συνάρτηση ln είναι γνησίως αύξουσα στο (0, + ) έχουμε ln < ln ( ). Προσθέτοντας κατά μέλη τις () και () παίρνουμε : + ln < + ln που σημαίνει ότι f( ) f <. Άρα η συνάρτηση f είναι γνησίως αύξουσα στο πεδίο ορισμού της. Άσκηση Να εξετασθεί ως προς τη μονοτονία η συνάρτηση f με f Το πεδίο ορισμού της f είναι το R αφού e = e +. e + > 0, για κάθε R.

8 64. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση e e f e e f Είναι: λ e e = = + + = Αν < τότε και e < e e e > 0, οπότε είναι λ > 0 και η f είναι γνησίως αύξουσα στο πεδίο ορισμού της. Άσκηση Δίνεται η συνάρτηση f η οποία είναι γνησίως αύξουσα στο R. f Να δείξετε ότι η συνάρτηση g = e + f + είναι γνησίως αύξουσα στο R. Επειδή η συνάρτηση f είναι γνησίως αύξουσα στο R ισχύει: f < f (), για κάθε, R με < Η συνάρτηση e είναι και αυτή γνησίως αύξουσα και επειδή είναι f( ) f( ) f( ) f( ) e < e () Προσθέτουμε τις () και () κατα μέλη και έχουμε : < θα είναι και f ( ) f ( ) f ( ) f ( ) + < < + + < e f e f e f e f g g Άρα η g είναι γνησίως αύξουσα συνάρτηση στο R. Άσκηση 4 α. Να δείξετε ότι μια γνησίως μονότονη συνάρτηση f έχει το πολύ ένα σημείο μηδενισμού στο πεδίο ορισμού της f και να δώσετε γεωμετρική ερμηνεία του συμπεράσματος. β. Να λυθεί η εξίσωση +4 =5 () α. Μια γνησίως μονότονη συνάρτηση f είναι -, που σημαίνει ότι, για κάθε, με ισχύει f f. Aν η f έχει δύο σημεία μηδενισμού, έστω,, με τότε f = f = 0,που είναι άτοπο. Επομένως η f έχει το πολύ ένα σημείο μηδενισμού στο πεδίο ορισμού της και αυτό γεωμετρικά σημαίνει ότι η γραφική της παράσταση τέμνει τον άξονα ' το πολύ σε ένα σημείο. β. Η εξίσωση () έχει προφανή λύση την = αφού +4 =5. Έχουμε: = 5 + = + = Θεωρούμε τώρα τη συνάρτηση g = γνησίως φθίνουσα. 4 4 Είναι < > () και < > επειδή 5 0 για κάθε R., R και θα δείξουμε ότι η g είναι ()

9 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 65. διότι η συνάρτηση α με 0 < α < είναι γνησίως φθίνουσα. Με πρόσθεση κατά μέλη των () και () παίρνουμε : > + + > + g > g Άρα η g είναι γνησίως φθίνουσα στο R και σύμφωνα με το α' ερώτημα έχει το πολύ μία ρίζα. Επειδή g ( ) = 0, το είναι η μοναδική λύση της εξίσωσης g ( ) = 0. Άσκηση 5 Έστω συνάρτηση f με σύνολο τιμών το R και η συνάρτηση g με τύπο g Να δείξετε ότι η g έχει μέγιστη τιμή τον αριθμό. f =. + f Aρκεί να δείξουμε ότι g, για κάθε πραγματικό αριθμό και ότι το είναι η τιμή της συνάρτησης g. Είναι f + ( ) + f g f f 0 f 0 Η τελευταία σχέση ισχύει για κάθε πραγματικό αριθμό.επειδή η συνάρτηση f έχει πεδίο τιμών το R, υπάρχει 0 τέτοιο ώστε f ( 0 ) = οπότε g( 0 ) =. Άρα υπάρχει 0 R τέτοιο ώστε g = g( 0 ) για κάθε R. Επομένως, η συνάρτηση g έχει μέγιστη τιμή το. Άσκηση 6 Να εξετασθεί ποιες από τις παρακάτω συναρτήσεις είναι -. i. f = + ii. f i. Είναι Af R είναι - στο R. ii. Είναι A = R {}. f + =. Είναι = iii. f = 5 + iv. f = f = f + = + = = οπότε η f + + = = + = + Είναι: f( ) f( ) ( )( ) ( )( ) + = + = = οπότε η f είναι - στο R{} iii. Είναι Af = Rμε f( ) = f = 6 και επειδή, η f δεν είναι - στο R. iv. Είναι Af = Rμε f( ) = f( 4) = και επειδή 4, η f δεν είναι - στο R.

10 66. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση Άσκηση 7 Έστω η συνάρτηση f ln( ln) =. Να βρεθεί η αντίστροφή της συνάρτηση, εφόσον αυτή υπάρχει. Το πεδίο ορισμού της f είναι τα R για τα οποία ισχύουν: > 0 > 0 > 0 > ln > 0 ln > ln > Άρα το πεδίο ορισμού της f είναι το διάστημα (, + ). Για να είναι μια συνάρτηση αντιστρέψιμη πρέπει να είναι -, δηλαδή να ισχύει : αν f( ) = f( ) τοτε = Θεωρούμε: f = f ln ln = ln ln ln = ln = που σημαίνει ότι η f είναι αντιστρέψιμη στο R. y= ln ln ως πρός. Για να βρούμε τον τύπο της αντίστροφης λύνουμε την εξίσωση y y y e Είναι y= ln( ln) e = ln = e και εφόσον > έχουμε y e e 0 y e > e > e e > 0, που ισχύει για κάθε y πραγματικό. Επομένως ο τύπος της αντίστροφης είναι y e f y = e µε y R. Επειδή ο συμβολισμός ανεξάρτητης μεταβλητής δεν έχει σημασία και επειδή συνηθίζεται η ανεξάρτητη μεταβλητή να συμβολίζεται με, γράφουμε τον τύπο της f - με μεταβλητή το : e f = e με R. οπότε Άσκηση 8 Να βρείτε τις αντίστροφες συναρτήσεις των συναρτήσεων με τύπους : α. f = +, < 0 και β. α. Είναι g() = + < 0 f = f + = + = = οπότε η f είναι - και επομένως αντιστρέφεται. Για να βρούμε τον τύπο της αντίστροφης λύνουμε την εξίσωση y = + ως πρός. Έχουμε y= +, < 0 = y, < 0, y Επομένως ο τύπος της αντίστροφης είναι: f = µε β. Η g είναι -στο R αφού: g = g + = + = = = Άρα η g αντιστρέφεται και για τον τύπο της αντίστροφής της έχουμε: = + = = y y y, y y, y <

11 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 67., Επομένως g =, < Ασκηση 9 α. Δίνεται συνάρτηση f:r R με σύνολο τιμών το R, η οποία είναι γνησίως αύξουσα. Να αποδείξετε ότι οι εξισώσεις f = f () και f = () είναι ισοδύναμες. 4 β. Να βρείτε την αντίστροφη της συνάρτησης f = και στη συνέχεια τα κοινά σημεία των γραφικών παραστάσεων των συναρτήσεων f και f. α. Δύο εξισώσεις λέγονται ισοδύναμες όταν έχουν τις ίδιες ακριβώς λύσεις. Επειδή η f είναι γνησίως αύξουσα, είναι - και επομένως αντιστρέφεται. - Έστω ότι 0 R είναι λύση της (). Τότε f 0 = f ( 0), οπότε f( f( 0) ) = f( f ( 0) ) f( f( 0) ) = 0 () Αν f( 0) > 0 τότε f( f( 0) ) > f( 0) αφού η f είναι γνησίως αύξουσα και επομένως f( f( 0 )) > 0, που είναι άτοπο λόγω της (). Αν f( 0) < 0 τότε f( f( 0) ) < f( 0) αφού η f είναι γνησίως αύξουσα και επομένως f( f( 0 )) < 0, που είναι άτοπο λόγω της (). Άρα f( 0) = 0, οπότε ο 0 είναι λύση της (). - Έστω ότι 0 R είναι λύση της (). Τότε f( 0) = 0 () οπότε f ( f( 0) ) = f ( 0) 0 = f ( 0) (4). Από () και (4) έχουμε ότι f( ) 0 = f ( 0) δηλαδή ο 0 είναι λύση της (). Άρα οι (), () είναι ισοδύναμες. β. Af = R Για, Rμε < έχουμε: 4 4 < 4 < 4 4 < 4 < f < f. Άρα η f είναι γνησίως αύξουσα στο R και επομένως - στο R οπότε αντιστρέφεται. Έχουμε 4 y + y + y = = =, 4 4 y + y ή =, 4 y <

12 68. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση +, οπότε 4 f =. +, < 4 Για να βρούμε τα κοινά σημεία των γραφικών των f και f = f. Σύμφωνα με το α ερώτημα είναι: f πρέπει να λύσουμε την εξίσωση f = f f = 4 = 0 = ή =. Επομένως τα κοινά σημεία των C,C f f είναι τα ( () A,f ), B,f δηλαδή τα A, και B,. Παρατήρηση Οι εξισώσεις f = f () και f = () είναι ισοδύναμες μόνο όταν η f είναι γνησίως αύξουσα. Για παράδειγμα, της συνάρτησης f =, η οποία είναι γνησίως φθίνουσα σε καθένα από τα (,0) και ( 0, + ), η αντίστροφη είναι f = και η f = f έχει λύση για κάθε * R, ενώ η f = = = = ή =. Επομένως δεν είναι ισοδύναμες οι () και (). Ασκηση 0 Το διπλανό σχήμα παριστάνει μια συνάρτηση f η οποία είναι - στο [-,]. Nα προσδιορίσετε την τιμή f - ( 0 ). f 0 = f f = Επειδή f ( - ) = 0 έχουμε ( ) Ασκηση Για τη συνάρτηση f : R R ισχύει η ιδιότητα f f f( ) Να δείξετε, ότι η συνάρτηση f δεν αντιστρέφεται. Η σχέση () για = 0 γίνεται: f ( 0) f( 0) f Προσθέτουμε τις () και () κατά μέλη και έχουμε : για κάθε R (). ( ) και για = γίνεται: f () f() f( 0) ( )

13 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση ( ) = f 0 f f 0 f f 0 f f 0 f 0 f 0 f 0 f 0 f. Άρα η f δεν είναι - και συνεπώς δεν αντιστρέφεται. Ε. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ. Έστω η συνάρτηση f με f = Nα εξετασθεί ως προς τη μονοτονία. (Απ.: Η f γνησίως φθίνουσα στο (,] και γνησίως αύξουσα στο [,+ ) ). Ποια απο τις παρακάτω συναρτήσεις δεν είναι γνησίως μονότονη. Να αποδειχθεί, ότι η συνάρτηση f = (Απ.: Η τρίτη) έχει μέγιστο το και ελάχιστο το (Υπ.: Να βρείτε το σύνολο τιμών της f.) 4. Να εξετασθεί ως προς τη μονοτονία και τα ακρότατα η συνάρτηση f με f = +, (Απ.: Είναι f < =, οπότε είναι σταθερή στο (,) και γνησίως αύξουσα στο [, + ). Για κάθε (,] παρουσιάζει ελάχιστο το ) 5. Να εξετασθεί ως προς τη μονοτονία και τα ακρότατα η συνάρτηση f με f = log( + + ) (Υπ.-Απ.: Df = R Για την μονοτονία να διακρίνετε περιπτώσεις, αν < < 0 και αν 0 <. Η f είναι γνησίως φθίνουσα στο (,0) και γνησίως αύξουσα στο [ 0,+ ) Για τα ακρότατα,

14 70. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση για κάθε R, 0... και κατασκευαστικά, βρείτε το σύνολο τιμών της. Για = 0 παρουσιάζει ελάχιστο το f( 0) = og ) 6. Δίνεται η συνάρτηση f με τύπο f =, αν., αν > i. Να αποδείξετε ότι η f είναι γνησίως αύξουσα. ii. Να βρείτε την αντίστροφη της f. (Υπ.: Διακρίνετε περίπτωσεις: Αν <, αν < < και αν < ) 7. Nα αποδειχθεί, ότι: i. Αν f,g είναι γνησίως αύξουσες συναρτήσεις σε διάστημα Δ τότε και η συνάρτηση f + g είναι γνησίως αύξουσα στο Δ. ii. Αν f,g είναι γνησίως φθίνουσες συναρτήσεις σε διάστημα Δ τότε και η συνάρτηση f + g είναι γνησίως φθίνουσα στο Δ. (Υπ.: Αξιοποιείστε τους ορισμούς της μονοτονίας) 8. i. Να αποδειχθεί, ότι, αν οι συναρτήσεις f,g έχουν το ίδιο είδος μονοτονίας, τότε η συνάρτηση fog (αν ορίζεται), είναι γνησίως αύξουσα. ii. Να αποδειχθεί, ότι, αν οι συναρτήσεις f,g είναι διαφορετικού είδους μονοτονίας, τότε η συνάρτηση fog (αν ορίζεται), είναι γνησίως φθίνουσα. (Υπ.:Ομοίως με την 7) e 9. Δίνονται οι συναρτήσεις f = και g() = - ln. Να προσδιοριστεί η συνάρτηση f - og. + e (Απ.: Af = R, A g = 0, + f = n, ( 0,), A (,e n = ) με ( f og) = n ) f og n 0. Έστω η συνάρτηση f : R R η οποία είναι γνησίως αύξουσα στο R και για την οποία ισχύει f (f ())= για κάθε R. Nα αποδειχθεί, ότι : f ()=. (Απ.:Έστω, ότι υπάρχει 0 R έτσι ώστε f( 0) > 0 (). Επειδή η f έχουμε f( f( 0) ) > f( 0) (). Από () και () έχουμε f( f( 0) ) > 0, που είναι άτοπο λόγω υπόθεσης.ανάλογα αν υπάρχει R : f( ) < καταλήγουμε σε άτοπο. Άρα f =, για κάθε R) Η διπλανή γραφική παράσταση παριστάνει την - συνάρτηση f. Ποιο είναι το ολικό μέγιστο της συνάρτησης f - ; (Υπ.:Θυμηθείτε ποιο είναι το σύνολο τιμών της f. Το μέγιστο είναι το ) - - y O -

15 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 7. f = ln, g = + α. Να προσδιορίσετε τις συναρτήσεις f - και g -.. Δίνονται οι συναρτήσεις β. Να προσδιορίσετε τις συναρτήσεις f g και g f (Απ.: A f, = +, [ ) e Ag =, +, α. f =, R, g ( ) + = +, [, + ) ( ) e β. ( f og ) e =, [, + ) ( g of ) = +, [ n, + ) ) +. Θεωρούμε συνάρτηση f τέτοια ώστε ( ) + f f = +, για κάθε R Να αποδείξετε ότι : α. f ( ) =, β. Η συνάρτηση g f = + δεν είναι -. (Απ.: α. Από τη δοσμένη σχέση για = έχουμε: f( f() ) = και για = f() έχουμε: ( ( ()) f f f ) = f () f() + οπότε () f = f() f() +... f() =. β. Βρείτε το g( 0 ) και το g) () E. ΤΟ ΞΕΧΩΡΙΣΤΟ ΘΕΜΑ. Για τη συνάρτηση f ισχύει η σχέση : Nα δείξετε ότι: f y =f +f y για κάθε,y R () i. f () = 0 ii. f =-f iii. Mε την παραδοχή, ότι η μονάδα είναι η μοναδική τιμή του με f() = 0, να δείξετε ότι αν s,t είναι διακεκριμένοι θετικοί, τότε f(s) f(t).. Δίνεται η συνάρτηση f :R Rμε την ιδιότητα ( fof)( ) = -+ για κάθε R. Να δείξετε ότι: i. f() = ii. η συνάρτηση g:r R με g( ) = - f( ) + δεν αντιστρέφεται.. Δίνονται οι συναρτήσεις f =, R και g( ) =, R i. Nα δείξετε ότι η g() είναι και να βρείτε την αντιστροφή της. - ii. Να βρεθεί η συνάρτηση h( ) =f og ( ).

16

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

για τις οποίες ισχύει ( )

για τις οποίες ισχύει ( ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΜΗΤΑΛΑΣ ΓΙΑΝΝΗΣ, ΔΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ ΕΠΙΜΕΛΕΙΑ . Έστω οι συναρτήσεις f, g: για κάθε. α) Να αποδείξετε ότι η g είναι -. β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: . Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ-ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α 1 1. α) Να γίνει γινόµενο το τριώνυµο λ -3λ+. β) Να βρεθεί το λ έτσι ώστε η εξίσωση λ(λχ-1)χ(3λ-)-λ i) να είναι αδύνατη ii) να είναι αόριστη iii) να έχει µία µόνο λύση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.) και Ενδιάμεσων Τιμών (Θ.Ε.Τ.) Τάξη : Γ Λυκείου Θετικής και Τεχνολογικής

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6. Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ. Ορισµός της συνάρτησης Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται µια διαδικασία (κανόνας τρόπος ), µε την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Περιέχει: Όλη την ύλη της Γ Λυκείου, σύμφωνα με το αναλυτικό πρόγραμμα του Υπουργείου Παιδείας σε () ΒΙΒΛΙΟμαθήματα που το καθένα περιέχει: Α. Απαραίτητες

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

II. ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ

II. ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ II. ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Δημήτρης Μπουνάκης Σχ. Σύμβουλος Μαθηματικών dimitrmp@sch.gr Ηράκλειο, Οκτώβριος 010 ΘΕΜΑ: «ΔΙΔΑΚΤΙΚΟ

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β]

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β] ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 13 1.2 ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων

ΜΑΘΗΜΑ 13 1.2 ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων ΜΑΘΗΜΑ 3. ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων Θεωρία Σχόλια Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Έστω οι συναρτήσεις : A R, :Β R Το τυχαίο A, µε την A. αντιστοιχίζεται στην τιµή Αν η τιµή αυτή ( ) B θα αντιστοιχίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ θεματα Α-Β-Γ-Δ Βαγγέλης Α Νικολακάκης Μαθηματικός ΠΕΡΙΕΧΟΜΕΝΑ ENOTHTA ΘΕΜΑ ΣΕΛΙΔΕΣ 0 ΣΥΝΟΠΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ 3-4 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΘΕΜΑ Α) 5-7 ΑΣΚΗΣΕΙΣ (ΘΕΜΑ Β)

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. H Εννοια του διανυσματος. Σ υ ν ο λ α - Ο ρ ι σ μ ο ι

ΣΥΝΑΡΤΗΣΕΙΣ. H Εννοια του διανυσματος. Σ υ ν ο λ α - Ο ρ ι σ μ ο ι ΣΥΝΑΡΤΗΣΕΙΣ Σ υ ν ο λ α - Ο ρ ι σ μ ο ι Συνολο λεγεται καθε συλλογη 3. Να δειχτει αντικειμενων, οτι α + 0 που προερχονται 0α. Ποτε ισχυει απ την το εμπειρια ισον; μας η τη διανοηση 3 3. μας, Aν α, ειναι

Διαβάστε περισσότερα

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

(Έκδοση: 05 03 2015)

(Έκδοση: 05 03 2015) (Έκδοση: 05 03 05) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 4η έκδοση: 05 03 05 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 0 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει βοήθεια κυρίως στους μαθητές

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα 1 Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 1/1/015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 3 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x) 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων:. c d c c. d c. d c. d c. e d e c 6. d c 7. d c 8. d ln c 9. d c. d c,. Β. Οι παρακάτω τύποι

Διαβάστε περισσότερα

Aλγεβρα A λυκείου B Τομος

Aλγεβρα A λυκείου B Τομος Aλγ ε β ρ α A υ κ ε ί ο υ B Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ειρά: Γενικό ύκειο, Θετικές Επιστήμες Άλγεβρα Α υκείου, Β Τόμος Παναγιώτης Γριμανέλλης Εξώφυλλο: Γεωργία αμπροπούλου

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

Λυση. και επομένως. Αντικαθιστούμε στη σχέση. Λυση. y = f 3 και y = f 3

Λυση. και επομένως. Αντικαθιστούμε στη σχέση. Λυση. y = f 3 και y = f 3 Ø ÔØÓÑ Ò ½ Á ÒÓÙ ÖÓÙ ¾¼¼ Ασκηση Δίνεται η συνάρτηση f (x) =x +lnx. Να βρεθεί η εφαπτομένη της C f στοσημείομετετμημένηe. Η εξίσωση της τυχούσας εφαπτομένης της C f είναι y = f (x 0 ) x + f (x 0 ) f (x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας, Δαμιανού Χαράλαμπος Σβέρκος Ανδρέας Επ Σύμβουλος Παιδαγωγικού Ινστιτούτου Αναπλ Καθηγητής Παν/μίου Αθηνών Σχολικός

Διαβάστε περισσότερα