Μονοτονία - Ακρότατα Αντίστροφη Συνάρτηση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση"

Transcript

1 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε, Δ f < f με < ισχύει: Γνησίως φθίνουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε, Δ με < ισχύει: f > f Οι γνησίως αύξουσες και οι γνησίως φθίνουσες συναρτήσεις γενικά λέγονται γνησίως μονότονες. Όταν λέμε ότι μια συνάρτηση είναι γνησίως μονότονη (γνησίως αύξουσα ή γνησίως φθίνουσα) και δεν αναφέρεται το διάστημα, θα εννοούμε ότι είναι γνησίως μονότονη στο πεδίο ορισμού της. Αποδεικνύεται ότι η μονοτονία των συναρτήσεων ακολουθεί κάποιους κανόνες όσον αφορά τις πράξεις και τη σύνθεση μεταξύ των συναρτήσεων. Έτσι, για παράδειγμα, αν οι συναρτήσεις f, g είναι γνησίως αύξουσες (φθίνουσες) και η συνάρτηση f +g είναι γνησίως αύξουσα (φθίνουσα). Αν οι συναρτήσεις f,g είναι γνησίως αύξουσες σ ένα διάστημα Δ και f(), g() > 0 για κάθε Δ τότε και η συνάρτηση f. g είναι γνησίως αύξουσα στο Δ. Ακρότατα συνάρτησης Για μια συνάρτηση f με πεδίο ορισμού Α θα λέμε ότι: Παρουσιάζει στο o Α (ολικό) μέγιστο, το f ( 0 ), όταν ισχύει : f f( 0 ), για κάθε Α. Παρουσιάζει στο o Α (ολικό) ελάχιστο, το f ( 0 ), όταν ισχύει : f f( 0 ), για κάθε Α. Το μέγιστο και το ελάχιστο μιας συνάρτησης λέγονται ακρότατα. Είναι φανερό ότι μία συνάρτηση μπορεί να μην έχει ακρότατα. Αν το σύνολο τιμών μιας συνάρτησης είναι κλειστό διάστημα, τα άκρα του είναι τα ακρότατα της συνάρτησης

2 58. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση Συνάρτηση Μια συνάρτηση λέγεται (ένα προς ένα) στο πεδίο ορισμού της αν όταν και μόνον όταν για οποιαδήποτε, του πεδίου ορισμού της με έπεται f f. Συνέπεια του ορισμού είναι η πρόταση: Μια συνάρτηση είναι, αν και μόνο αν για οποιαδήποτε, του πεδίου ορισμού της f = f ισχύει: = με Αν μια συνάρτηση είναι, τότε σε κάθε στοιχείο y του συνόλου τιμών της αντιστοιχεί ένα μόνο στοιχείο του πεδίου ορισμού της.γραφικά αυτό σημαίνει ότι κάθε ευθεία παράλληλη προς τον άξονα ', δηλαδή της μορφής y = α, τέμνει την γραφική παράσταση της συνάρτησης το πολύ σε ένα σημείο. Αν μια συνάρτηση f είναι γνησίως μονότονη στο Δ συμπεραίνουμε ότι είναι και - στο Δ (επειδή λαμβάνει κάθε τιμή της ακριβώς μια φορά). y y o o Το αντίστροφο δεν ισχύει, για παράδειγμα οι παραπάνω συναρτήσεις είναι - αφού κάθε οριζόντια ευθεία τέμνει τις γραφικές τους παραστάσεις το πολύ σε ένα σημείο και όμως δεν είναι γνησίως μονότονες. Αντίστροφη συνάρτηση Έστω συνάρτηση f με πεδίο ορισμού Α και σύνολο τιμών f(a) η οποία είναι - στο Α. Ορίζεται τότε η συνάρτηση f - με πεδίο ορισμού f(a) και σύνολο τιμών A και ισχύει η ισοδυναμία: f = y = f ( y) Η f - λέγεται αντίστροφη συνάρτηση της f. Σύμφωνα με τον τρόπο που ορίζεται η αντίστροφη μιας συνάρτησης f, έχουμε ότι: i. To πεδίο ορισμού της αντίστροφης συνάρτησης f είναι το σύνολο τιμών της συνάρτησης f, και ii. Tο σύνολο τιμών της f είναι το πεδίο ορισμού Α της f. iii. Οι συναρτήσεις f και f έχουν το ίδιο είδος γνήσιας μονοτονίας. H σύνθεση δύο αντίστροφων συναρτήσεων είναι η ταυτοτική συνάρτηση. Έτσι, αν f είναι αντιστρέψιμη συνάρτηση,με πεδίο ορισμού Α και σύνολο τιμών f(a) ισχύουν : ( ) f f =, για κάθε A f f ( y) = y, για κάθε y f( A)

3 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 59. Οι γραφικές παραστάσεις δύο αντίστρoφων συναρτήσεων είναι συμμετρικές ως προς την διχοτόμο της πρώτης και τρίτης γωνίας των αξόνων, δηλαδή την ευθεία με εξίσωση y =. Αποτέλεσμα αυτού, είναι ότι οι εξισώσεις : f f,f f = ) είναι = = ή ( ισοδύναμες στο σύνολο A f ( A),όπου Α το πεδίο ορισμού της f μόνο όταν η f (ή f ) είναι γνησίως αύξουσα. (Βλέπε στις λυμένες ασκήσεις, άσκηση 9) Αν γνωρίζουμε δε, τη γραφική παράσταση μιας συνάρτησης, μπορούμε να σχεδιάσουμε και τη γραφική παράσταση της αντίστροφής της. Σχόλιο: Μια συνάρτηση μπορεί να μην αντιστρέ-φεται στο πεδίο ορισμού της άλλά σε ένα υποσύνολο του π.χ. f() = δεν αντιστρέφεται στο R (όχι ) όμως αντιστρέφεται στο (,0) και στα διαστήματα (0, + ) και ( ). Β. ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Κατηγορία Μέθοδος Για να δείξουμε ότι μια συνάρτηση είναι γνησίως μονότονη εργαζόμαστε ως εξής : Θεωρούμε τυχαία, A με < και προσπαθούμε να "δημιουργήσουμε" μια ανισοτική σχέση μεταξύ των f και f ( ). Αν καταλήξουμε σε f f είναι γνησίως αύξουσα στο Α, ενώ αν αν καταλήξουμε σε f( ) f( ) φθίνουσα στο Α. Παράδειγμα 4- f = + και g = Δίνονται οι συναρτήσεις f και g με τύπους : Να εξεταστούν ως προς τη μονοτονία. Το πεδίο ορισμού της f είναι το R. Έστω, Rμε <. Τότε < < + < + f( ) < f( ) Άρα η f είναι γνησίως αύξουσα στο R. Το πεδίο ορισμού της g είναι τα R για τα οποία ισχύει 4 0 Είναι οπότε A g = (,4]. < η f > η f είναι γνησίως

4 60. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση Έχουμε: Κατηγορία, Μέθοδος (,4] µε < 4 > 4 4 > 4 Έστω 4μια συνάρτηση 4 f με y = f ορισμένη στο διάστημα Δ. > g > g f f που Βρίσκουμε σημαίνει ότι το η πρόσημο g είναι γνησίως του λόγου φθίνουσα λ = στο διάστημα με A, g = (,4]. Δ και Αν λ > 0 η συνάρτηση είναι γνησίως αύξουσα στο Δ. Αν λ < 0 η συνάρτηση είναι γνησίως φθίνουσα στο Δ. Αν λ = 0 η συνάρτηση είναι σταθερή στο Δ. Παράδειγμα Έστω η συνάρτηση f με f Πρέπει + 0. =. Να εξεταστεί ως προς τη μονοτονία. + Άρα το πεδίο ορισμού της συνάρτησης είναι το Α = ( ) ( + ) f,, Έστω, Α f με (χωρίς βλάβη της γενικότητας υποθέτουμε ότι < ). Είναι : λ f( ) f( ) = = = Για < < είναι + < 0 και + < 0 οπότε λ > 0. Επομένως η f είναι γνησίως αύξουσα στο διάστημα (, ). Αν < < τότε + > 0 και + > 0 οπότε λ > 0. Επομένως η f είναι γνησίως αύξουσα στο διάστημα (, + ). Η συνάρτηση f είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα που αποτελούν το πεδίο ορισμού της. Δεν μπορούμε όμως να ισχυριστούμε ότι είναι γνησίως αύξουσα στο πεδίο ορισμού της αφού για παράδειγμα απο - 4 < παίρνουμε f ( - 4 ) = 6 > f ( ) =. Η συνάρτηση f είναι γνησίως αύξουσα κατά διαστήματα. Κατηγορία Μέθοδος Για να προσδιορίσουμε τα ακρότατα μιάς συνάρτησης (αν έχει τέτοια) εργαζόμαστε ως εξής : f A = k,λ είναι Προσδιορίζουμε το σύνολο τιμών της συνάρτησης. Αν για παράδειγμα [ ] το σύνολο τιμών της συνάρτησης το k είναι το ελάχιστο και το λ το μέγιστο, ενώ αν f ( A ) = [k, + ) ή[k,λ) το κ είναι το ελάχιστο της συνάρτησης ενώ η συνάρτηση δεν έχει μέγιστο. Ανάλογα ισχύουν όταν f ( A ) = (,λ] ή ( κ,λ ] ή.... Παράδειγμα Δίνεται η συνάρτηση f με τύπο : υπάρχουν). f = +.Να προσδιορίσετε τα ακρότατα της f (αν

5 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 6. Βρίσκουμε το πεδίο ορισμού της συνάρτησης. Πρέπει 0. Άρα Α f = (,] f για Επομένως : κάθε που ανήκει στο πεδίο ορισμού της f. Άρα το σύνολο τιμών της συνάρτησης είναι το f( A ) [, ) έχει ελάχιστη τιμή το για =. = + και επειδή f() = η συνάρτηση Κατηγορία Μέθοδος 4 Για να δείξουμε, ότι μία συνάρτηση είναι -:. Δεχόμαστε ότι f f δείχνουμε, ότι f( ) f( ) = και δείχνουμε, ότι = ή δεχόμαστε ότι και. Αρκεί να δείξουμε ότι η συνάρτηση είναι γνησίως μονότονη.. Δείχνουμε ότι η εξίσωση f() = y έχει μοναδική λύση ως προς για κάθε y που ανήκει στο σύνολο τιμών της συνάρτησης f. 4. Εκμεταλλευόμαστε την γραφική παράσταση (αν είναι γνωστή). Παράδειγμα 4 Να δείξετε ότι η συνάρτηση f = είναι -. + Το πεδίο ορισμού της συνάρτησης είναι το R - { - }. Έχουμε: Για κάθε, Αf με: f = f = ( + ) = ( + ) = + = Επομένως η f είναι - στο πεδίο ορισμού της. Παράδειγμα 5 Δίνεται η συνάρτηση f με Κατηγορία Μέθοδος 5 Για να προσδιορίσουμε την αντίστροφη μια συνάρτησης f κάνουμε τα εξής βήματα: i. Προσδιορίζουμε το πεδίο ορισμού της συνάρτησης f. ii. Δείχνουμε ότι η f είναι -, άρα αντιστρέψιμη. iii. Θέτουμε y = f() και λύνουμε ως προς για να βρούμε τον τύπο της αντίστροφης. Οι περιορισμοί για το y που τυχον θα προκύψουν μας δίνουν το σύνολο τιμών της συνάρτησης f που είναι και το πεδίο ορισμού της αντίστροφης f. f e Είναι A f = R. Εξετάζουμε αν η f είναι -. =. Nα βρεθεί η αντίστροφή της f (εφόσον υπάρχει).

6 6. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση Για κάθε, R με f = f e = e e = e = Άρα η f είναι - και συνεπώς ορίζεται η αντίστροφη συνάρτηση αυτής. Για να βρούμε τον τύπο της αντίστροφης λύνουμε την εξίσωση y = f () y+ Eίναι : y = f y = e e = () Επειδή e > 0 πρέπει τύπος της αντίστροφης είναι Κατηγορία Μέθοδος 6 Επίλυση εξισώσεων y+ y+ > 0 y >. Έτσι η () γίνεται = ln µε y > και ο f = ln µε >. + Αν η f είναι - ισχύει η ισοδυναμία f( g( λ) ) = f( h( λ) ) g( λ) = h( λ) Επίλυση ανισώσεων Αν η f είναι γνησίως μονότονη ισχύει η ισοδυναμία g ( ) < f( h( λ) ) ( λ ) < g( λ) > f g λ h λ αν η f είναι γνησίως αύξουσα h λ αν η f είναι γνησίως φθίνουσα Παράδειγμα 6 Έστω f = α, με 0 < α < και R. i. Να δείξετε ότι η f είναι γνησίως φθίνουσα στο R. ii. Να λυθεί η εξίσωση λ λ λ α + λ = α + λ λ. α > α = + είναι γνησίως φθίνουσα στο R διότι αν < τότε > οπότε i. Η f α α > α f > f λ ii. Η εξίσωση λ λ λ α + λ = α + λ λ λ λ α λ λ α ( λ ) ( ) = ( ) f λ λ f λ = Επειδή η f είναι γνησίως φθίνουσα στο R είναι και - στο R οπότε: = ( ) = λ λ λ λ λ λ λ λ = 0 λ = ή λ = Κατηγορία Μέθοδος 7 Εύρεση του τύπου της αντίστροφης f όταν γνωρίζουμε μια συναρτησιακή σχέση για την f.

7 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 6. Παράδειγμα 7 Δίνεται f :R R που ικανοποιεί τη σχέση f + f + = 0 (), για κάθε R. Να δείξετε ότι η f αντιστρέφεται και να βρείτε την f. Έστω f( ) = f( ) τότε f ( ) f( ) + = () f + f = =. Άρα η f είναι - στο R οπότε αντιστρέφεται. Έστω f = y η εξίσωση γίνεται y + y+ = 0 =y y, y R. f Άρα. =, R Παράδειγμα 8 Για την f :R R ισχύουν τα παρακάτω: i. f( R) = R, ii. f ( α + βy) = αf + βf ( y),, y R (), iii. Η f είναι - στο R. Να δείξετε ότι f ( α βy) αf βf ( y) + = +. Στη σχέση (), θέτουμε όπου, f και όπου y, f ( y) οπότε έχουμε: ( ) ( ) ( ) f αf + βf y = αf f + βf f y = α + βy (αφού ( f f ) = και f( f ( y) ) = y για κάθε, y R ). Επομένως ( f f αf βf ( y) ) f + = α + βy αf βf ( y) f ( α βy) Γ. ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ + = +. Άσκηση Δίνεται η συνάρτηση f με f = + ln. Να εξετασθεί ως προς τη μονοτονία. Το πεδίο ορισμού της f είναι το (0, + ). Έστω 0< < () και επειδή η συνάρτηση ln είναι γνησίως αύξουσα στο (0, + ) έχουμε ln < ln ( ). Προσθέτοντας κατά μέλη τις () και () παίρνουμε : + ln < + ln που σημαίνει ότι f( ) f <. Άρα η συνάρτηση f είναι γνησίως αύξουσα στο πεδίο ορισμού της. Άσκηση Να εξετασθεί ως προς τη μονοτονία η συνάρτηση f με f Το πεδίο ορισμού της f είναι το R αφού e = e +. e + > 0, για κάθε R.

8 64. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση e e f e e f Είναι: λ e e = = + + = Αν < τότε και e < e e e > 0, οπότε είναι λ > 0 και η f είναι γνησίως αύξουσα στο πεδίο ορισμού της. Άσκηση Δίνεται η συνάρτηση f η οποία είναι γνησίως αύξουσα στο R. f Να δείξετε ότι η συνάρτηση g = e + f + είναι γνησίως αύξουσα στο R. Επειδή η συνάρτηση f είναι γνησίως αύξουσα στο R ισχύει: f < f (), για κάθε, R με < Η συνάρτηση e είναι και αυτή γνησίως αύξουσα και επειδή είναι f( ) f( ) f( ) f( ) e < e () Προσθέτουμε τις () και () κατα μέλη και έχουμε : < θα είναι και f ( ) f ( ) f ( ) f ( ) + < < + + < e f e f e f e f g g Άρα η g είναι γνησίως αύξουσα συνάρτηση στο R. Άσκηση 4 α. Να δείξετε ότι μια γνησίως μονότονη συνάρτηση f έχει το πολύ ένα σημείο μηδενισμού στο πεδίο ορισμού της f και να δώσετε γεωμετρική ερμηνεία του συμπεράσματος. β. Να λυθεί η εξίσωση +4 =5 () α. Μια γνησίως μονότονη συνάρτηση f είναι -, που σημαίνει ότι, για κάθε, με ισχύει f f. Aν η f έχει δύο σημεία μηδενισμού, έστω,, με τότε f = f = 0,που είναι άτοπο. Επομένως η f έχει το πολύ ένα σημείο μηδενισμού στο πεδίο ορισμού της και αυτό γεωμετρικά σημαίνει ότι η γραφική της παράσταση τέμνει τον άξονα ' το πολύ σε ένα σημείο. β. Η εξίσωση () έχει προφανή λύση την = αφού +4 =5. Έχουμε: = 5 + = + = Θεωρούμε τώρα τη συνάρτηση g = γνησίως φθίνουσα. 4 4 Είναι < > () και < > επειδή 5 0 για κάθε R., R και θα δείξουμε ότι η g είναι ()

9 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 65. διότι η συνάρτηση α με 0 < α < είναι γνησίως φθίνουσα. Με πρόσθεση κατά μέλη των () και () παίρνουμε : > + + > + g > g Άρα η g είναι γνησίως φθίνουσα στο R και σύμφωνα με το α' ερώτημα έχει το πολύ μία ρίζα. Επειδή g ( ) = 0, το είναι η μοναδική λύση της εξίσωσης g ( ) = 0. Άσκηση 5 Έστω συνάρτηση f με σύνολο τιμών το R και η συνάρτηση g με τύπο g Να δείξετε ότι η g έχει μέγιστη τιμή τον αριθμό. f =. + f Aρκεί να δείξουμε ότι g, για κάθε πραγματικό αριθμό και ότι το είναι η τιμή της συνάρτησης g. Είναι f + ( ) + f g f f 0 f 0 Η τελευταία σχέση ισχύει για κάθε πραγματικό αριθμό.επειδή η συνάρτηση f έχει πεδίο τιμών το R, υπάρχει 0 τέτοιο ώστε f ( 0 ) = οπότε g( 0 ) =. Άρα υπάρχει 0 R τέτοιο ώστε g = g( 0 ) για κάθε R. Επομένως, η συνάρτηση g έχει μέγιστη τιμή το. Άσκηση 6 Να εξετασθεί ποιες από τις παρακάτω συναρτήσεις είναι -. i. f = + ii. f i. Είναι Af R είναι - στο R. ii. Είναι A = R {}. f + =. Είναι = iii. f = 5 + iv. f = f = f + = + = = οπότε η f + + = = + = + Είναι: f( ) f( ) ( )( ) ( )( ) + = + = = οπότε η f είναι - στο R{} iii. Είναι Af = Rμε f( ) = f = 6 και επειδή, η f δεν είναι - στο R. iv. Είναι Af = Rμε f( ) = f( 4) = και επειδή 4, η f δεν είναι - στο R.

10 66. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση Άσκηση 7 Έστω η συνάρτηση f ln( ln) =. Να βρεθεί η αντίστροφή της συνάρτηση, εφόσον αυτή υπάρχει. Το πεδίο ορισμού της f είναι τα R για τα οποία ισχύουν: > 0 > 0 > 0 > ln > 0 ln > ln > Άρα το πεδίο ορισμού της f είναι το διάστημα (, + ). Για να είναι μια συνάρτηση αντιστρέψιμη πρέπει να είναι -, δηλαδή να ισχύει : αν f( ) = f( ) τοτε = Θεωρούμε: f = f ln ln = ln ln ln = ln = που σημαίνει ότι η f είναι αντιστρέψιμη στο R. y= ln ln ως πρός. Για να βρούμε τον τύπο της αντίστροφης λύνουμε την εξίσωση y y y e Είναι y= ln( ln) e = ln = e και εφόσον > έχουμε y e e 0 y e > e > e e > 0, που ισχύει για κάθε y πραγματικό. Επομένως ο τύπος της αντίστροφης είναι y e f y = e µε y R. Επειδή ο συμβολισμός ανεξάρτητης μεταβλητής δεν έχει σημασία και επειδή συνηθίζεται η ανεξάρτητη μεταβλητή να συμβολίζεται με, γράφουμε τον τύπο της f - με μεταβλητή το : e f = e με R. οπότε Άσκηση 8 Να βρείτε τις αντίστροφες συναρτήσεις των συναρτήσεων με τύπους : α. f = +, < 0 και β. α. Είναι g() = + < 0 f = f + = + = = οπότε η f είναι - και επομένως αντιστρέφεται. Για να βρούμε τον τύπο της αντίστροφης λύνουμε την εξίσωση y = + ως πρός. Έχουμε y= +, < 0 = y, < 0, y Επομένως ο τύπος της αντίστροφης είναι: f = µε β. Η g είναι -στο R αφού: g = g + = + = = = Άρα η g αντιστρέφεται και για τον τύπο της αντίστροφής της έχουμε: = + = = y y y, y y, y <

11 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 67., Επομένως g =, < Ασκηση 9 α. Δίνεται συνάρτηση f:r R με σύνολο τιμών το R, η οποία είναι γνησίως αύξουσα. Να αποδείξετε ότι οι εξισώσεις f = f () και f = () είναι ισοδύναμες. 4 β. Να βρείτε την αντίστροφη της συνάρτησης f = και στη συνέχεια τα κοινά σημεία των γραφικών παραστάσεων των συναρτήσεων f και f. α. Δύο εξισώσεις λέγονται ισοδύναμες όταν έχουν τις ίδιες ακριβώς λύσεις. Επειδή η f είναι γνησίως αύξουσα, είναι - και επομένως αντιστρέφεται. - Έστω ότι 0 R είναι λύση της (). Τότε f 0 = f ( 0), οπότε f( f( 0) ) = f( f ( 0) ) f( f( 0) ) = 0 () Αν f( 0) > 0 τότε f( f( 0) ) > f( 0) αφού η f είναι γνησίως αύξουσα και επομένως f( f( 0 )) > 0, που είναι άτοπο λόγω της (). Αν f( 0) < 0 τότε f( f( 0) ) < f( 0) αφού η f είναι γνησίως αύξουσα και επομένως f( f( 0 )) < 0, που είναι άτοπο λόγω της (). Άρα f( 0) = 0, οπότε ο 0 είναι λύση της (). - Έστω ότι 0 R είναι λύση της (). Τότε f( 0) = 0 () οπότε f ( f( 0) ) = f ( 0) 0 = f ( 0) (4). Από () και (4) έχουμε ότι f( ) 0 = f ( 0) δηλαδή ο 0 είναι λύση της (). Άρα οι (), () είναι ισοδύναμες. β. Af = R Για, Rμε < έχουμε: 4 4 < 4 < 4 4 < 4 < f < f. Άρα η f είναι γνησίως αύξουσα στο R και επομένως - στο R οπότε αντιστρέφεται. Έχουμε 4 y + y + y = = =, 4 4 y + y ή =, 4 y <

12 68. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση +, οπότε 4 f =. +, < 4 Για να βρούμε τα κοινά σημεία των γραφικών των f και f = f. Σύμφωνα με το α ερώτημα είναι: f πρέπει να λύσουμε την εξίσωση f = f f = 4 = 0 = ή =. Επομένως τα κοινά σημεία των C,C f f είναι τα ( () A,f ), B,f δηλαδή τα A, και B,. Παρατήρηση Οι εξισώσεις f = f () και f = () είναι ισοδύναμες μόνο όταν η f είναι γνησίως αύξουσα. Για παράδειγμα, της συνάρτησης f =, η οποία είναι γνησίως φθίνουσα σε καθένα από τα (,0) και ( 0, + ), η αντίστροφη είναι f = και η f = f έχει λύση για κάθε * R, ενώ η f = = = = ή =. Επομένως δεν είναι ισοδύναμες οι () και (). Ασκηση 0 Το διπλανό σχήμα παριστάνει μια συνάρτηση f η οποία είναι - στο [-,]. Nα προσδιορίσετε την τιμή f - ( 0 ). f 0 = f f = Επειδή f ( - ) = 0 έχουμε ( ) Ασκηση Για τη συνάρτηση f : R R ισχύει η ιδιότητα f f f( ) Να δείξετε, ότι η συνάρτηση f δεν αντιστρέφεται. Η σχέση () για = 0 γίνεται: f ( 0) f( 0) f Προσθέτουμε τις () και () κατά μέλη και έχουμε : για κάθε R (). ( ) και για = γίνεται: f () f() f( 0) ( )

13 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση ( ) = f 0 f f 0 f f 0 f f 0 f 0 f 0 f 0 f 0 f. Άρα η f δεν είναι - και συνεπώς δεν αντιστρέφεται. Ε. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ. Έστω η συνάρτηση f με f = Nα εξετασθεί ως προς τη μονοτονία. (Απ.: Η f γνησίως φθίνουσα στο (,] και γνησίως αύξουσα στο [,+ ) ). Ποια απο τις παρακάτω συναρτήσεις δεν είναι γνησίως μονότονη. Να αποδειχθεί, ότι η συνάρτηση f = (Απ.: Η τρίτη) έχει μέγιστο το και ελάχιστο το (Υπ.: Να βρείτε το σύνολο τιμών της f.) 4. Να εξετασθεί ως προς τη μονοτονία και τα ακρότατα η συνάρτηση f με f = +, (Απ.: Είναι f < =, οπότε είναι σταθερή στο (,) και γνησίως αύξουσα στο [, + ). Για κάθε (,] παρουσιάζει ελάχιστο το ) 5. Να εξετασθεί ως προς τη μονοτονία και τα ακρότατα η συνάρτηση f με f = log( + + ) (Υπ.-Απ.: Df = R Για την μονοτονία να διακρίνετε περιπτώσεις, αν < < 0 και αν 0 <. Η f είναι γνησίως φθίνουσα στο (,0) και γνησίως αύξουσα στο [ 0,+ ) Για τα ακρότατα,

14 70. Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση για κάθε R, 0... και κατασκευαστικά, βρείτε το σύνολο τιμών της. Για = 0 παρουσιάζει ελάχιστο το f( 0) = og ) 6. Δίνεται η συνάρτηση f με τύπο f =, αν., αν > i. Να αποδείξετε ότι η f είναι γνησίως αύξουσα. ii. Να βρείτε την αντίστροφη της f. (Υπ.: Διακρίνετε περίπτωσεις: Αν <, αν < < και αν < ) 7. Nα αποδειχθεί, ότι: i. Αν f,g είναι γνησίως αύξουσες συναρτήσεις σε διάστημα Δ τότε και η συνάρτηση f + g είναι γνησίως αύξουσα στο Δ. ii. Αν f,g είναι γνησίως φθίνουσες συναρτήσεις σε διάστημα Δ τότε και η συνάρτηση f + g είναι γνησίως φθίνουσα στο Δ. (Υπ.: Αξιοποιείστε τους ορισμούς της μονοτονίας) 8. i. Να αποδειχθεί, ότι, αν οι συναρτήσεις f,g έχουν το ίδιο είδος μονοτονίας, τότε η συνάρτηση fog (αν ορίζεται), είναι γνησίως αύξουσα. ii. Να αποδειχθεί, ότι, αν οι συναρτήσεις f,g είναι διαφορετικού είδους μονοτονίας, τότε η συνάρτηση fog (αν ορίζεται), είναι γνησίως φθίνουσα. (Υπ.:Ομοίως με την 7) e 9. Δίνονται οι συναρτήσεις f = και g() = - ln. Να προσδιοριστεί η συνάρτηση f - og. + e (Απ.: Af = R, A g = 0, + f = n, ( 0,), A (,e n = ) με ( f og) = n ) f og n 0. Έστω η συνάρτηση f : R R η οποία είναι γνησίως αύξουσα στο R και για την οποία ισχύει f (f ())= για κάθε R. Nα αποδειχθεί, ότι : f ()=. (Απ.:Έστω, ότι υπάρχει 0 R έτσι ώστε f( 0) > 0 (). Επειδή η f έχουμε f( f( 0) ) > f( 0) (). Από () και () έχουμε f( f( 0) ) > 0, που είναι άτοπο λόγω υπόθεσης.ανάλογα αν υπάρχει R : f( ) < καταλήγουμε σε άτοπο. Άρα f =, για κάθε R) Η διπλανή γραφική παράσταση παριστάνει την - συνάρτηση f. Ποιο είναι το ολικό μέγιστο της συνάρτησης f - ; (Υπ.:Θυμηθείτε ποιο είναι το σύνολο τιμών της f. Το μέγιστο είναι το ) - - y O -

15 Μονοτονία - Ακρότατα - - Αντίστροφη Συνάρτηση 7. f = ln, g = + α. Να προσδιορίσετε τις συναρτήσεις f - και g -.. Δίνονται οι συναρτήσεις β. Να προσδιορίσετε τις συναρτήσεις f g και g f (Απ.: A f, = +, [ ) e Ag =, +, α. f =, R, g ( ) + = +, [, + ) ( ) e β. ( f og ) e =, [, + ) ( g of ) = +, [ n, + ) ) +. Θεωρούμε συνάρτηση f τέτοια ώστε ( ) + f f = +, για κάθε R Να αποδείξετε ότι : α. f ( ) =, β. Η συνάρτηση g f = + δεν είναι -. (Απ.: α. Από τη δοσμένη σχέση για = έχουμε: f( f() ) = και για = f() έχουμε: ( ( ()) f f f ) = f () f() + οπότε () f = f() f() +... f() =. β. Βρείτε το g( 0 ) και το g) () E. ΤΟ ΞΕΧΩΡΙΣΤΟ ΘΕΜΑ. Για τη συνάρτηση f ισχύει η σχέση : Nα δείξετε ότι: f y =f +f y για κάθε,y R () i. f () = 0 ii. f =-f iii. Mε την παραδοχή, ότι η μονάδα είναι η μοναδική τιμή του με f() = 0, να δείξετε ότι αν s,t είναι διακεκριμένοι θετικοί, τότε f(s) f(t).. Δίνεται η συνάρτηση f :R Rμε την ιδιότητα ( fof)( ) = -+ για κάθε R. Να δείξετε ότι: i. f() = ii. η συνάρτηση g:r R με g( ) = - f( ) + δεν αντιστρέφεται.. Δίνονται οι συναρτήσεις f =, R και g( ) =, R i. Nα δείξετε ότι η g() είναι και να βρείτε την αντιστροφή της. - ii. Να βρεθεί η συνάρτηση h( ) =f og ( ).

16

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 9η Κατηγορία: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Για να βρούμε τη μονοτονία μιας συνάρτησης ακολουθούμε την εξής διαδικασία: Θεωρούμε, Δ, όπου Δ διάστημα του πεδίου ορισμού

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΗ 1η Να βρείτε το πεδίο ορισμού των συναρτήσεων: 5 α) f β) f 1 1 9 γ) f δ) f log 1 4 ημ ημ συν ε) f α) Για να ορίζεται η f() πρέπει και αρκεί + (1) Έχουμε: (1).(

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Τύποι - Βασικές έννοιες Όρια - Συνέχεια 37. ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Με τη βοήθεια του παρακάτω θεωρήματος διευκολύνεται ο υπολογισμός ορίων (άλγεβρα ορίων): Αν τα όρια lim f () και lim g()

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2 ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο.3 Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Συνάρτηση Όταν

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Κατηγορία η Εύρεση μονοτονίας Τρόπος αντιμετώπισης:. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f( ) σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να μπορεί να βρίσκει απο τη γραφική παράσταση μιας συνάρτησης το πεδίο ορισμού της το σύνολο τιμών της την τιμή της σε ένα σημείο..

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

f(x) = 2x+ 3 / Α f Α.

f(x) = 2x+ 3 / Α f Α. ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»

Διαβάστε περισσότερα

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ Γ. Λυκείου Ανάλυση Κεφ. ο Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΛΥΣΗ ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

x 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι)

x 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι) Α.Πεδίο ορισμού. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) f() = v) f() 4 6 6 5 log 4 ii) f() = iii) f() = log ( ) iv) f() = log ( log 4(- )) vi) f() = 4 vii) f() 5 4 viii) f() ημ.

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

5.1.1 Η θεωρία και τι προσέχουμε

5.1.1 Η θεωρία και τι προσέχουμε Κεφάλαιο 5 Συνέχεια συνάρτησης σε διάστημα Συνέπειες του Θεωρήματος Bolzano 5.. Η θεωρία και τι προσέχουμε Τα κύρια χαρακτηριστικά μιας συνεχούς συνάρτησης f ορισμένης σε ένα διάστημα Δ, είναι: i. Η γραφική

Διαβάστε περισσότερα

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x . Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΜΑΘΗΜΑ 5. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση - Αντίστροφη συνάρτηση Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση :Α R λέγεται συνάρτηση, όταν για οποιαδήποτε, Α µε ισχύει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε ΕΠΑΝΑΛΗΠΤΙΚΑ ΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ Δίνεται η συνεχής συνάρτηση f : IR IR τέτοια ώστε f ( ) 1 για κάθε IR (1) και η γραφική της παράσταση διέρχεται από το σημείο i Να βρείτε τα κ και λ

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 6//26 ΕΩΣ 3//26 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Κυριακή 3 Οκτωβρίου 26 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α v v Α. Έστω το πολυώνυμο

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ 1-1 ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ 1-1 ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Να

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ. Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

f( x 1, x ( ) ( ) f x > f x. ( ) ( )

f( x 1, x ( ) ( ) f x > f x. ( ) ( ) MONOTONIA ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ I MONOTONIA ΣΥΝΑΡΤΗΣΕΩΝ ΘΕΩΡΙΑ Στο διπλανό σχήµα δίνεται η γραφική παράσταση µιας συνάρτησης f στο α,β Παρατηρούµε ότι διάστηµα [ ] καθώς αυξάνουν οι τιµές του

Διαβάστε περισσότερα

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ ο Α. Έστω μια συνάρτηση f: Α R η οποία είναι. Να γράψετε τον ορισμό της αντίστροφης συνάρτησης

Διαβάστε περισσότερα

Μελέτη και γραφική παράσταση συνάρτησης

Μελέτη και γραφική παράσταση συνάρτησης 7 Μελέτη και γραφική παράσταση συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης Αυτή συνίσταται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά) 9 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ( η σειρά) ΘΕΜΑ ο Α. Έστω η συνάρτηση f με f() ημ. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο και ισχύει f () συν Β. Πότε μια συνάρτηση f λέμε

Διαβάστε περισσότερα

5.3. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

5.3. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ 5.3. Αντίστροφη συνάρτηση Έστω μια συνάρτηση f : A.Αν υποθέσουμε ότι αυτή είναι - τότε για κάθε στοιχείο y του συνόλου τιμών f (A) της f υπάρχει μοναδικό στοιχείο του πεδίου ορισμού της Α για το οποίο

Διαβάστε περισσότερα

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ Κατηγορία η Σταθερή συνάρτηση Τρόπος αντιμετώπισης: Για να αποδείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ πρέπει: η συνάρτηση να είναι συνεχής στο Δ '( ) 0 για κάθε εσωτερικό σημείο του

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2)

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2) Να μελετηθεί η συνάρτηση Β Λυκείου - Ασκήσεις Συναρτήσεις x+ 5 f(x = ως προς τη μονοτονία. x Το πεδίο ορισμού της f(x είναι το {}. Διακρίνουμε δύο περιπτώσεις: Έστω x1 < x

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις wwwzitigr Πρόλογος Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις ομάδες προσανατολισμού: ç Θετικών σπουδών ç Οικονομίας και Πληροφορικής Αναπτύσσονται διεξοδικά τα κεφάλαια:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

x A. Είναι δηλαδή: ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ

x A. Είναι δηλαδή: ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ Σελίδα από 4 ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ Βαγγέλης Μουρούκος Μπάμπης Στεργίου ΥΠΟ ΔΙΑΜΟΡΦΩΣΗ-ΔΕΝ ΕΧΟΥΝ ΓΙΝΕΙ ΔΙΟΡΘΩΣΕΙΣ Περίληψη Στο άρθρο αυτό επιχειρούμε να εντοπίσουμε, να καταγράψουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ 1. Να βρείτε τα πεδία ορισµού των συναρτήσεων µε τύπο: i) ii) iii) iv) v) 2. Δίνεται η συνάρτηση µε:. Να βρείτε µια περίοδο της. 3. Δίνεται η συνάρτηση µε:. Να αποδείξετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και Ασκήσεις στη συνέχεια συναρτήσεων Άσκηση η Να βρεθούν τα ολικά ακρότατα των συναρτήσεων ) x, 0, ) x x a x x x, x x x x Άσκηση η Αν : a, συνεχής στο, τέτοια ώστε x x και x x Να αποδείξετε ότι η συνάρτηση

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ-ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Για τις Πανελλαδικές Εξετάσεις 07 ΚΕΦΑΛΑΙΟ ο : ΣΥΝΑΡΤΗΣΕΙΣ

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016 Λύσεις θεμάτων προσομοίωσης -Πανελλαδικές Εξετάσεις 06 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 06 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η Εκθετική συνάρτηση Αν α θετικός πραγματικός αριθμός, σε κάθε αντιστοιχεί η δύναμη α. Έτσι ορίζεται η συνάρτηση : f : με f α, 0 α η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α, τότε έχουμε τη σταθερή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Διαβάστε περισσότερα

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση

Διαβάστε περισσότερα

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ Θέματα Πανελλαδικών 000-05 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω η συνάρτηση Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Για να βρούμε το πεδίο ορισμού μιας συνάρτησης, αρκεί να βρούμε τις τιμές του χ για τις οποίες ορίζονται οι πράξεις που αναγράφονται στο τύπο

Διαβάστε περισσότερα

Θέματα Πανελλαδικών στις Παραγώγους. Εφαπτομένη

Θέματα Πανελλαδικών στις Παραγώγους. Εφαπτομένη Θέματα Πανελλαδικών 000-04 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου Να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α .5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση. . Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

Το (ολικό) μέγιστο και το (ολικό) ελάχιστο μιας συνάρτησης f λέγονται ολικά ακρότατα της f.

Το (ολικό) μέγιστο και το (ολικό) ελάχιστο μιας συνάρτησης f λέγονται ολικά ακρότατα της f. 1 Ερώτηση: Πότε λέμε ότι μία συνάρτηση f είναι γνησίως αύξουσα, γνησίως φθίνουσα, αύξουσα, φθίνουσα, γνησίως μονότονη Mία συνάρτηση f λέγεται γνησίως αύξουσα στο διάστημα Δ του πεδίου ορισμού της, όταν

Διαβάστε περισσότερα

Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ

Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ 7 007 ΑΤΜΑΤΖΙΔΗΣ ΑΘΑΝΑΣΙΟΣ ΚΑΘΗΓΗΤΗΣ Μ.Ε. Όλα ξεκίνησαν όταν μαθητές της Γ Λυκείου Κατεύθυνσης με ρώτησαν με πόσους τρόπους μπορούν

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 73 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ρισμός της συνέχειας Έστω οι συναρτήσεις g h παρακάτω σχήματα των οποίων οι γραφικές παραστάσεις δίνονται στα C h 6 l ( C l g( C g l l (a Παρατηρούμε ότι:

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

f(x) x 3x 2, όπου R, y 2x 2

f(x) x 3x 2, όπου R, y 2x 2 Δίνεται η συνάρτηση με τύπο,. Μαθηματικά κατεύθυνσης f(), όπου R, α) Να αποδειχθεί ότι η f παρουσιάζει ένα τοπικό μέγιστο, ένα τοπικό ελάχιστο και ένα σημείο καμπής. β) Να αποδειχθεί ότι η εξίσωση f()

Διαβάστε περισσότερα

Να εξετασθεί αν είναι 1-1 οι συναρτήσεις α) f(x)=4x-1 β) g(x)= γ.

Να εξετασθεί αν είναι 1-1 οι συναρτήσεις α) f(x)=4x-1 β) g(x)= γ. Ορισμός Μία συνάρτηση f : Α-->R είναι ένα προς ένα (1-1) όταν Για κάθε A με τοτε ή ισοδύναμα για κάθε A με τότε Ο παραπάνω ορισμός μας λέει ότι διαφορετικα x έχουν διαφορετικές εικόνες (διαφορετικα y)

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ (ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ, ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ) Κώστα Βακαλόπουλου Στο ο κεφάλαιο της Άλγεβρας της Α Λυκείου γίνεται η μελέτη των

Διαβάστε περισσότερα

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων στο R Πεδίο ορισμού συνάρτησης είναι η συναλήθευση των περιορισμών της συνάρτησης στο R, αν δεν έχει περιορισμούς λέμε ότι έχει πεδίο ορισμού το R. Όταν έχω πρέπει ν Α, Α Α Α Β Β ln Α, log Α Α> ln Β logα

Διαβάστε περισσότερα

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 6 Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση 1 Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f στο x = x o? Δεν έχει νόημα Ερώτηση 2 Αν μία συνάρτηση f είναι συνεχής στο

Διαβάστε περισσότερα

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ Δίνεται η εξίσωση w w + i 0 () και το πολυώνυμο 3 P ( ) + a + β -,, R α) Να λύσετε την εξίσωση () β)αν ο αριθμός w που βρήκατε στο ερώτημα α) είναι ρίζα της εξίσωσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

Διαβάστε περισσότερα

Α. ΘΕΩΡΙΑ Εστω μια συνάρτηση f και x. του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x., όταν

Α. ΘΕΩΡΙΑ Εστω μια συνάρτηση f και x. του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x., όταν Α ΘΕΩΡΙΑ Εστω μια συνάρτηση και ένα σημείο του πεδίου ορισμού της Θα λέμε ότι η είναι συνεχής στο όταν Για παράδειγμα η συνάρτηση είναι συνεχής στο αφού Σύμφωνα με τον παραπάνω ορισμό μια συνάρτηση δεν

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Νίκος Ζανταρίδης (Φροντιστήριο Πυραμίδα) ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ένα γενικό θέμα Ανάλυσης Χρήσιμες Προτάσεις Ασκήσεις για λύση Μικρό βοήθημα για τον υποψήφιο μαθητή της Γ Λυκείου λίγο πριν τις εξετάσεις Απρίλιος

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ .7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt ΑΣΚΗΣΗ Δίνεται η συνάρτηση f με τύπο: f (x)= ημ x, x (0,π). α) Να μελετήσετε την f ως προς τη μονοτονία και τα κοίλα. β) Να βρείτε της ασύμπτωτες της γραφικής παράστασης της f. γ) Να βρείτε το σύνολο τιμών

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0 6 Ασύμπτωτες Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορίζουμε μια ευθεία ( ε ) ως ασύμπτωτη της γραφικής παράστασης της αν η απόσταση ενός μεταβλητού σημείου Ρ της γραφικής παράστασης από την ευθεία ( ε ) γίνεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΔΙΑΔΙΚΤΥΑΚΟ

Διαβάστε περισσότερα

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013 ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 3 Εισαγωγή Μέσα Μαΐου και ο πυρετός των Πανελλαδικών όλο και ανεβαίνει! Οι μαθητές ξεκοκαλίζουν τα βιβλία για να ανακαλύψουν δύσκολα θέματα διαφορετικά από αυτά που κυκλοφορούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 16 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 16 ΕΠΙΜΕΛΕΙΑ: ASK4MATH WWW.ASKISIOLOGIO.GR ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ 16 Εξεταζόμενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ)

ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ) ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ) A. Εύρεση Πεδίου Ορισμού Συναρτήσεων-Άρτια και περιττή Συνάρτηση Η ανάλυση των πεδίων ορισμού για τις διαφορετικές πραγματικές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα