ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Α
|
|
- Αἴολος Βαρουξής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1
2 2 Α. Πότε ένας φυσικός αριθμός λέγεται πρώτος και πότε σύνθετος; Β. Πότε ένας φυσικός αριθμός διαιρείται με το 2; Γ. Πότε ένας φυσικός αριθμός διαιρείται με το 3; Α. Να αναφέρετε ποια είναι τα είδη των τριγώνων, αν τα εξετάσουμε ως προς τις γωνίες τους; Β. Να γράψετε πώς ορίζεται κάθε ένα από τα προηγούμενα είδη τριγώνων. Γ. Τι λέγεται ύψος ενός τριγώνου; Να υπολογίσετε την παράσταση Α = 2x 2 5x + 24y, όπου: x = 3 ( ) : 4 8 (2 4 13) και y = : Να γράψετε κύκλο (Ο, 3cm), να σχεδιάσετε μία διάμετρο ΒΓ και μία ακτίνα ΟΑ κάθετη στη διάμετρο ΒΓ. Να φέρετε τα τμήματα ΑΒ και ΑΓ. Α. Πώς λέγονται στον κύκλο τα τμήματα ΑΒ και ΑΓ και γιατί; Β. Να δικαιολογήσετε ότι τα τμήματα ΑΒ και ΑΓ είναι ίσα. Γ. Αν γωνία ΑΒΓ = 45, να υπολογίσετε τη γωνία ΑΓΒ, δικαιολογώντας την απάντησή σας. Στο διπλανό σχήμα ισχύει ότι ε 1 ε 2. Αν γωνία α = 35 και γωνία β = 120, ε 1 β = 120 να υπολογίσετε τις γωνίες ω, φ και θ. Σε κάθε περίπτωση να δικαιολογήσετε την απάντησή σας. ε 2 α = 35 ω φ θ ε
3 3 Α. Ποιο τετράπλευρο λέγεται τραπέζιο; Β. Τι λέγεται ύψος του τραπεζίου; Γ. Να σχεδιάσετε ένα ισοσκελές τραπέζιο και το ύψος του. Α. Ποια κλάσματα λέγονται ομώνυμα; Β. Πώς προσθέτω δύο ή περισσότερα ομώνυμα κλάσματα; Γ. Από δύο κλάσματα με τον ίδιο αριθμητή ποιο είναι το μεγαλύτερο; Να αντιστοιχίσετε κάθε πράξη της πρώτης στήλης με το αποτέλεσμά της, στη δεύτερη στήλη: Α. Β. Γ. Δ. Στήλη Α : 10 5 Στήλη Β α. 5 9 β. 1 4 γ. 4 3 δ. 2 3 ε στ. 7 8 Α. Να υπολογίσετε την τιμή των παραστάσεων: Α = ( 2 ) ( 5 ) + 3 ( 2) + (5) 0 + ( 1) 3 και Β = (2) 2 Β. Να βρεθεί η τιμή της παράστασης: Γ = (Α : Β) + (Α + Β) Στο διπλανό σχήμα οι ευθείες ε 1 και ε 2 είναι παράλληλες. Α. Να υπολογίσετε τις γωνίες α, β, γ δικαιολογώντας τις απαντήσεις σας. Β. Αν στο τρίγωνο ΑΒΓ η γωνία x είναι διπλάσια από τη γωνία y, να υ- πολογίσετε πόσες μοίρες είναι η κάθε μία από τις γωνίες φ, x, y. ε 1 ε 2 B A ω = 30 y α β δ 1 φ x Γ γ
4 4 Α. Τι καλείται ευκλείδεια διαίρεση; Πότε η ευκλείδεια διαίρεση λέγεται τέλεια; Β. Να συμπληρώσετε τις παρακάτω προτάσεις: α. Αν Δ = δ τότε π =. β. Αν δ = 1 τότε π =.. γ. Αν Δ = 0 τότε π =. Α. Να αναφέρετε τα είδη των τριγώνων ως προς τις πλευρές και ως προς τις γωνίες τους. Β. Τι καλείται διάμεσος και τι ύψος ενός τριγώνου; Γ. Να χαρακτηρίσετε με Σ(σωστό) ή Λ (λάθος) τις παρακάτω προτάσεις: α. Το άθροισμα των γωνιών ενός τριγώνου είναι μικρότερο από 180. β. Οι γωνίες που πρόσκεινται στη βάση ενός ισοσκελούς τριγώνου είναι οξείες. γ. Κάθε τρίγωνο έχει οπωσδήποτε δύο οξείες γωνίες. δ. Κάθε αμβλυγώνιο τρίγωνο έχει δύο οξείες γωνίες. Α. Να υπολογίσετε τις παραστάσεις: α. Α = β. Β = [( 1)2 2 3 ( 2 1)] Β. Να λυθεί η εξίσωση: x + Α = Β. Τηλεόραση πουλήθηκε με έκπτωση 20 % και ο αγοραστής ωφελήθηκε 250 ευρώ. Ποια ήταν η αξία της τηλεόρασης πριν την έκπτωση; Σε ισοσκελές τρίγωνο ΑΒΓ η γωνία Α είναι 20. Προεκτείνουμε τη βάση ΒΓ A και προς τις δύο μεριές και παίρνουμε τμήματα ΒΔ =ΑΒ και ΓΕ = ΑΓ. Α. Να βρεθούν οι γωνίες Β και Γ του τριγώνου ΑΒΓ. Β. Να υπολογίσετε τις γωνίες Δ και Ε. Γ. Να υπολογίσετε τη γωνία Α του τριγώνου ΑΔΕ. Δ B Γ E
5 5 Α. Να γραφούν τα είδη τριγώνων ως προς τις γωνίες και ως προς τις πλευρές τους. (ορισμοί σχήματα) Β. Γιατί ένα τρίγωνο δεν μπορεί να έχει δύο αμβλείες γωνίες; Γ. Τι είναι ύψος και τι διάμεσος τριγώνου (ορισμοί σχήματα) Α. Γράψτε τις ιδιότητες του πολλαπλασιασμού στους ρητούς αριθμούς. Β. Να συμπληρωθούν οι ισότητες: α ν : α μ =., ν α β =., (αν ) μ =.., α 0 =.. α ν =., 1 ν =.., α β ν =.. Γ. Πότε δύο αριθμοί λέγονται αντίθετοι και πότε αντίστροφοι; Στο παρακάτω σχήμα είναι ε 1 // ε 2. Το τρίγωνο ΑΒΓ είναι ισοσκελές (ΑΒ = ΑΓ). Το τρίγωνο ΑΓΔ είναι ορθογώνιο στο Γ και Α = 40. Να υπολογιστούν οι γωνίες θ, φ, ω. ε 1 A ω Δ 40 θ ε 2 B Γ φ Να βρεθεί η τιμή της παράστασης: 3 ( ) ,1 2 (8:2 2 ) : 10 3 Παντοπώλης έχει ένα βαρέλι με 120 kg τυρί. Την πρώτη μέρα πουλάει το 1 του περιεχομέ- 4 νου του και τη δεύτερη μέρα τα 2 του αρχικού περιεχομένου του. Να βρεθεί πόσα κιλά τυρί 5 έμειναν στο βαρέλι.
6 6 ΘΕΜΑΤΑ Α. Να γράψετε την ισότητα της Ευκλείδειας διαίρεσης και να εξηγήσετε τα σύμβολα που χρησιμοποιούνται. Β. Αν διαιρέσουμε έναν φυσικό αριθμό με το 7, ποια μπορεί να είναι τα υπόλοιπα της διαίρεσης; Σε ποια περίπτωση η διαίρεση είναι τέλεια; Γ. Ποιες από τις παρακάτω ισότητες παριστάνουν Ευκλείδειες διαιρέσεις; 216 = και 446 = Να αιτιολογήσετε τις απαντήσεις σας. Α. Να σχεδιάσετε δύο κατακορυφήν γωνίες, να τις ονομάσετε και να γράψετε τη σχέση που τις συνδέει. Β. Ποιες γωνίες λέγονται παραπληρωματικές; Γ. Σχεδιάστε δύο εφεξής και παραπληρωματικές γωνίες. Να υπολογίσετε τις παραστάσεις: Α = : και 3 2 Β = ( : ) ( 12 8) 2 και να λύσετε την εξίσωση Α + x = B. Σε μια αθλητική συνάντηση πήραν μέρος 450 αθλητές. Από αυτούς το 1 ήταν άνδρες, τα 5 3 γυναίκες και τα υπόλοιπα παιδιά. 10 Α. Πόσοι ήταν οι άνδρες, πόσες οι γυναίκες και πόσα τα παιδιά; Β. Τι ποσοστό % είναι οι άνδρες, οι γυναίκες και τα παιδιά; Στο σχήμα είναι ε 1 // ε 2. Να υπολογίσετε τις γωνίες α, β, γ, δ και ε. Να δικαιολογήσετε τις απαντήσεις σας. ε 1 ε 2 ε 3 ε δ A φ = 98 α Γ γ β B ω =38 ε 4
7 7 Α. Πώς συγκρίνουμε δύο κλάσματα; Β. Πώς προσθέτουμε δύο κλάσματα; Γ. Πώς πολλαπλασιάζουμε και πώς διαιρούμε δύο κλάσματα; Α. Τι λέγεται μεσοκάθετος ευθυγράμμου τμήματος; Β. Να σχεδιάσετε τη μεσοκάθετο ενός ευθύγραμμου τμήματος ΑΒ. Γ. Ποια ιδιότητα έχει κάθε σημείο της μεσοκαθέτου; Ο Γιώργος αγόρασε ένα Laptop με συντελεστή Φ. Π. Α. 21% και έδωσε συνολικά 1512,50. Να υπολογιστούν: Α. Η αξία του Laptop χωρίς Φ. Π. Α. ( ) Β. Ο Φ. Π. Α. που πλήρωσε ( ) Να υπολογιστούν οι παραστάσεις: Α = ( 2 ) 3 + ( ) 2 : ( 3 ) 8 7 Β = + ( 12) και 3 2 Γ = 2 Α Β 2 A ω Στο διπλανό σχήμα δίνεται: ε 1 // ε 2, ω = 38 και φ = 102. β γ φ ε Να υπολογιστούν οι γωνίες α, β, γ 2 B Γ και θ. ε 1 α θ
8 8 Α. Πότε δύο ρητοί αριθμοί λέγονται ομόσημοι και πότε ετερόσημοι; Β. Να γράψετε πώς προσθέτουμε δύο ομόσημους και πώς δύο ετερόσημους ρητούς αριθμούς. Γ. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες, γράφοντας στην κόλλα σας τον αριθμό της πρότασης και δίπλα το αντίστοιχο σύμβολο. α. Αντίθετοι ονομάζονται δύο αριθμοί που είναι ετερόσημοι. β. Οι αντίθετοι αριθμοί έχουν άθροισμα μηδέν. γ. Ο μεγαλύτερος από δύο αρνητικούς αριθμούς είναι εκείνος που έχει τη μεγαλύτερη απόλυτη τιμή. δ. Οι αντίθετοι αριθμοί έχουν πηλίκο 1. ε. Το γινόμενο δύο αρνητικών αριθμών είναι αρνητικός αριθμός. Α. Να γράψετε τα είδη των τριγώνων με βάση τις γωνίες τους. Να κάνετε ένα σχήμα σε κάθε περίπτωση. Β. Τι ονομάζεται διάμεσος ενός τριγώνου; Γ. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες, γράφοντας στην κόλλα σας τον αριθμό της πρότασης και δίπλα το αντίστοιχο σύμβολο. α. Το άθροισμα των γωνιών κάθε τριγώνου είναι 90. β. Το ισόπλευρο τρίγωνο είναι πάντα οξυγώνιο. γ. Οι γωνίες ενός τριγώνου είναι παραπληρωματικές. δ. Ισόπλευρο λέγεται ένα τρίγωνο όταν έχει δύο ίσες πλευρές. ε. Οι οξείες γωνίες ενός ορθογωνίου τριγώνου είναι συμπληρωματικές. Α. Να υπολογίσετε την τιμή της παράστασης: Α = ( ) 10 + ( ) 3 ( ) : Β. Να υπολογίσετε την τιμή της παράστασης: Β = Γ. Να υπολογίσετε την τιμή της παράστασης: Γ = Α Β. Τι συμπέρασμα προκύπτει για τους αριθμούς Α, Β; ε 4 ε 3 Στο παρακάτω σχήμα είναι ε 1 //ε 2. Να υπολογίσετε τις γωνίες φ, θ, x, ω. Να αιτιολογήσετε πλήρως κάθε ισχυρισμό σας. Σε ένα Γυμνάσιο υπάρχουν συνολικά 300 μαθητές. Αν τα 3 των μαθητών αυτών είναι αγό- 5 ρια και το 1 των κοριτσιών ασχολείται με το μπάσκετ. Να βρείτε: 4 Α. Πόσα είναι τα αγόρια και πόσα τα κορίτσια του σχολείου; Β. Πόσα κορίτσια του σχολείου ασχολούνται με το μπάσκετ; Γ. Ποιο μέρος του συνόλου των μαθητών του σχολείου αντιπροσωπεύουν τα κορίτσια που ασχολούνται με το μπάσκετ; 144 φ ε ε 2 B ω A θ x Γ
9 9 Α. Πότε δύο ποσά λέγονται ανάλογα; Β. Να μεταφέρετε στην κόλλα σας τις παρακάτω προτάσεις ορθά συμπληρωμένες: α. Όταν δύο ποσά x και y είναι ανάλογα, τότε οι αντίστοιχες τιμές τους δίνουν πάντα και συνδέονται με τη σχέση. β. Όταν δύο ποσά x και y είναι αντιστρόφως ανάλογα, τότε των αντίστοιχων τιμών τους παραμένει σταθερό και συνδέονται με τη σχέση.. γ. Που βρίσκονται τα σημεία που αντιστοιχούν στα ζεύγη τιμών (x,y) δύο αναλόγων ποσών; δ. Που βρίσκονται τα σημεία που αντιστοιχούν στα ζεύγη τιμών (x, y) δύο αντιστρόφως αναλόγων ποσών; Α. Ποιες γωνίες ονομάζονται εφεξής; να σχεδιάσετε δύο τέτοιες γωνίες. Β. Να μεταφέρετε στην κόλλα σας τις παρακάτω προτάσεις ορθά συμπληρωμένες: α. Δύο γωνίες που έχουν άθροισμα 180 ονομάζονται. β. Δύο γωνίες που έχουν άθροισμα 90 ονομάζονται. γ. Κατακορυφήν γωνίες ονομάζονται δύο γωνίες που έχουν την κορυφή τους.. και τις πλευρές τους. Γ. Να χαρακτηρίσεις τις παρακάτω προτάσεις γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α. Μια γωνία λέγεται αμβλεία όταν είναι μικρότερη από 90 β. Οι πλευρές της ορθής γωνίας είναι κάθετες ημιευθείες γ. Πλήρης γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 360. Μια πλατεία έχει σχήμα ορθογωνίου παραλληλεπιπέδου και το μήκος της είναι 20m. Το πλάτος της είναι ίσο με τα 4 του μήκους της. Τότε: 5 Α. Να αποδείξετε ότι το πλάτος της είναι 16m. B. Να υπολογίσετε το εμβαδόν της. Γ. Πόσες πλάκες σχήματος τετραγώνου με πλευρά 4m θα χρειαστούν, για να στρωθεί η πλατεία; Δίνονται οι αριθμητικές παραστάσεις: 2 Α = ( 2) 2 + ( 2) ( 3) + 2 [( 3) 3 2 : 3] ( 3 1) και Β = Να αποδείξετε ότι: Α. Α = 4 και Β. Β = 2 Γ. Να λύσετε την εξίσωση: x Α = Β (όπου Α και Β είναι οι τιμές των αριθμητικών παραστάσεων που υπολογίσατε στα ερωτήματα α και β). Γ δ Στο διπλανό σχήμα οι ευθείες ε 1 και ε 2 είναι παράλληλες και α = 60 και γ 1 ε η ε ζ = 70. Να δικαιολογήσετε: Α. γιατί η γωνία ζ είναι 50. Β. γιατί η γωνία ε είναι 70. α β γ ε 2 Γ. Να υπολογίσετε τις γωνίες η, δ και β και να A B δικαιολογήσετε τις απαντήσεις σας.
10 10 Α. Πότε ένας φυσικός αριθμός λέγεται πρώτος; Β. Πότε ένας φυσικός αριθμός λέγεται σύνθετος; Γ. Πότε ένας φυσικός αριθμός διαιρείται με το 2 και πότε διαιρείται με το 3; Α. Πότε δύο γωνίες λέγονται παραπληρωματικές; B. Πότε δύο γωνίες λέγονται συμπληρωματικές; Γ. Ποια σχέση έχουν μεταξύ τους δύο κατακορυφήν γωνίες; Σχεδιάστε δύο κατακορυφήν γωνίες. Να βρείτε την τιμή της παράστασης: 12 (2 5 : : 3 2 ) + 3 (16 6) Να βρείτε την τιμή της παράστασης: 8 7 : Στο διπλανό σχήμα η ευθεία ε 1 είναι παράλληλη δ με την ημιευθεία Γx (ε 1 // Γx). Το τρίγωνο ΑΒΓ είναι ισοσκελές (ΑΒ = ΑΓ) και η γωνία ρ = 150. Να βρεθούν: Α. Οι γωνίες φ, ω, y, μ. x ρ = 150 μ ω B A y φ ε G Β. Τι είδους τρίγωνο είναι το ΑΒΓ ως προς τις γωνίες του;
11 11 Α. Πότε δύο ποσά λέγονται ανάλογα; ΘΕΜΑΤΑ Β. Τι συμβαίνει με το λόγο των αντίστοιχων τιμών που παίρνουν δύο ανάλογα ποσά και τι ονομάζουμε συντελεστή αναλογίας; Γ. Με ποια σχέση συνδέονται δύο ανάλογα ποσά x και y; Τι ονομάζουμε μεσοκάθετο ενός ευθυγράμμου τμήματος; Ποιες είναι οι ιδιότητες της μεσοκαθέτου (3 ιδιότητες); Αν α = : 6 8 και β = 2 4 (18,6 : 0,6 3 3 ) 8 0,5 2 να βρεθεί ο x ώστε: α x = β. Ένας έμπορος αγόρασε 150 κιλά ντομάτες προς 1,2 το κιλό. Του χάλασαν το 10% από αυτές. Τις υπόλοιπες τις πούλησε προς 1,8 το κιλό. Να βρεθούν: Α. πόσα κιλά ντομάτες χάλασαν. Β. πόσα χρήματα κέρδισε Γ. το ποσοστό του κέρδους. ε 1 Στο διπλανό σχήμα είναι ε 1 // ε 2 και γ ΑΔ διχοτόμος της γωνίας ΒΑΓ. Να υπολογίσετε τις γωνίες α, β, γ, δ β δ α 150 δικαιολογώντας τις απαντήσεις σας. A B Δ Γ ε 2
12 12 Α. Με ποιους τρόπους προκύπτουν ισοδύναμα (ίσα) κλάσματα; Β. Ποιο κλάσμα λέγεται ανάγωγο; Γ. Ποια κλάσματα λέγονται ομώνυμα και ποια ετερώνυμα; Α. Τι είναι χορδή κύκλου; (Να γίνει και το σχήμα) Β. Τι είναι διάμετρος κύκλου και τι ξέρετε για αυτή; (Να γίνει και το σχήμα) Γ. Τι είναι τόξο του κύκλου; (Να γίνει και το σχήμα) Η τιμή ενός αυτοκινήτου είναι (ευρώ) και πουλήθηκε με έκπτωση 15%. Να βρεθούν: α. Το ποσό της έκπτωσης. β. Πόσα ευρώ πουλήθηκε; Να βρεθεί η τιμή της παράστασης: A= ( 8) (+ 2) ( 3) ( 4) + ( 5):( 5) ( 2010) δ 1 δ 2 ε Στο διπλανό σχήμα δίνονται ότι οι ευθείες ε 1 και ε 2 είναι παράλληλες (ε 1 // ε 2 ). Να βρεθούν οι γωνίες α, β και γ. ε 2 50 α γ β
13 13 Α. Πότε ένας αριθμός διαιρείται με το 2; Β. Πότε ένας φυσικός αριθμός διαιρείται με το 3; Γ. Πότε ένας φυσικός αριθμός διαιρείται με το 2 και το 5 συγχρόνως; Πότε δύο γωνίες ονομάζονται: Α. Εφεξής Β. Κατακορυφήν Γ. Συμπληρωματικές Δ. Παραπληρωματικές (Σε κάθε περίπτωση να κάνετε και σχήμα) Να λύσετε τις εξισώσεις: Α. x + 10 = 8 και Β. x +10 = 1 8 Να βρεθούν τα: Α = Β = 6 2 (8 2 3) και η διαφορά τους Α Β. Στο διπλανό σχήμα είναι: A ω ε 1 // ε 2, Γ = 60 και z B y = 38. x E ε 1 Να υπολογίσετε τις γωνίες φ, x, y, ω χωρίς να χρησιμοποιήσετε μοιρογνωμόνιο. Γ 60 φ Δ 38 ε 2 (Δικαιολογήστε τις απαντήσεις σας). ε 3 ε 4
14 14 Α. Τι λέγεται Ευκλείδεια διαίρεση; Β. Ποιες από τις παρακάτω ισότητες προκύπτουν από Ευκλείδεια διαίρεση 82 = (1) 47 = (2) Γ. Να γράψετε την ισότητα που προκύπτει από την Ε. διαίρεση 3583 : 17 Α. Πότε μια γωνία είναι οξεία, πότε ορθή και πότε αμβλεία; (σχήμα) Β. Πότε δύο γωνίες ονομάζονται εφεξείς; (σχήμα) Γ. Πότε δύο γωνίες είναι συμπληρωματικές; (σχήμα) Ένας έμπορος αγόρασε 60 κιλά βερίκοκα προς 2 το κιλό και 90 κιλά πορτοκάλια προς 0,80 το κιλό. Πούλησε τα βερίκοκα με ζημιά 5% και τα πορτοκάλια με κέρδος 10%. Α. Πόσο πούλησε τα βερίκοκα το κιλό και πόσο τα πορτοκάλια; Β. Κέρδισε ή ζημιώθηκε και πόσο; Να υπολογίσετε τις τιμές των παραστάσεων: Α = ( ) ( ) : Β = 7 7 : Να υπολογίσετε το λόγο Α : Β (να απλοποιήσετε το αποτέλεσμα) A B Άσκηση 3 η Στο διπλανό σχήμα η ε 1 και ε 2 είναι παράλληλες και το τρίγωνο ΟΓΔ είναι ισοσκελές με ΟΓ = ΟΔ. Να υπολογίσετε τις γωνίες φ, x, y και ω. ε 1 ω y x O φ ε 2 Γ Δ ε 3 44 ε 4
15 15 Α. Να συμπληρώσετε τα παρακάτω κενά ώστε να προκύψουν αληθείς προτάσεις: α. Αν δύο μεγέθη είναι αντιστρόφως ανάλογα και το ένα πολλαπλασιάζεται επί έναν αριθμό, το άλλο. με τον.. αριθμό. β. Αν τα ποσά x και y είναι αντιστρόφως ανάλογα τότε το. των αντίστοιχων τιμών τους είναι γ. Η γραμμή που βρίσκονται τα σημεία που παριστάνουν τα ζεύγη τιμών δύο αντιστρόφως αναλόγων ποσών είναι.. και λέγεται Οι προτάσεις συμπληρωμένες να μεταφερθούν στην κόλλα σας. Να αντιστοιχίσετε κάθε γωνία ω της στήλης Α με την ονομασία της από τη στήλη Β. Ο πίνακας με τις απαντήσεις να μεταφερθεί στην κόλλα σας. ΣΤΗΛΗ Α ΣΤΗΛΗ Β α. ω = Πλήρης γωνία β. ω < Μηδενική γωνία γ. ω = 0 3. Αμβλεία γωνία δ. ω = Ευθεία γωνία α β γ δ ε ε. 90 < ω < Οξεία γωνία Ένα τρίγωνο ΑΒΓ έχει μήκη πλευρών ΑΒ = 0,4dm, ΒΓ = 7,8cm και ΑΓ = 75mm. Να βρείτε την περίμετρό του σε cm. 2 Να κάνετε τις πράξεις: ( 5 ) 2 3 : 1 2 Στο παραπάνω σχήμα είναι ε 1 // ε 2. Να ε 1 δ 70 Γ γ υπολογίσετε τις γωνίες α, β, γ και δ. Να μεταφέρετε το σχήμα στην κόλλα σας και να δικαιολογήσετε τις απα- ε 2 50 A α β B ντήσεις σας. ε 3 ε4
16 16 Α. Πότε δύο κλάσματα ονομάζονται ομώνυμα; Β. Πότε δύο κλάσματα ονομάζονται ετερώνυμα; Γ. Πότε ένα κλάσμα ονομάζεται ανάγωγο; (Να δώσετε και ένα παράδειγμα για κάθε περίπτωση). Α. Πότε δύο γωνίες ονομάζονται παραπληρωματικές; Β. Πότε δύο γωνίες ονομάζονται συμπληρωματικές; Γ. Πότε δύο γωνίες ονομάζονται κατακορυφήν; (Να κάνετε και ένα σχήμα για κάθε περίπτωση). Να υπολογίσετε τις παρακάτω παραστάσεις: Α = (6,2 3,2) 2 : 3 1 Β = : Στο διπλανό σχήμα οι ευθείες ε 1 και ε 2 είναι παράλληλες. Να υπολογίσετε τις γωνίες α, β, γ, δ δικαιολογώντας τις απαντήσεις σας. γ ε 1 43 Από τους μαθητές της Α Γυμνασίου ενός σχολείου τα 3 3 παρακολουθούν Γερμανικά, τα 5 10 παρακολουθούν Γαλλικά και οι υπόλοιποι μαθητές παρακολουθούν Ιταλικά. Αν γνωρίζουμε ότι 54 μαθητές παρακολουθούν Γερμανικά, να υπολογίσετε: Α. πόσοι είναι οι μαθητές της Α Γυμνασίου Β. πόσοι μαθητές παρακολουθούν Γαλλικά Γ. το ποσοστό των μαθητών της Α Γυμνασίου που παρακολουθούν Ιταλικά. ε 2 ε 3 β 65 α δ ε 4
17 17 Α. Πώς προσθέτουμε δύο ομόσημους ρητούς αριθμούς; Β. Πώς πολλαπλασιάζουμε δύο ετερόσημους ρητούς αριθμούς; Γ. Πότε δύο αριθμοί, διαφορετικοί από το μηδέν, λέγονται αντίστροφοι; Α. Τι ονομάζεται κύκλος; Β. Τι λέγεται χορδή ενός κύκλου; δ Γ. Πώς λέγονται οι ευθείες ε και δ του διπλανού ε σχήματος, σε σχέση με τη θέση τους ως προς τον κύκλο (Ο, ρ); A O M Να δώσετε τους αντίστοιχους ορισμούς. (τα Α, Β, Μ είναι σημεία του κύκλου). B Να υπολογίσετε την αριθμητική τιμή της παράστασης: ( ) 9 + (4 3 : 4 7) 2 : 3 Αν x = και y = 3 2 : να υπολογίσετε την αριθμητική τιμή της παράστασης: x + 3 y. Στο διπλανό σχήμα είναι Δx // ΒΓ. Αν A ω = 80 και φ = 145, να υπολογίσετε (χωρίς μέτρηση) τις γωνίες του τριγώ- Δ ω E φ x νου ΑΒΓ. B Γ
18 18 Α. Να συμπληρώσετε τα παρακάτω κενά: α. Ομώνυμα λέγονται δύο κλάσματα που έχουν.. β. Ετερώνυμα λέγονται δύο κλάσματα που.. γ. Ισοδύναμα λέγονται δύο κλάσματα όταν.. δ. Αν διαιρέσουμε και τους δύο όρους ενός κλάσματος με τον ίδιο φυσικό αριθμό, εκτός του μηδενός, προκύπτει κλάσμα..με το αρχικό και τη διαδικασία ονομάζουμε ε. Από δύο κλάσματα ομώνυμα μεγαλύτερο είναι εκείνο που έχει στ. Από δύο κλάσματα με τον ίδιο αριθμητή μεγαλύτερο είναι εκείνο που έχει. ζ. Τα κλάσματα πρέπει να είναι ή να γίνουν,., για να τα προσθέσουμε. Α. Ποια είναι τα είδη των τριγώνων ως προς τις γωνίες τους; (να δώσετε ορισμούς και να κάνετε σχήματα). Β. Τι γνωρίζετε για το άθροισμα των γωνιών ενός τριγώνου; Γ. Πόσες ορθές γωνίες έχει ένα ορθογώνιο τρίγωνο και γιατί; δ 1 α β ε Στο διπλανό σχήμα οι ευθείες 1 δ γ ε 1 και ε 2 είναι παράλληλες. ε ζ ε 2 θ η Να γράψετε: Α. όλα τα ζεύγη των κατακορυφήν γωνιών και τι σχέση έχουν μεταξύ τους. Β. όλα τα ζεύγη των εντός εναλλάξ γωνιών και τι σχέση έχουν μεταξύ τους. Γ. όλα τα ζεύγη των εντός, εκτός και επί τα αυτά γωνιών και τι σχέση έχουν μεταξύ τους Δ. αν α = 125, να υπολογίσετε τις υπόλοιπες γωνίες του σχήματος. Να βρείτε το σωστό και το λάθος από τα παρακάτω και να δικαιολογήσετε τις απαντήσεις σας: α. x + x + x = x 3 β. 2 (α + 3) = 2α + 6 γ = 0 δ. 45 : 0 = 0 ε. 2 5 = 5 2 στ : 4 = 1 ζ. 650 : 13 2(3 + 2) 2 = 0 Α. Να συμπληρώσετε τα παρακάτω κενά: α. Αν διπλασιάσουμε την τιμή ενός από δύο ανάλογα ποσά και η αντίστοιχη τιμή του άλλου ποσού θα.. β. Αν x και y είναι δύο ανάλογα ποσά, τότε συνδέονται με τη σχέση. γ. Οι λόγοι των αντίστοιχων τιμών δύο ανάλογων ποσών είναι πάντα. δ. Να συμπληρώσετε τον πίνακα των παρακάτω ανάλογων ποσών: x 1 2 2,5 y x 8 16
19 19 Α. Πότε δύο κλάσματα λέγονται ισοδύναμα; Β. Πότε δύο αριθμοί λέγονται αντίστροφοι; Γ. Να συμπληρώσετε τις ισότητες. α 0 α 1 =.. α α = 0 α =. Α. Τι λέγεται ύψος τριγώνου; Β. Να αναφέρετε τα είδη των τριγώνων ως προς τις πλευρές και ως προς τις γωνίες τους. Γ. Μπορεί ένα ισόπλευρο τρίγωνο να είναι συγχρόνως και ορθογώνιο; (Να δικαιολογήσετε την απάντησή σας). Να βρείτε την τιμή της παράστασης: Α = 1 + ( ) 4 (17 6 2) [ ( )] Τα 6 παντελόνια κοστίζουν 270. Α. Πόσο κοστίζουν τα 15 παντελόνια; Β. Για τα 15 παντελόνια μας έκαναν έκπτωση 20%. Πόσα χρήματα πληρώσαμε τελικά; Άσκηση 3 η δ 1 δ 2 Στο διπλανό σχήμα οι ευθείες (ε 1 ) και (ε 2 ) είναι παράλληλες. Να υπολογίσετε τις γωνίες α, β και γ. ε 1 ε 2 β γ α
20 20 Α. Πότε δύο κλάσματα λέγονται ομώνυμα; Β. πότε δύο κλάσματα λέγονται ισοδύναμα; Γ. Να βάλετε το κατάλληλο από τα σύμβολα (>, <, = ) παρακάτω: α β γ δ Α. Πότε δύο γωνίες λέγονται κατακορυφήν; Β. Πότε δύο γωνίες λέγονται συμπληρωματικές; Γ. Να σχεδιάσετε δύο γωνίες οι οποίες να είναι ταυτόχρονα εφεξής και παραπληρωματικές. Να υπολογίσετε τις τιμές των παραστάσεων: Α. Α = 3 2 (2 3 5) 8 2 : ( ) Β. Β = : Γ. Να λυθεί η εξίσωση: x Α = 0. Β Στο τρίγωνο ΑΒΓ έχουμε χαράξει το ύψος ΒΔ και την ευθεία (ε) κάθετη στo τμήμα ΒΔ στο σημείο Β. 64 Α. Να βρείτε τη σχετική θέση των ευθειών ΑΓ και ε (ε) και να τη δικαιολογήσετε. φ 48 ω Β. Αν η γωνία ΒΑΓ = 64 και η γωνία ΔΒΓ = 48, B Γ να υπολογίσετε τις γωνίες ω και φ. Στον παρακάτω πίνακα τα ποσά x και y είναι ανάλογα. A x 0,5 2 y Α. Να υπολογίσετε το συντελεστή αναλογίας. Β. Να γράψετε τη σχέση που συνδέει τα ποσά x και y. Γ. Να συμπληρώσετε τον πίνακα.
21 21 Α. Ποια είναι τα είδη των τριγώνων ως προς τις πλευρές; Να γράψετε τον ορισμό και το σχήμα σε κάθε περίπτωση. Β. Τι λέμε διάμεσο, τι ύψος και τι διχοτόμο τριγώνου; Να γράψετε τον ορισμό και το σχήμα σε κάθε περίπτωση. Α. Πότε δύο ρητοί αριθμοί λέγονται ομόσημοι και πότε ετερόσημοι; Δώστε από ένα παράδειγμα. Β. Πότε δύο ρητοί λέγονται αντίθετοι και πότε αντίστροφοι; Δώστε από ένα παράδειγμα. Ποιος είναι ο αντίθετος του α και ποιος ο αντίστροφός του; Αν Α = ( 4) + ( 6 ) ( + 7) + ( + 6) ( 3 ) + ( 4 ) και Β = ( )( ) : 1 6 Να υπολογίσετε την τιμή των παραστάσεων: Α. Κ = Α Β Β. Μ = ( Α ) ( Β ) Μια βεράντα έχει σχήμα ορθογώνιο με διαστάσεις 6,3m και 48dm. Θέλουμε να τη στρώσουμε με τετράγωνες πλάκες πλευράς 30cm. Α. Πόσες πλάκες θα χρειαστούμε; Β. Αν οι πλάκες είναι συσκευασμένες σε πακέτα που περιέχουν 6 πλάκες το καθένα, πόσα χρήματα θα πληρώσουμε αν το κάθε πακέτο κοστίζει 18. ε 1 Στο παραπάνω σχήμα οι ευθείες ε1, ε 2 είναι παράλληλες (ε 1 // ε 2 ) και τέμνονται από την ευθεία δ. Αν δίνονται οι γωνίες: α = 74 και ε 2 ω x α β = 32, να υπολογίσετε τις γωνίες x, φ, και ω και να αιτιολογήσετε τις απαντήσεις σας. δ φ β
22 22 Α. Πότε δύο κλάσματα λέγονται ομώνυμα; Β. Πώς προσθέτουμε δύο ομώνυμα κλάσματα; Γ. Από δύο ομώνυμα κλάσματα ποιο είναι το μεγαλύτερο; Α. Πότε δύο γωνίες λέγονται εφεξής; Β. Πότε δύο γωνίες λέγονται παραπληρωματικές; Γ. Να σχεδιάσετε δύο εφεξής και παραπληρωματικές γωνίες. Δίνονται οι παραστάσεις: Α = ( ) 1 και 1 1 Β = : 1 6 Α. Να δείξετε εφαρμόζοντας την προτεραιότητα των πράξεων ότι Α = 95. Β. Να δείξετε εφαρμόζοντας την προτεραιότητα των πράξεων ότι Β = 5. Γ. Αντικαθιστώντας τις προηγούμενες τιμές στη θέση των Α και Β και εφαρμόζοντας στη συνέχεια την προτεραιότητα των πράξεων να υπολογίσετε την τιμή της παράστασης Γ = Α 7 Β. Δύο γωνίες είναι παραπληρωματικές και η μία είναι πενταπλάσια της άλλης. Να βρείτε πόσες μοίρες είναι η κάθε μία. δ 1 δ 2 Στο διπλανό σχήμα δίνονται ότι ε 1 //ε 2 και β = 42 ε 1 γ ζ δ ότι οι γωνίες α = 110 και β = 42. Να βρείτε πόσες μοίρες είναι οι γωνίες γ, δ και ζ. Να τοποθετήσετε δικά σας γράμματα σε όσες άλλες γωνίες χρησιμοποιήσετε. Να αιτιολογείτε κάθε βήμα που κάνετε. ε 2 α= 110
23 23 Α. Πότε δύο κλάσματα λέγονται ισοδύναμα ή ίσα; Αν ισχύει α β = γ με ποια σχέση δ συνδέονται οι όροι α, β, γ, δ των κλασμάτων; Β. Να γράψετε με ποιους τρόπους μπορούμε να πάρουμε ένα κλάσμα ισοδύναμο με ένα αρχικό κλάσμα. Να γράψετε παράδειγμα για κάθε περίπτωση. Γ. Να γράψετε πότε ένα κλάσμα λέγεται ανάγωγο και πότε δύο ή περισσότερα κλάσματα λέγονται ομώνυμα και πότε ετερώνυμα. Να δώσετε παράδειγμα για κάθε περίπτωση. Α. Να δώσετε τους ορισμούς: κύκλος (Ο, ρ) και κυκλικός δίσκος (Ο, ρ). Πότε δύο κύκλοι είναι ίσοι; Το κέντρο ενός κύκλου είναι σημείο του; Β. Να δώσετε τους ορισμούς: ακτίνα, χορδή, διάμετρος και τόξο κύκλου. Να γίνουν τα κατάλληλα σχήματα. Γ. Σε πόσα τόξα χωρίζει κάθε διάμετρος έναν κύκλο; Πώς ονομάζονται αυτά και τι σχέση έχουν μεταξύ τους; Να γίνει το σχήμα.. Να υπολογίσετε τις τιμές των αριθμητικών παραστάσεων: Α = : 4 3 και Β = ( ) : 2 Για τις τιμές των Α και Β που βρήκατε να υπολογίσετε το γινόμενο Α Β. Τι συμπεραίνετε για τους αριθμούς Α και Β; Κατόπιν να βρείτε τη διαφορά Α Β. Δίνεται η σχέση αναλογίας δύο ποσών: y = 75% x Α. Ποιος είναι ο συντελεστής αναλογίας; Β. Να συμπληρώσετε τον πίνακα τιμών: x y 4,5 6 Γ. Να τοποθετήσετε τα παραπάνω σημεία (x, y) σε ένα ορθοκανονικό σύστημα ημιαξόνων και να σχεδιάσετε τη γραφική παράσταση της σχέσης αναλογίας των ποσών x και y. ε 2 ε 1 Στο παρακάτω σχήμα οι ευθείες ε 1 και ε 2 είναι παράλληλες (ε 1 // ε 2 ), η ΑΔ είναι διχοτόμος της Δ Γ v γωνίας ΒΑΓ και η γωνία ΒΑΔ = 47. Η ΔΓ είναι κάθετη στην ευθεία ε 1.Να βρείτε χωρίς μέτρηση, με συλλογισμούς, τα μέτρα των γωνιών: ω, ν, θ, φ, κ, λ. δ A θ ω 47 φ λ B κ
24 24 Α. Πώς προσθέτουμε 2 ομόσημους ρητούς και πώς προσθέτουμε 2 ετερόσημους ρητούς; Β. Ποιοι αριθμοί ονομάζονται αντίθετοι και με τι ισούται το άθροισμά τους; Γ. Τι ιδιότητα έχει το μηδέν, όταν το προσθέσουμε με ένα ρητό; Α. Πότε δύο γωνίες λέγονται εφεξής; Β. Πότε δύο γωνίες λέγονται παραπληρωματικές και πότε λέγονται συμπληρωματικές; Γ. Να σχεδιάσετε 2 εφεξής και παραπληρωματικές γωνίες και 2 εφεξής και συμπληρωματικές γωνίες. Δίνονται οι παραστάσεις: 1 2 Α = : και Β = 10 2 : ( ) ( ) Α. Να υπολογίσεις την αριθμητική τιμή της παράστασης Α. Β. Να υπολογίσεις την αριθμητική τιμή της παράστασης Β. Γ. Να συγκρίνεις τις αριθμητικές τιμές της Α και Β. Α. Σε μία τάξη ενός σχολείου τα κορίτσια είναι 96 και αποτελούν τα 2 της τάξης. 5 Να υπολογίσετε πόσοι είναι όλοι οι μαθητές της τάξης. Β. Να υπολογίσετε πόσα είναι τα αγόρια της τάξης. Γ. Αν τα 3 των αγοριών της τάξης μαθαίνουν Αγγλικά, να βρείτε πόσα είναι τα αγόρια 4 αυτά. δ Στο διπλανό σχήμα οι ευθείες ε 1, ε 2 είναι παράλληλες μεταξύ τους. Η Αδ είναι η διχοτόμος της γωνίας EΑΒ. Να υπολογίσετε τις ε 1 Γ 110 v B γωνίες x, y, ω και να δικαιολογήσετε τις απαντήσεις σας χωρίς να χρησιμοποιήσετε x ε 2 E A y μοιρογνωμόνιο. ε 3
25 25 Α. Πότε δύο κλάσματα λέγονται ισοδύναμα; Β. Μεταξύ δύο ομώνυμων κλασμάτων ποιο είναι το μεγαλύτερο; Δώστε ένα παράδειγμα. Γ. Πότε ένα κλάσμα είναι μεγαλύτερο από τη μονάδα; Δώστε ένα παράδειγμα. Α. Ποια γωνία λέγεται οξεία, ποια λέγεται αμβλεία και ποια γωνία λέγεται ορθή; (ορισμός σχήμα) Β. Ποιες γωνίες ονομάζονται συμπληρωματικές; (ορισμός σχήμα) Γ. Ποιες γωνίες ονομάζονται κατακορυφήν; (ορισμός σχήμα) Δίνονται οι παραστάσεις: Α = (2 2 3) + ( 4) + ( 2) 1 Β = 1+ 2 : Α. Να υπολογίσετε τις παραστάσεις Α και Β. Β. Να λύσετε την εξίσωση: Α x = Β. Ένας έμπορος αγόρασε 150 κιλά μήλα προς 1,4 ευρώ το κιλό. Του χάλασαν όμως το 1 10 από τα μήλα. Τα υπόλοιπα τα πούλησε με 1,8 ευρώ το κιλό. Να υπολογίσετε: Α. Πόσα κιλά μήλα χάλασαν; Β. Πόσα χρήματα κέρδισε; ε 1 Στο διπλανό σχήμα οι ευθείες ε 1 και ε 2 είναι παράλληλες. Α. Να υπολογίσετε το x και τις γωνίες του τριγώνου ΑΒΓ. Β. Τι είδους τρίγωνο είναι το ΑΒΓ; δ 2 ε 2 δ 1 B A Γ x
26 26 Α. Πότε δύο ποσά λέγονται ανάλογα; Β. Τι λέγεται συντελεστής αναλογίας δύο ανάλογων ποσών; Α. Τι ονομάζεται απόσταση σημείου Α από ευθεία ε; Β. Τι λέγεται απόσταση δύο παράλληλων ευθειών ε 1 και ε 2 ; Δίνονται οι παραστάσεις: 4 1 Α = και Β = : 2 9 Αφού κάνετε τις πράξεις σε κάθε μια από τις παραστάσεις Α και Β, να βρείτε ποιας το αποτέλεσμα είναι το μικρότερο αιτιολογώντας την απάντησή σας. Κάποια κυρία αγόρασε από ένα κατάστημα μια ζακέτα και ένα φόρεμα. Ο καταστηματάρχης της είπε ότι πριν την έκπτωση η ζακέτα κόστιζε 60 και το φόρεμα 220. Η κυρία αγοράζει τα δύο αυτά ενδύματα αφού της έκανε έκπτωση ο καταστηματάρχης. Στο σπίτι της βλέπει στην απόδειξή της ότι το συνολικό ποσό που πλήρωσε ήταν 248. Θυμάται ότι το ποσοστό έκπτωσης για τη ζακέτα ήταν 35%. Α. Υπολογίστε τι ποσό πλήρωσε η κυρία για τη ζακέτα. Β. Υπολογίστε ποιο ήταν το ποσοστό έκπτωσης για το φόρεμα. Στο διπλανό σχήμα είναι ε // ε και η γωνία ω = 70. Η ημιευθεία Βζ είναι διχοτόμος της γωνίας ΑΒΔ και η ΔΓ είναι κάθετη στη ΒΓ. Χωρίς τη χρήση μοιρογνωμονίου αλλά χρησιμοποιώντας κατάλληλες γεωμετρικές προτάσεις να υπολογίσετε: ζ A ω Γ ε ρ B φ Α. τη γωνία φ ε Δ Β. τη γωνία ρ.
27 27 Α. Πότε δύο ή περισσότερα κλάσματα λέγονται ισοδύναμα; Β. Από δύο κλάσματα με ίσους αριθμητές και άνισους παρονομαστές ποιο είναι το μεγαλύτερο; Γ. Ένα κλάσμα α (με β 0) πότε λέγεται ανάγωγο; β Δ. Εάν το κλάσμα α δεν είναι ανάγωγο, τότε με ποιόν αριθμό πρέπει να διαιρέσουμε τους β όρους του, για να γίνει ανάγωγο; Α. Πότε δύο γωνίες ονομάζονται κατακορυφήν; Β. Πότε δύο γωνίες ονομάζονται συμπληρωματικές; Γ. Πότε δύο γωνίες ονομάζονται εφεξής; Δ. Τι λέμε διχοτόμο μιας γωνίας; Α. Μεταξύ ποιών διαδοχικών φυσικών αριθμών βρίσκεται το κλάσμα 63 5 ; Β. Να βρείτε ένα κλάσμα μεγαλύτερο από το 3 5 και μικρότερο από το 4 5. Γ. Ποιον αριθμό πρέπει να προσθέσουμε στον παρονομαστή του κλάσματος 3, ώστε να 5 προκύψει κλάσμα ισοδύναμο με το 9 24 ; y Στο σχήμα η x Ox είναι ευθεία. Να υπολογίσετε τις γωνίες xoy και x Oy. Στη συνέχεια να δικαιολογή- x 30 O 120 x σετε γιατί Οy Οy y Να μετατρέψετε τα σύνθετα κλάσματα Α και Β σε απλά και να αποδείξετε ότι Α Β = Α = 3 2 Β = :
28 28 Α. Αν Δ = δπ + υ με υ <δ είναι η ισότητα της Ευκλείδειας διαίρεσης, να ονομάσετε τις μεταβλητές Δ, δ, π, υ. Β. Πότε μια Ευκλείδεια διαίρεση λέγεται τέλεια και πότε ατελής; Γ. Η αληθής σχέση 65 = είναι Ευκλείδεια διαίρεση; Α. Πότε δύο γωνίες λέγονται: α. παραπληρωματικές β. συμπληρωματικές γ. κατακορυφήν. α β φ ω γ δ Β. Στα παραπάνω σχήματα ονομάστε τα ζεύγη γωνιών: Δίνεται η παράσταση: Α = : 5 3 Α. Να αποδείξετε ότι: Α = 1 2 Β. Να βρείτε τον αντίστροφο του Α Γ. Να γράψετε ένα κλάσμα μεγαλύτερο από το Α και μικρότερο από το 1 Να λύσετε τις εξισώσεις: Α. x + 3 = 7 B. y 5 = 2 Γ. Δίνεται η συνάρτηση y = 2x x 10 = 3 5 A. Να συμπληρώσετε τον παρακάτω πίνακα τιμών: x y B. Να παραστήσετε τα παραπάνω ζεύγη του πίνακα τιμών στο καρτεσιανό σύστημα συντεταγμένων και να χαράξετε την ευθεία που ορίζουν. Γ. Να δικαιολογήσετε γιατί τα ποσά x και y είναι ποσά ανάλογα.
29 29 Α. Πότε δύο ποσά λέγονται ανάλογα; Β. Όταν δύο ποσά x και y είναι ανάλογα ποιος τύπος τα συνδέει; Α. Ποιες γωνίες λέγονται συμπληρωματικές; Β. Ποιες γωνίες λέγονται παραπληρωματικές; Γ. Ποιες γωνίες λέγονται κατακορυφήν; Α. Κάνετε τις πράξεις στις παραστάσεις που σας δίνονται και βρείτε τους αριθμούς Α και Β. Α = 15 2 (9 6) Β = 8 20 : Β. Κάντε τώρα και τις πράξεις Β 30 και βρείτε και εδώ το τελικό αποτέλεσμα. Α Υπόδειξη: Σε όποια κλάσματα γίνονται απλοποιήσεις, είναι βολικό να τις κάνετε (δεν είναι υποχρεωτικό). Α. Σ έναν αγώνα σκοποβολής ένας αθλητής ρίχνει 80 βολές με το πιστόλι του και ένα ποσοστό 65 % απ αυτές πετυχαίνουν το στόχο ενώ οι υπόλοιπες όχι. Πόσες φορές ο αθλητής πέτυχε το στόχο; Β. Στον ίδιο αγώνα σκοποβολής ένας άλλος αθλητής (Αθλητής Β), ρίχνει 150 βολές. Από τις βολές αυτές οι 90 πετυχαίνουν το στόχο. Βρείτε το ποσοστό επιτυχίας του. Είναι μεγαλύτερο ή μικρότερο από το ποσοστό του αθλητή Α; Στο παρακάτω σχήμα τα ευθύγραμμα τμήματα ΑΒ και ΓΔ είναι παράλληλα (ΑΒ // ΓΔ). A B 40 φ E x ω Υπολογίστε (χωρίς μοιρογνωμόνιο): 43 Α. τη γωνία φ Β. τη γωνία ω Γ. τη γωνία x Σε κάθε περίπτωση εξηγείστε το σκεπτικό σας! Δ Γ
30 30 Α. Πότε δύο κλάσματα α β και γ λέγονται ισοδύναμα; δ Β. Να συμπληρώσετε τη σχέση: αν α β = γ τότε δ Γ. Γράψατε τους δύο κανόνες με τους οποίους κατασκευάζουμε ισοδύναμα κλάσματα. Α. Πότε δύο γωνίες λέγονται κατακορυφήν; Β. Πότε δύο γωνίες λέγονται συμπληρωματικές; Γ. Πότε δύο γωνίες λέγονται παραπληρωματικές; Α. Να υπολογίσετε την αριθμητική τιμή της παράστασης: Α = (13 3 4) Β. Να απλοποιήσετε την παράσταση: 4 Β = Γ. Να υπολογίσετε την αριθμητική τιμή της παράστασης Α : Β όπου Α και Β οι αντίστοιχες τιμές των παραστάσεων των προηγούμενων ερωτημάτων της άσκησης. Αν οι παράλληλες ευθείες ε 1, ε 2 τέμνονται από μια ευθεία δ, όπως φαίνεται στο παρακάτω σχήμα, να υπολογίσετε τις γωνίες α και β. (Να αιτιολογήσετε τις απαντήσεις σας). Α. Να λυθούν οι εξισώσεις: α β 2x 3x 70 δ ε 2 ε 1 2x 6 = 10 και 28 : y = 7 3 B. Για τα x και y που βρήκατε στο προηγούμενο ερώτημα, να δείξετε ότι: 1 3 y + 2 x2 = 132
31 31 Α. Πότε ένας φυσικός αριθμός διαιρείται με το 2; Πότε διαιρείται με το 5; Πότε διαιρείται με το 3; B. Ποιοι από τους αριθμούς που ακολουθούν διαιρούνται με 2, ποιοι με 5, ποιοι με 3; 1830, 631, 725, 84, 10011, 45, 2030, 450. Α. Δίνεται γωνία ω = 32. Πόσων μοιρών είναι η συμπληρωματική της; Πότε δύο γωνίες λέγονται συμπληρωματικές; B. Δίνεται γωνία φ = 123. Πόσων μοιρών είναι η παραπληρωματική της; Πότε δύο γωνίες λέγονται παραπληρωματικές; Γ. Είδη γωνιών (ορισμοί σχήματα). Να υπολογιστούν οι αριθμητικές τιμές των παραστάσεων: Α = (7 + 3) : 4 Β = 3 2 ( ) ( ) Στο διπλανό σχήμα έχουμε ε 1 //ε 2 και την ευ- Δ ε 2 ω = 45 θεία δ που τις τέμνει. Να υπολογίσετε τις γωνίες κ, μ, λ του τριγώνου ΑΒΓ και να δικαιο- A λ λογήσετε πώς φτάσατε στο κάθε αποτέλεσμα. ( φ = 150, ω = 45 ) ε 1 φ = 150 B κ μ Γ δ Στο τρίγωνο ΑΒΓ, η πλευρά ΑΒ = 12 cm. Η πλευρά ΒΓ είναι τα 3 της ΑΒ και η πλευρά ΓΑ 4 είναι τα 2 της ΒΓ. Να υπολογιστούν τα μήκη των πλευρών ΒΓ και ΓΑ καθώς και η περίμετρος του τριγώνου 3 ΑΒΓ.
32 32 Α. Ποιος αριθμός λέγεται πρώτος; Β. Ποιοι αριθμοί διαιρούνται με το 3; Γ. Ποιοι αριθμοί διαιρούνται και με το 2 και το 5; Α. Ποια γωνία λέγεται αμβλεία; Β. Ποιες γωνίες λέγονται συμπληρωματικές; Γ. Οι κατακορυφήν γωνίες είναι ίσες; (κάνε σχήμα) Να απλοποιήσετε τα κλάσματα 4 8, 15 45, 15 9, 12 και μετά να τα βάλετε σε αύξουσα σειρά. 60 Να υπολογίσετε την παράσταση Α Β 3 αν Α = ( 5) 3 + ( 2) 4 και Β = Τριγώνου ΑΒΓ η γωνία Β = 60. Από σημείο Κ της πλευράς ΑΒ φέρτε παράλληλη προς την πλευρά ΒΓ. Η παράλληλη αυτή τέμνει την πλευρά ΑΓ στο Λ. Η γωνία ΚΛΑ = 50. Να υπολογίσετε τις γωνίες ΑΚΛ, ΚΑΛ και ΚΛΓ.
33 33 Α. Πότε ένας φυσικός αριθμός λέγεται πρώτος και πότε σύνθετος; Β. Πότε ένας φυσικός αριθμός διαιρείται με το 5; Γ. Πότε ένας φυσικός αριθμός διαιρείται με το 3; Α. Να αναφέρετε τα είδη των τριγώνων ως προς τις πλευρές τους. Β. Να αναφέρετε τα είδη των τριγώνων ως προς τις γωνίες τους. Γ. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή (Λ) αν είναι λανθασμένες: α. Ένα αμβλυγώνιο τρίγωνο έχει δύο αμβλείες γωνίες β. Ένα ισοσκελές τρίγωνο μπορεί να είναι και αμβλυγώνιο. γ. Ένα ορθογώνιο τρίγωνο μπορεί να είναι και ισοσκελές. Τα 3 των μαθητών μιας τάξης ενός Γυμνασίου είναι κορίτσια και το πλήθος των αγοριών 5 είναι 42. Να βρείτε: Α. Πόσοι είναι οι μαθητές της τάξης αυτής. Β. Πόσα είναι τα κορίτσια. Γ. Το ποσοστό των αγοριών και το ποσοστό των κοριτσιών. Α. Να υπολογίσετε την τιμή των παραστάσεων: Α = : Β = Β. Να συγκρίνετε τα κλάσματα Α και Β. Γ. Να βρείτε ένα κλάσμα μεταξύ των Α και Β. δ1 δ 2 Στο παρακάτω σχήμα ισχύει ε 1 // ε 2. δ 55 Να υπολογίσετε τις γωνίες α, β, γ, δ χωρίς μοιρογνωμόνιο. Να δικαιολογήσετε τις απαντήσεις σας. 45 ε 2 β ε 1 α γ
34 34 Α. Πότε δύο γωνίες ονομάζονται παραπληρωματικές και πότε συμπληρωματικές; Β. Να σχεδιάσετε στο γραπτό σας δύο εφεξής και συμπληρωματικές γωνίες. Γ. Τι είδους γωνία θα είναι: α. η παραπληρωματική μιας οξείας γωνίας β. η παραπληρωματική μιας ορθής γωνίας γ. η κάθε μια από δύο γωνίες που είναι συμπληρωματικές. Α. Πότε δύο κλάσματα λέγονται ομώνυμα και πότε ετερώνυμα; Β. Πότε ένα κλάσμα λέγεται ανάγωγο; Γ. Αν και οι δύο όροι ενός κλάσματος λήγουν σε 5 τότε το κλάσμα είναι ανάγωγο; (Ναι ή όχι και γιατί) Στο διπλανό σχήμα δίνεται ότι xy // ΔΕ, xαδ = 70 και ΑΕΔ = 40. x A 70 α y Α. Να υπολογίσετε τις γωνίες δ και α (με αιτιολόγηση) δ 40 Β. Να μεταφέρετε το σχήμα στο γραπτό σας και να Δ σχεδιάσετε την απόσταση του σημείου Ε από την ευθεία xy και να την ονομάσετε ΕΒ. Να υπολογίσετε τις γωνίες του τριγώνου ΒΑΕ(με αιτιολόγηση). E Δίνονται τα κλάσματα α = 2 3, β = 5 2. Α. Να κάνετε τις πράξεις α + β, α β και α : β. Β. Να υπολογίσετε το αποτέλεσμα της παράστασης: (0, ,01 100) 0, και να το συγκρίνετε με τα κλάσματα α και β. Τρεις εργάτες ολοκληρώνουν ένα έργο. Ο 1 ος εργάστηκε 20 ώρες, ο 2 ος εργάστηκε το 80% των ωρών του 1 ου και ο 3 ος εργάστηκε το 1 5 των ορών του 1ου. Α. Πόσες ώρες εργάστηκε ο 2 ος και πόσες ο 3 ος εργάτης; Β. Ο εργοδότης τους πλήρωσε συνολικά 480 ευρώ. Να τα μοιράσετε στους τρεις εργάτες ανάλογα με τις ώρες που εργάστηκαν και να βρείτε ποιο ποσοστό (%) των 480 ευρώ πήρε ο 3 ος εργάτης.
35 35 Α. Ποιο σχήμα ονομάζεται παραλληλόγραμμο (κάνετε σχήμα). Β. Αναφέρατε τα είδη παραλληλογράμμων (ονομαστικά, κάνετε τα σχήματα). Γ. Να διατυπώσετε τις ιδιότητες του παραλληλογράμμου. Α. Πότε δύο ποσά λέγονται ανάλογα; Β. Τι συμβαίνει με το λόγο των αντίστοιχων τιμών που παίρνουν δύο ανάλογα ποσά και τι ονομάζουμε συντελεστή αναλογίας ; Γ. Με ποια σχέση συνδέονται δύο ανάλογα ποσά x και y; Σε ένα τρίγωνο ΑΒΓ η Α είναι διπλάσια από τη Βκαι η Γ τριπλάσια από τη Β. Να υπολογιστούν οι γωνίες του τριγώνου. Τι είδους τρίγωνο προκύπτει σε σχέση με τις γωνίες; Αν x = ( 5 ) 2 3 : 1 και 2 y = : 1 3 Να υπολογίσετε την τιμή της παράστασης: Α = (x 1)y x(y 5) ε φ δ Στο διπλανό σχήμα είναι: 1 α ε 1 // ε 2, ω = 110, θ = 155 γ θ Να υπολογίσετε τις γωνίες α, β, γ, δ, φ ε 2 ω β ε 3
36 36 Α. Να διατυπώσετε την ισότητα της Ευκλείδειας διαίρεσης και τη σχέση του διαιρέτη με το υπόλοιπο. Β. Ποιοι αριθμοί λέγονται πρώτοι και ποιοι σύνθετοι(ορισμός και ένα παράδειγμα για κάθε περίπτωση). Γ. Να συμπληρωθούν οι ισότητες: α. α (β + γ) =. β. 0 : α =. α 0 γ =. δ. α : α =.. α 0 ε. α : 1 =. στ. λ α =.. α 0 α Α. Τι ονομάζεται μεσοκάθετος ευθυγράμμου τμήματος; Β. Ποια είναι η χαρακτηριστική ιδιότητα των σημείων της μεσοκαθέτου ευθυγράμμου τμήματος; Γ. Να δικαιολογήσετε γιατί η ευθεία της διαμέσου που αντιστοιχεί στη βάση ισοσκελούς τριγώνου είναι και μεσοκάθετος της βάσης του. Δίνονται οι παραστάσεις: 3 1 Α = και Β = ( ) : (2 3 +1) Α. Να υπολογιστούν οι τιμές των παραστάσεων. Β. Να λυθεί η εξίσωση Α x = Β. Στο διπλανό πίνακα τα ποσά x και y είναι ανάλογα: x ,2 Α. Υπολογίστε το συντελεστή αναλογίας. Β. Γράψτε τη σχέση που συνδέει τα ποσά αυτά. y Γ. Να συμπληρωθεί ο πίνακας.: A α Στο διπλανό σχήμα είναι ε 1 // ε 2. x ω ε 1 Αν α = 62 και β = 110. φ β Να υπολογιστούν οι γωνίες x, φ, ω. B Γ ε 2 Δικαιολογήστε τις απαντήσεις σας. ε
37 37 Διατυπώστε τα κριτήρια διαιρετότητας ενός φυσικού αριθμού με 2, 3, 4, 5, 9, 10. Α. Ποιες γωνίες ονομάζονται παραπληρωματικές; Β. Ποιες γωνίες ονομάζονται συμπληρωματικές; Γ. Ποιες γωνίες ονομάζονται κατακορυφήν; Ισχύει ε 1 //ε 2. Να βρεθούν οι γωνίες x, ω, φ. x 40 ε ω φ ε 2 δ 1 δ 2 Να κάνετε τις πράξεις: : : Δύο βρύσες τροφοδοτούν με νερό μια δεξαμενή. Η πρώτη παρέχει νερό για 10min και η δεύτερη για 15min. Έτσι γεμίζουν και οι δύο την δεξαμενή με 450lt νερό. Πόσα lt νερό παρέχει η καθεμιά βρύση στη δεξαμενή;
38 38 Α. Τι λέγεται κύκλος (Ο, ρ) και τι ακτίνα του κύκλου; (Να δοθεί και το σχήμα) Β. Πότε δύο γωνίες ονομάζονται παραπληρωματικές; Γ. Πότε δύο γωνίες ονομάζονται κατακορυφήν; A. Ποιους αριθμούς ονομάζουμε ομόσημους και ποιους ετερόσημους; Β. Πώς προσθέτουμε δύο ομόσημους και πώς δύο ετερόσημους ρητούς αριθμούς; Γ. Ποιοι αριθμοί ονομάζονται αντίθετοι; Να υπολογιστεί η τιμή της παρακάτω παράστασης: Α = 2 3 : ( ) ( ) 2 = ε ε 3 4 ε 1 α β Στο διπλανό σχήμα ε 1 // ε 2 και τέμνονται φ από τις ε 3, ε 4. Δίνεται γ = 30 και δ = 135. Να υπολογίσετε τις γωνίες α, β και φ. Να υπολογιστεί η τιμή της παρακάτω παράστασης: γ = 30 ε 2 d = : =
39 39 Α. Πότε ένας φυσικός αριθμός διαιρείται με το 2 και πότε με το 3; Β. Πότε ένας αριθμός λέγεται πρώτος; Γ. Πότε δύο αριθμοί λέγονται πρώτοι μεταξύ τους; A. Να γράψετε τα είδη τριγώνων ως προς τις πλευρές και ως προς τις γωνίες τους Β. Ποιες γωνίες ονομάζονται παραπληρωματικές και ποιες συμπληρωματικές; Γ. Δύο παραπληρωματικές γωνίες μπορεί να είναι και ίσες; Αν α = , β = 100 (1,8 1,3) και γ = , να υπολογίσετε την τιμή της παράστασης Α = α 2 4 β + 2γ 2 Να υπολογίσετε με δύο τρόπους την τιμή της παράστασης: Α = ε 1 δ φ γ Στο διπλανό σχήμα είναι ε 1 // ε 2. Αν είναι ω = 72 και φ = 65, α β ε 2 v να υπολογίσετε τις γωνίες α, β, γ, δ. ε3 ε 3
40 40 Α. Αναφέρατε τον κανόνα της Ευκλείδειας Διαίρεσης. Β. Πότε μία Ευκλείδεια Διαίρεση χαρακτηρίζεται τέλεια και πότε ατελής; Γ. Ποιες από τις παρακάτω ισότητες είναι Ευκλείδειες Διαιρέσεις; α. 360 = β. 34 = γ. 123 = δ. 18 = Α. Να δώσετε τους ορισμούς των εννοιών: α. Εφεξής γωνίες β α β. Παραπληρωματικές γωνίες 67 γ. Κατακορυφήν γωνίες Β. Να υπολογίσετε τις γωνίες α, β, γ και δ του διπλανού σχήματος: Δίνονται οι παραστάσεις: 1 3 ( 2) ( 1) ( 12):( 2) Α = 6 ( 3+ 7) + 5 (3 7 6) 9 και Β = δ γ : 3 Αφού τις υπολογίσετε, να αποδείξετε ότι: 31 Β Α = Ξεκίνησα για την αγορά έχοντας 165 στο πορτοφόλι μου. Στο ψαράδικο αγόρασα 2,4 κιλά τσιπούρες που κόστιζαν 14 το κιλό. Είμαι τακτικός πελάτης και ο ψαράς μου έκανε έκπτωση 15%. Στο χασάπικο αγόρασα 3,6 κιλά χοιρινές μπριζόλες που κόστιζαν 6 το κιλό. Επειδή διάλεξα τις μεγαλύτερες ο χασάπης μου τις χρέωσε 20% ακριβότερα. Από ένα κατάστημα που πουλούσε εργαλεία αγόρασα ένα ηλεκτρικό τρυπάνι που κόστιζε 65. Μετά από παζάρια το πήρα 12% φθηνότερα. Σε όλα τα είδη επιβαρύνθηκα στην τελική τιμή με Φ.Π.Α 21%. Πόσα χρήματα έμειναν τελικά στο πορτοφόλι μου; Βρείτε τις γωνίες α, β και γ του παρακάτω σχήματος, αν γνωρίζετε ότι η γωνία α είναι τριπλάσια και η γωνία γ τετραπ λάσια της γωνίας β. Αν οι ευθείες ε 1 και ε 2 είναι παράλληλες, να υπολογίσετε κατόπιν τις γωνίες δ, ε, ζ και η. ε 2 ε 1 ε 3 ε ζ δ β α γ ε 4
41 41 Α. Να γράψετε πότε δύο γωνίες λέγονται εφεξής, πότε λέγονται παραπληρωματικές και πότε κατακορυφήν; Να σχεδιάσετε: α. τρεις διαδοχικές γωνίες και β. δύο εφεξής και παραπληρωματικές γωνίες. Να γράψετε πότε μια διαίρεση είναι Ευκλείδεια. Σε ποια περίπτωση έχουμε τέλεια διαίρεση; Πότε ένας αριθμός διαιρείται με το 5 και πότε με το 9; Αν είναι y = 4,95 76,8 + 4,95 12,8 + 4,95 10,4να υπολογίσετε την αριθμητική τιμή του y με τη χρήση της επιμεριστικής ιδιότητας και κατόπιν αν x είναι η λύση της εξίσωσης y 2x 10 = 0, τότε: 63, να μετατρέψετε το σύνθετο κλάσμα σε απλό. 3 x 7 Από την κορυφή Α τριγώνου ΑΒΓ φέρουμε τη διχοτόμο της γωνίας Α, που τέμνει την πλευρά ΒΓ στο A y σημείο Δ. και από την κορυφή Γ φέρνουμε ημιευθεία Γy παράλληλη προς την ΑΔ, όπως φαίνεται στο σχήμα. Αν η γωνία yγx = 100, όπου Γx η προέκταση της B Δ Γ x ΒΓ και η γωνία yγα = 36 να υπολογίσετε τις γωνίες του τριγώνου ΑΒΓ. Αν είναι x = (+1) + ( 7 ) + (+8), y = , ω ο αντίθετος του x, z = ( 7)( 10) κ = ( ) : ( 7 5 0,25) και 1 2 να υπολογίσετε την αριθμητική τιμή της παράστασης Α = x + y + ω zκ.
42 42 Α. Πότε δύο αριθμοί λέγονται ομόσημοι και πότε ετερόσημοι; Β. Πώς προσθέτουμε δύο ομόσημους αριθμούς; Γ. Πώς προσθέτουμε δύο ετερόσημους αριθμούς; Δ. Πότε δύο αριθμοί λέγονται αντίθετοι και ποιο είναι το αποτέλεσμα της πρόσθεσής τους; (Να δώσετε από ένα παράδειγμα σε καθένα από τα παραπάνω ερωτήματα) Α. Πότε δύο γωνίες ονομάζονται εφεξής; Να γίνει ανάλογο σχήμα. Β. Πότε δύο γωνίες ονομάζονται κατακορυφήν; Ποια είναι η μεταξύ τους σχέση; Να σχεδιάσετε δύο κατακορυφήν γωνίες. Γ. Πότε δύο γωνίες λέγονται παραπληρωματικές; Να σχεδιάσετε δύο γωνίες που ταυτόχρονα να είναι εφεξής και παραπληρωματικές. Δ. Πότε μια γωνία ονομάζεται επίκεντρη; Να γίνει ανάλογο σχήμα. Δίνονται οι παραστάσεις: Α = : και Β = (5 2 7) 4 ( ). Α. Να υπολογίσετε την τιμή των παραστάσεων Α και Β. Β. Να βρείτε το Ε. Κ. Π. των Α και Β. Στο τρίγωνο ΑΒΓ του σχήματος, η γωνία Α είναι τριπλάσια της γωνίας Β, ενώ η γωνία Γ είναι μεγαλύτερη της γωνίας Β κατά 20. Γ A ω B Α. Να υπολογίσετε τις γωνίες του τριγώνου. Β. Να υπολογίσετε τη γωνία ω του διπλανού σχήματος. Ένας έμπορος αγόρασε ένα εμπόρευμα από έναν μεγαλέμπορα και του πλήρωσε Κατά τη μεταφορά του χάλασε το 7 % του εμπορεύματος. Α. Πόση ήταν η χρηματική ζημιά που υπέστη κατά τη μεταφορά; Β. Το υπόλοιπο καλό εμπόρευμα το πούλησε με κέρδος 20 %. Πόσα χρήματα κέρδισε σε σχέση με την αρχική αγορά των ; Γ. Τι ποσοστό κέρδους είχε απ όλη αυτή τη διαδικασία;
43 43 Α. Τι λέγεται κύκλος; Β. Θέσεις ευθείας και κύκλου (Σε κάθε περίπτωση να γίνει σχήμα). Α. Πότε ένας αριθμός λέγεται πρώτος και πότε σύνθετος; (Δώστε από 3 παραδείγματα) Β. Πότε δύο αριθμοί α και β λέγονται πρώτοι μεταξύ τους; (Δώστε ένα παράδειγμα) Γ. Πότε ένας φυσικός αριθμός διαιρείται με το 5, πότε με το 4 και πότε με το 9; (Δώστε ένα παράδειγμα σε κάθε περίπτωση) Να υπολογιστούν οι γωνί ες α, β και γ του διπλανού σχήματος. Να συγκρίνετε τις παραστάσεις: Α = 8 : (6 : 2 5 : 5) (7 4) : 3 1 γ 50 β α 150 Β = 3 5 (6 + 2) (7 4) 2 4 ( ). Μια θεατρική παράσταση την παρακολούθησαν 720 θεατές. Από αυτούς τα 3 ήταν γυναίκες, 5 τα 3 ήταν άνδρες και οι υπόλοιποι παιδιά. Να βρείτε πόσες γυναίκες, πόσοι άντρες και πόσα 10 παιδιά παρακολούθησαν την παράσταση.
44 44 Α. Πότε δύο κλάσματα λέγονται αντίστροφα; Β. Πότε ένα κλάσμα ονομάζεται ανάγωγο; Γ. Να χαρακτηρίσετε με Σ τις παρακάτω προτάσεις αν είναι σωστές και με Λ αν είναι λανθασμένες: α. Από δύο κλάσματα με τον ίδιο αριθμητή μεγαλύτερο είναι εκείνο με το μεγαλύτερο παρονομαστή. β. Αν τα κλάσματα α β, γ είναι ισοδύναμα τότε α δ = β γ δ γ. Ισχύει ότι α β = α γ γ β δ δ δ. Όταν οι όροι ενός κλάσματος διαιρεθούν με τον ίδιο φυσικό αριθμό, εκτός του μηδέν προκύπτει κλάσμα ισοδύναμο. Α. Να αναφέρετε τα είδη των τριγώνων ως προς τις πλευρές και ως προς τις γωνίες τους. Β. Τι ονομάζεται διάμεσος τριγώνου; Γ. Να χαρακτηρίσετε με Σ τις παρακάτω προτάσεις αν είναι σωστές και με Λ αν είναι λανθασμένες: α. Το άθροισμα γωνιών ενός τριγώνου είναι 180 β. Η διάμεσος που αντιστοιχεί στη βάση ενός ισοσκελούς τριγώνου είναι και διχοτόμος. γ. Το σκαληνό τρίγωνο είναι πάντα οξυγώνιο. δ. Σε κάθε ορθογώνιο και ισοσκελές τρίγωνο οι προσκείμενες στη βάση γωνίες είναι 60 Α. Να υπολογίσετε τις τιμές των παραστάσεων: Α = : 5 Β = ( ) Β. Να βρείτε ένα κλάσμα μεταξύ των α, β. Γ. Να βρείτε τον αντίστροφο του α. Το 35% των μαθητών ενός σχολείου συμμετέχει στο θεατρικό όμιλο, το 15% στον περιβαλλοντικό όμιλο και οι υπόλοιποι συμμετέχουν στον αθλητικό όμιλο. Α. Αν οι μαθητές του θεατρικού ομίλου είναι 105, να βρείτε πόσοι είναι οι μαθητές όλου του σχολείου. Β. Αν όλοι οι μαθητές του σχολείου είναι 300, να βρείτε πόσοι μαθητές συμμετέχουν στον περιβαλλοντικό όμιλο. Γ. Αν το 10% του αθλητικού ομίλου κάνει κολύμβηση, να βρείτε πόσοι μαθητές κάνουν κολύμβηση. Στο παρακάτω σχήμα δίνεται ότι: x x // y y, ΑΒx = 60, ΑΒΓ = 90 και ΑΔ διχοτόμος της ΒΑΓ. Α. Να υπολογιστούν οι γωνίες α, β, γ. Β. Να χαρακτηριστεί το είδος του τριγώνου ΚΑΓ ως προς τις πλευρές του και ως προς τις γωνίες του. y x A α 60 B α K Δ γ G y x
45 45 Α. Πότε δύο ρητοί αριθμοί λέγονται αντίθετοι και πότε αντίστροφοι; Γράψτε από ένα παράδειγμα. Β. Μεταξύ δύο αρνητικών αριθμών ποιος είναι μεγαλύτερος; Γράψτε ένα παράδειγμα. Γ. Να χαρακτηριστούν οι παρακάτω προτάσεις ως: «σωστή» ή «λάθος». α. Η απόλυτη τιμή ενός αριθμού είναι πάντα μη αρνητικός αριθμός. β. Αν ένα γινόμενο ισούται με μηδέν τότε όλοι οι παράγοντές του είναι θετικοί αριθμοί. Α. Τι ονομάζουμε απόσταση ενός σημείου Α από ευθεία ε; Β. Τι λέγεται απόσταση δύο παράλληλων ευθειών; Γ. Τι ονομάζουμε μεσοκάθετο ευθυγράμμου τμήματος και ποια ιδιότητα έχουν τα σημεία της; (5 2 6) Αν Α = 3 2 (2 3 2) : και Β = : (3 2)2 Να υπολογιστεί το Α, το Β και να λυθεί η εξίσωση Αx = Β Ένας πατέρας έδωσε στο γιό του το 50 % των χρημάτων που είχε στο πορτοφόλι του και στην κόρη του το 1. Να βρείτε: 3 Α. Τι μέρος των χρημάτων που είχε έδωσε συνολικά στα παιδιά του; Β. Αν του έμειναν 15 Ευρώ, πόσα χρήματα είχε και πόσα έδωσε σε κάθε παιδί; Στο τρίγωνο ΑΒΓ η γωνία Α είναι ορθή. Φέρνουμε το ύψος ΑΔ αυτού και από το Δ τη ΔΕ παράλληλη προς την ΑΒ. Αν η γωνία Β του τριγώνου ΑΒΔ είναι διπλάσια της γωνίας ΒΑΔ: Α. Να υπολογίσετε τις γωνίες x, y, ζ, ω που είναι σημειωμένες στο σχήμα. Β. Να βρείτε τι είδους τρίγωνο είναι το ΑΔΕ. A x E y 2x B Δ ω ζ Γ
46 46
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
Δ/ΝΣΗ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧΧΧ ΓΥΜΝΑΣΙΟ ΧΧΧΧΧΧΧΧΧΧ Α ΤΑΞΗ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2016-2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότερα3, ( 4), ( 3),( 2), 2017
ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας
Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΜαθηματικά A Γυμνασίου
Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο
Διαβάστε περισσότεραΣυνοπτική Θεωρία Μαθηματικών Α Γυμνασίου
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2
ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Α
1 2 α. Πως προσθέτουμε δύο ομόσημους ρητούς αριθμούς ; β. Πως προσθέτουμε δύο ετερόσημους ρητούς αριθμούς ; α. Πότε δύο γωνίες ονομάζονται εφεξής ; β. Πότε δύο γωνίες ονομάζονται κατακορυφήν ; Να βρείτε
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α
ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,
Διαβάστε περισσότεραΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια
Διαβάστε περισσότεραΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Α ΘΕΩΡΙΑ ΘΕΜΑ 1 ο : Α. Τι ονομάζουμε απόλυτη τιμή ενός ρητού αριθμού α και πως συμβολίζεται; Β. Πότε δύο αριθμοί λέγονται αντίθετοι; Γ. Να χαρακτηρίσετε
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.
01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ. Μια πόλη του Μεξικού με κατοίκους πρέπει να εκκενωθεί προληπτικά, γιατί απειλείται
ΓΥΜΝΑΣΙΟ ΤΑΞΗ Α ΓΥΜΝΑΣΙΟ ΤΑΞΗ Α 1 Α. Να δώσετε τον ορισμό της Ευκλείδειας Διαίρεσης και της Τέλειας Διαίρεσης δύο Φυσικών Αριθμών. Β. Πότε ένας φυσικός αριθμός διαιρείται: α: με το 5; β: με το 3; γ: με
Διαβάστε περισσότεραΣειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ
Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΚεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου
Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις
Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο
Διαβάστε περισσότεραΑ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ : ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Σχ.έτος:
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ : ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Σχ.έτος: 2018-2019 Α ΜΕΡΟΣ : ΑΡΙΘΜΗΤΙΚΗ - ΑΛΓΕΒΡΑ 1. Δίνονται οι παραστάσεις 2 2 2 A = 3 4 + 2 10 (2 10 ) :5 και Β = 2 6 + : 3 2 5 1 1 3 2 α) Να κάνεις τις
Διαβάστε περισσότεραΣειρά: Τράπεζα Θεμάτων Γυμνασίου
Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α
1 ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ 4 η ΕΚ 1. ίνονται οι παραστάσεις = 5 2 4 2 + και Β = 4 (2 5) + 24: Να υπολογιστούν οι τιµές των και Β Να αναλυθούν οι αριθµοί και Β σε γινόµενα πρώτων παραγόντων γ) Να απλοποιηθεί το
Διαβάστε περισσότεραΣωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Διαβάστε περισσότεραΑ ΓΥΜΝΑΣΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. πότε ίσο με το 1. Δώστε από ένα παράδειγμα
49 0 ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2011-2012 Α ΓΥΜΝΑΣΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : 22 ΜΑΪΟΥ 2012 ΘΕΩΡΙΑ 1 η : Να γράψετε πότε ένα κλάσμα είναι μικρότερο,
Διαβάστε περισσότεραΓεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ
Προαγωγικές εξετάσεις στα Μαθηματικά της Α Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 214-215 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑ 1 ο Α. ΘΕΩΡΙΑ Α. Να γράψετε με πιο σύντομο τρόπο τις επόμενες
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη
Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ
ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να
Διαβάστε περισσότεραMAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ
A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο
1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
Διαβάστε περισσότεραΓυμνάσιο Μαθηματικά Τάξη A 1
Μαθηματικά Τάξη A 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Α 2 a. Τι λέγεται Ευκλείδεια διαίρεση; b. Οι ισότητες 160 = 48 3 + 16 και 355 = 22 15 + 25 προκύπτουν από Ευκλείδεια διαίρεση;
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ
ΥΜΝΑΣΙΟ - 010 90 Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότεραΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Α' Γυμ. - Επαναληπτικές Ασκήσεις 1 Επαναληπτικές Ασκήσεις Άλγεβρα-Γεωμετρία Άσκηση 1 Σημείωσε με Χ ποιοι από τους παρακάτω αριθμούς είναι Φυσικοί, Ακέραιοι ή/και Ρητοί: Αριθμοί Φυσικοί Ακέραιοι Ρητοί 0
Διαβάστε περισσότεραΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :
ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραΓεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις
Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση
Διαβάστε περισσότεραΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότεραΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
Διαβάστε περισσότεραΘέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα
Διαβάστε περισσότεραΚεφάλαιο 1 ο : Οι Φυσικοί αριθμοί
ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ
Ενότητα 1: Σύνολα 1. Με τη βοήθεια του πιο κάτω διαγράμματος να γράψετε με αναγραφή τα σύνολα: Ω A 5. 1. B Ω =. 6. 4. 3. 7. 8.. Από το διπλανό διάγραμμα, να γράψετε με αναγραφή τα σύνολα: 3. Δίνεται το
Διαβάστε περισσότεραΜαθημαηικά Α Γσμμαζίοσ
Μαθημαηικά Α Γσμμαζίοσ Μεθοδική Επαμάληυη Σηέλιος Μιταήλογλοσ www.askisopolis.gr 2017-18 Η επαμάληυη βήμα βήμα με ερφηήζεις και απαμηήζεις ζε κάθε παράγραθο καθώς και ηις βαζικές αζκήζεις. ΚΕΦΑΛΑΙΟ 1ο
Διαβάστε περισσότεραΜαθημαηικά Α Γσμμαζίοσ
Μαθημαηικά Α Γσμμαζίοσ Μεθοδική Επαμάληυη Σηέλιος Μιταήλογλοσ www.askisopolis.gr 2017-18 Η επαμάληυη βήμα βήμα με ερφηήζεις και απαμηήζεις ζε κάθε παράγραθο καθώς και ηις βαζικές αζκήζεις. ΚΕΦΑΛΑΙΟ 1ο
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2017 ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΤΡΙΑΣ : ΑΡΙΘΜΟΣ ΚΑΤΑΛΟΓΟΥ :
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 16-17 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 17 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΤΑΞΗ : Α ΑΡΙΘΜΗΤΙΚΩΣ : ΔΙΑΡΚΕΙΑ : ώρες ΟΛΟΓΡΑΦΩΣ : ΗΜΕΡΟΜΗΝΙΑ : 6.5.17 ΥΠ. ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ
Διαβάστε περισσότεραΑ σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών
Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 η ΕΚΑ Α
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α. Πότε δύο γωνίες λέγονται εφεξής; Ποιο σχήµα ονοµάζουµε κύκλο µε κέντρο Ο και ακτίνα ρ ; Στον παρακάτω πίνακα να αντιστοιχίσετε κάθε αριθµό της πρώτης στήλης µε ένα γράµµα της
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΚεφάλαιο 1 ο : Οι Φυσικοί αριθμοί
ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α! ΤΑΞΗΣ 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική
Διαβάστε περισσότεραΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
Διαβάστε περισσότεραδίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.
3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο
Διαβάστε περισσότεραΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ με Απαντήσεις
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ με Απαντήσεις (το υλικό ανανεώνεται συνεχώς) ΓΥΜΝΑΣΙΟ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΣΧΟΛΙΚΟ ΕΤΟΣ:2010-2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ I. ΘΕΩΡΙΑ
Διαβάστε περισσότεραΑσκήσεις 1) Να βρεθεί το εμβαδόν του σχήματος, όταν ΑΒ=250 cm, ΓΔ=48 dm και ΒΓ=1,6 m
1 1 004-005 Θεωρία Θέμα 1 ο : α) Με ποια σειρά κάνουμε τις πράξεις σε μια αριθμητική παράσταση που έχει παρενθέσεις; β) Να βάλετε σε κατάλληλη θέση παρενθέσεις ώστε να ισχύει η ισότητα +18.4 +1 = 100 Θέμα
Διαβάστε περισσότερα2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 00 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ Α. Να αντιστοιχίσετε κάθε στοιχείο της πρώτης στήλης με το αντίστοιχο στοιχείο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΥ ΜΕΡΣ ο «ΑΛΓΕΒΡΑ». Να υπολογίσετε την τιμή της παράστασης: Α = ( + ) 4( ) 8, όταν = 0,45. Απλοποιούμε πρώτα την παράσταση : Α = ( + ) 4( ) 8 = = + 6 4 + 4 8
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότεραΜαθημαηικά Γ Γυμμαζίου
Μαθημαηικά Γ Γυμμαζίου Μεθοδική Επαμάληψη Σηέλιος Μιχαήλογλου 017-18 www.askisopolis.gr Η επαμάληψη ηωμ Μαθημαηικώμ βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις www.askisopolis.gr 1.1. Πράξεις
Διαβάστε περισσότεραΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
Θέματα απολυτήριων εξετάσεων Γ Γυμνασίου σχολικού έτους 013-014 ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων των απολυτήριων εξετάσεων
Διαβάστε περισσότεραΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του
Διαβάστε περισσότεραΠαράλληλες ευθείες που τέμνονται από μια άλλη ευθεία. είναι «επί τα αυτά».
Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Οι γωνίες που βρίσκονται ανάμεσα στις ευθείες ε 1 και ε ονομάζονται «εντός» (των ευθειών)και όλες οι άλλες «εκτός». Οι γωνίες B 4, B 3, 1, είναι εντός
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου
ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2013 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΤΑΞΗ Α ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ B Κ 1.1 ΕΝΟΤΗΤΑ : Βασικές Γεωμετρικές ένοιες Τάξη : A Γυμνασίου. Καθ. Χρήστος Μουρατίδης
Διαβάστε περισσότερα