Sedmo predavanje. Hemija životne sredine I (T. Anđelković)
|
|
- Φιλομήλ Γεωργίου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Sedmo predavanje 1
2 CILJEVI PREDAVANJA ISHODI PREDAVANJA Nastanak zemljišta. Zemljište kao trofazni sistem. Mehanički sastav zemljišta tekstura zemljišta. Gustina, poroznost, struktura, permeabilnost zemljišta. Sastav zemljišta: mineraloški, organska materija. Profil zemljišta. Na kraju predavanja student će biti osposobljen da: objasni i definiše teksturu, sturkturu, poroznost, gustinu i permeabilnost zemljišta definiše kompletan sastav zemljišta objasni horizonte zemljišta 2
3 Raspadanjem stena nastaje rastresita masa litosfere. Ova masa dobija mnoge nove osobine: postaje propustljiva za vodu i vazduh, povećava se ukupna površina čestica koje zato postaju aktivnije, tako da se i hemijski procesi koji se odvijaju u njoj ubrzavaju. Stenski materijal se može pretvoriti u zemljište, tek učešćem organizama, pre svega biljaka. 3
4
5 Zemljište je prirodno telo nastalo pod uticajem živih organizama, a sastoji se od čvrste (minerali i organska materija), tečne i gasovite faze. Na površini se graniči sa vazduhom, vodom i biljnim materijalom (koji nije započeo razgradnju). Smatra se da neka površina nije zemljište ukoliko je stalno prekrivena vodom (više od 2.5 m). Donju granicu, koja razdvaja zemljište od nezemljišta, je teško definisati. U cilju klasifikacije, donja granica se arbitrarno postavlja na 200 cm. Izvor: Soil Science Society of America 5
6 Zemljišni rastvor Zemljišni vazduh 6
7 drenažna voda Čestica zemlje Higroskopna voda Aerisana zona Vazduh i vodena para u zemljištu Vodeni film Zasićena kapilarna voda Zona kapilarne vode Nivo podzemnih voda Zona podzemnih voda Podzemna voda 7
8 Glina Prašina Pesak Šljunak Clay Silt Sand Gravels sitan 2 μm 20 μm grub 200 μm 2 mm Pesak: lak, dobra drenaža, lako se aeriše. Najvažnije komponente peska su kvarc i feldspati; relativno su inertni i slab su izvor nutrijenata. Glinovita zemljišta su teška, imaju lošu drenažu i aeraciju. Komponente su: minerali gline, organska materija, primarni minerali i hidratisani oksidi Fe i Al. Velika ukupna površina čestica, učestvuje u jonoizmenjivačkim i/ili adsorpcionim reakcijama. Adsorptivna sposobnost zemljišta, odnosno, sposobnost zadržavanja nutrijenata je vezana za glinovitu frakciju. 8
9 Može se videti golim okom. Prilikom uzorkovanja rukom ne zadržava se u ruci. Prašina Suva: praškasta i daje puderast osećaj - poput brašna. Mokra: mekan i klizav osećaj. Nije lepljiva i nema plastična svojstva. Može se videti lupom ili mikroskopom. Prilikom uzorkovanja rukom stvara prevlaku na ruci, može se ostrugati sa ruke. Glina Suva: tvrda. Mokra: Lepljiva, plastični osećaj. Može se videti elektronskim mikroskopom. Prilikom uzorkovanja rukom lepi se za prste. 9
10 Predstavlja odnos disperznih frakcija izraženih u % u uzorku suvog zemljišta. Određuje se na osnovu trokomponentnog dijagrama. Važno svojstvo jer određuje primenu zemljišta. 10
11 Poroznost Permeabilnost Bubrenje-skupljanje Kapacitet zadržavanja vode Erodabilnost 11
12 Velika količina prašine i gline, što ih čini blatnjavim kada su mokra. Veličina pora je mala, ali ih ima mnogo pa zadržavaju vodu. Kada glinovita zemljišta počnu da se suše, ona i dalje mogu da zadrže veliku količinu vode, ali adhezivna i kohezivna svojstva vode, čine vodu nedostupnom za biljku. 12
13 Veličina pora je veća, što dopušta vodi da lako otiče kroz zemljište, van zone korena. Sklona isušivanju. Mala specifična površina čestica redukuje plodnost zemljišta. 13
14 Smeša peska, prašine i gline koja je optimalna za agrokulturu. 14
15 Primer: 35% gline 30% prašine 35% peska Glinovita ilovača 15
16 Osobina/Ponašanje Pesak Prašina Glina Kapacitet zadržavanja vode Nizak Srednje visok Visok Aeracija Dobra Srednja Niska OM razlaganje Brzo Srednje Sporo Potencijal erozije vodom Nizak Visok Nizak Siromašno Srednje visoko Visoko Izraženo Srednje Nisko Snabdevanje nutrijentima Izluživanje polutanata 16
17 Smanjenjem veličine čestica, raste specifična površina. Glina ima oko puta veću površinu od peska. Specifična površina ima veliki uticaj na: kapacitet zadržavanja vode, hemijske reakcije, koheziju zemljišta, sposobnost održavanja mikroorganizama. 17
18 ukazuje na sastav zemljišta, tj. na relativan odnos organske materije i minerala. Gustina individualnih čestica - gustina čvrste faze (particle density). Manja od 1 g/cm3 za OM, veća od 5 g/cm3 za neke metalne okside ili 7 g/cm3 za manje česte minerale kao što su metalni sulfidi. Zapreminska gustina zemljišta (bulk density) je gustina u prirodnom, neporemećenom sklopu, uključuje prostor pora između čestica; manja je od gustine čvrste faze. 18
19 19
20 Površinski sloj zemljišta, sa dovoljnom količinom peska, pokazuje zapreminsku gustinu od 1,2 do 1,8 g/cm3. Zemljišta sa višim sadržajem humusa, pokazuju manju zapreminsku gustinu, od 1,0 do 1,6 g/cm3, zbog manje čestične gustine i zbog veće ukupne poroznosti koja nastaje između i unutar strukturnih agregata pod uticajem humusa. 20
21 Kada je poznata gustina čvrste faze i zapreminska gustina, može se izračunati poroznost zemljišta: čestična gustina zapreminska gustina Poroznost zemljišta (vol %) 100 čestična gustina Zemljišta sa velikom zapreminskom gustinom imaju nisku poroznost, pa samim tim nisku permeabilnost. Po pravilu peskovita zemljišta pokazuju poroznost od 35 do 50%, zemljišta sa većim sadržajem OM pokazuju veću poroznost od oko 60%. Sa porastom dubine zemljišta, zemljište postaje kompaktnije od površinskog zemljišta i obično sadrži nizak % OM, tako da se i poroznost smanjuje. 21
22 Mehaničke frakcije se međusobno povezuju u strukturne agregate različite forme i veličine. Skup agregata predstavlja strukturu zemljišta. Prirodni lepak zemljišta (cementna materija) su koloidi organskog i neorganskog sastava (Ca-humat). Koloidi slepljuju čestice gline, praha i peska u mikroagregate. Mikroagregati se međusobno lepe u makroagregate. 22
23
24 24
25 ili hidraulična provodljivost je mera sposobnosti zemljišta da propušta vodu naniže. Stepen lateralnog kretanja podzemnih voda u dubljim slojevima zemljišta, takođe je određen permeabilnošću. Brzina kretanja vode naniže je obično 1 5 cm3/h (0,5 cm3/h veoma sporo, 15 cm3/h veoma brzo). Zavisi od teksture zemljišta (grub pesak u pustinjama ima veliku permeabilnost, dok aluvijalna zemljišta fine strukture mogu pokazati veoma nisku permeabilnost). Zemljišta sa razvijenom strukturom su propustljivija od onih bez definisane strukture. Važna osobina zemljišta jer utiče na hemijske procese. Tako, zemljišta sa malom permeabilonšću, mogu da postanu poplavljena, što dovodi do stvaranja potencijalno redukcionih uslova. Zatim, permeabilnost utiče na transport hemikalija kroz zemljište. 25
26 Reflektuje sastav Zemljine kore: O, Si, Al. U sastav zemljišta ulaze svi poznati elementi (10-15 elemenata najzastupljeniji). Elementarni sastav zavisi od: o vrste zemljišta (različit sastava stena od kojih je zemljište nastalo) o zemljišnog horizonta (starost zemljišta). Pedosfera je bogatija Si, C, O, H, N od litosfere, ali je siromašnija Ca, Mg, Na, K od litosfere. ukupni elementi dostupni elementi Dostupni elementi su onaj deo elemenata koji mogu da učestvuju u hemijskim i biološkim reakcijama. 26
27 27
28 Organska materija zemljišta Zemljišna organska materija Živi organizmi (edafon) Neizmenjen materijal Nehuminske supstance Transformisani proizvodi (humus) Huminske supstance 28
29 Definicije ZOM i HS Izraz Definicija Organski ostaci Neraspadnuta biljna i životinjska tkiva i proizvodi njihove delimične dekompozicije. Zemljišna biomasa Organska materija u formi živog mikrobialnog tkiva. Humus Sva organska jedinjenja u zemljištu, izuzev neraspadnutih biljnih i životinjskih tkiva, njihovih proizvoda delimične dekompozicije i zemljišne biomase. Zemljišna organska materija Isto što i humus. Huminske supstance Grupa visokomolekularnih braon do mrko obojenih supstanci, nastalih tokom sekundarnih reakcija sinteze. Izraz se koristi kao generičko ime da bi se opisao obojeni materijal ili njegove frakcije dobijene na bazi njihove rastvorljivosti. Nehuminske supstance Jedinjenja koja pripadaju poznatim klasama jedinjenja u biohemiji, kao što su aminokiseline, ugljeni hidrati, masti, voskovi, smole i organske kiseline. Humus verovatno sadrži većinu, ako ne i sva, biohemijska jedinjenja koja živi organizam može da sintetiše. Humin U alkalijama nerastvorna frakcija humusa. Huminska kiselina Materija mrke boje koja se može ekstrahovati iz zemljišta različitim reagensima i koja je nerastvorna u razblaženim kiselinama. Fulvo kiselina Materija svetle boje koja ostaje u rastvoru nakon udaljavanja huminske kiseline, acidifikacijom. Himatomelanska kiselina Deo huminske kiseline koji je rastvoran u alkoholu.
30 Osobine humusa i njegov uticaj na zemljište O sobina Prim edba U ticaj na zem ljište B oja Tipična tam na boja mnogih zem ljišta uzrokovana organskom m aterijom. je M ože olakšati i ubrzati zagrevanje. Zadržavanje vode O rganska materija m ože da zadrži 20 puta više vode od svoje težine. Sprečava sušenje i skupljanje zem ljišta. M ože značajno poboljšati moć zadržavanja vlage peskovitih zem ljišta. V eza sa m ineralim a gline D olazi do cem entiranja zem ljišnih čestica u strukturne jedinice agregate. O m ogućava razm enu gasova. Stabilizuje strukturu. Povećava perm eabilnost. H elatizacija Form ira stabilne komplekse sa C u 2+, M n 2+, Zn 2+ i drugim polivalentnim katjonim a. M ože povećati dostupnost mikronutrienata višim biljkam a. R astvorljivost u vodi N erastvorljivost organske m aterije prouzro kovana je njenom asocijacijom sa glinom. Takođe, i soli dvo- i trovalentnih katjona sa organskom m aterijom su nerastvorne. Izolo vana organska materija je delim ično rastvorna u vodi. M alo organske m aterije se gubi izluživanjem. Puferski kapacitet O rganska m aterija pokazuje puferske osobine u blago kiselom, neutralnom i alkalnom opsegu. O m ogućava održavanje približno konstan tne ph vrednosti zem ljišta. Izm ena katjona U kupna kiselost izolovanih frakcija humusa se kreće od 3 do 14 m olkg -1. M ože povećati kapacitet izm ene katjona zem ljišta. O d 20 do 70% katjonskog kapaciteta m nogih zem ljišta potiče od organske m aterije. M ineralizacija D ekompozicijom organske materije nastaje Izvor nutritivnih elem enata za rast biljaka. C O 2, N H 4, N O 3, PO 34, SO 24. V ezivanje sa organskim jedinjenjima U tiče na bioaktivnost, perzistenciju i b iodegradabilnost pesticida i drugih organ skih jedinjenja. M odifikuje aplikativnu količinu pesticida.
31 Sastav zemljišta jako varira kako u horizontalnom tako i u vertikalnom pravcu. Spoljašnja i unutrašnja morfologija zemljišta. Serija horizontalnih slojeva koji se razlikuju po boji i/ili teksturi horizonti. Skup zemljišnih horizonata čini zemljišni profil.
32 Fizičke i hemijske osobine zemljišta nisu jedinstvene za zemljište, zemljište ne predstavlja monolitnu masu nepromenjenog sastava. Sastav zemljišta jako varira kako u horizontalnom tako i u vertikalnom pravcu. Ako se posmatra zemljište u svom horizontalnom pravcu (neki predeo) očigledne su razlike u reljefu, boji zemljišta, strukturi. Tada govorimo o spoljašnjoj morfologiji zemljišta. Mada manje vidiljive, značajne su i razlike u fizičkim i hemijskim osobinama zemljišta u vertikalnom pravcu. Tada govorimo o unutrašnjoj morfologiji zemljišta koja podrazumeva izgled vertikalnog preseka ili profila zemljišta. Na tom vertikalnom preseku zemljišta mogu se uočiti serija horizontalnih slojeva koji se razlikuju po boji i/ili teksturi. Takvi slojevi se zovu horizonti, a skup zemljišnih horizonata čini zemljišni profil.
33 Horizonti u tlu - svi horizonti ne moraju biti razvijeni - nezrela tla nemaju horizont B - erozija može ukloniti horizont O, A, itd. - detaljnim proučavanjem horizonti se mogu podeliti na podhorizonte (A1, A2, A3, ) - prema nekim podelama O = A0, A = A1 i E = A2 - R=matični supstrat R
34 Horizont O - gotovo čista, delom raspadnuta, organska materija
35 Horizont A -tamno obojeni horizont, sastoji se od humusa i mineralnih zrna -horizont karakterističan po delomičnom izluživanju/ispiranju. -Ispiranje je praćeno proceđivanjem vode s površine u dublje slojeve. Neke vrste se ispiru u jonskom obliku u rastvoru (Ca, Na, K, Mg, ), a neke se transportuju u vidu koloida (Fe,Al-hidroksidi, H4SiO4). -glavni katalizator izluživanja je humus (kompleksna i vrlo otporna smesa smeđih do tamnosmeđih amorfnih i koloidnih supstanci nastalih uglavnom raspadom biljaka. Neke sastojke humusa mogu sintetisati i organizmi koji žive u tlu). -organske kiseline i organski kompleksi koji nastaju u humusu bakterijskom aktivnošću te CO2 nastao raspadom humusa takođe doprinose izluživanju u horizontu A. -sniženi ph doprinosi raspadu minerala te mobilizaciji metala adsorbovanih na mineralima glina, Fe i Alokside/hidrokside te organsku materiju.
36 Horizonti nastaju kao rezultat kompleksnih interakcija koji se odvijaju tokom alteracije, tj. površinskog raspadanja. Kišnica koja perkolira kroz zemljište nosi sa sobom rastvorene i koloidne čvrste čestice ka nižim horizon tima u kojima se oni talože. Biološki procesi (kao što je bakterijsko razlaganje ostataka biljaka), dovode do stvaranja slabo kiselog CO2, organskih kiselina, i kompleksinh jedinjenja koji se takođe prenose kišnicom ka nižim horizontima gde interaguju sa glinama i drugim mineralima, pri čemu dovode do njihovog preobražaja, tj. alteracije. Površinski sloj zemljišta, nekoliko desetina santimetara debljine, je poznat kao A horizont - površinski sloj. Ovaj sloj je sloj maksimalne biološke aktivnosti u zemljištu i sadrži najviše ZOM. Metalni joni i čestice gline u ovom A horizontu podležu značajnom izluživanju.
37 Horizont E -svjetlo obojeni horizont s malo organske materije -horizont karakterističan po intezivnom izluživanju/ispiranju. -ovaj horizont može nedostajati u suvim klimama ili mladim zemljištima.
38 Horizont B -smeđe do narančasto obojen horizont. -rastvorene i koloidne vrste (gline, hidroksidi, silicijumova kiselina) mogu biti odložene u ovom horizontu. -crvena boja ukazuje na prisustvo Fe-oksida -moguće su i manje količine organske materije.
39 Horizont C -svjetliji od horizonta B -malo ili potpuno bez org. materije. -rastresiti deo matiĉnog supstrata bez znakova pedogenetskih procesa karakterističnih za ostale horizonte -može predstavljati trošeni stenski materijal in situ ili materijal transportovan vodenim tokovima, vetrom, gravitacijom, - neorganski procesi trošenja stena uvek su izraženi na većim dubinama od dubina formiranja tla. Važnost razlikovanja horizonata prilikom uzorkovanja: -ukoliko radimo prospekciju metala koji su sadržani u rezidualnim mineralima (Ti, Cr, Zr, ) tada ćemo uzorkovati horizont A. -ukoliko radimo prospekciju mobilnih metala tada ćemo uzorkovati horizont B u kojem su se ti metali nataložili.
40 Sledeći sloj je B horizont ili iluvijalni horizont. Ovaj horizont prima sve materije koje su isprane (izlužene) iz A horizonta, i to OM, soli i čestice gline. U procesu zagađivanja zemljišta drugi horizont je posebno važan, zbog povišenog sadržaja glina koje jonoizmenjivački vezuju mnoge materije. U njemu se najviše koncentruju štetni metali kao što su Pb, Cd, Hg, Co, Ni, radioaktivni Cs i dr. Znači, oni se vezuju za gline, tj. fiksiraju se glinama. C horizont predstavlja rastresiti deo matične stene, a R je čvrsta stena. C i R sloj ne pripadaju zemljištu.
41 41
42 Razlog razlike u sastavu atmosferskog i zemljišnog vazduha leži u biološkim procesima koji se odvijaju u zemljištu. Tačno Netačno 42
43 Glinovita frakcija zemljišta se sastoji iz minerala gline, organske materije, fino raspoređenih primarnih minerala i hidratisanih oksida Fe i Al. Tačno Netačno 43
44 Zemljišta kod kojih je odnos peska, prašine i gline optimalan za agrokulturu se nazivaju. 44
45 Smanjenjem veličine čestica zemljišta, smanjuje se i specifična površina zemljišta. Tačno Netačno 45
46 Izluživanje polutanata iz zemljišta će biti veće ukoliko je udeo gline u zemljištu veći. Tačno Netačno 46
47 Kapacitet zadržavanja vode u zemljištu će biti veći ukoliko je udeo gline visok. Tačno Netačno 47
48 Pedosfera je bogatija Si, C, N od litosfere, ali je siromašnija Ca, Mg, Na, K od litosfere. Tačno Netačno 48
Sedmo predavanje. Osnove hemije životne sredine (T. Anđelković) 1
Sedmo predavanje Osnove hemije životne sredine (T. Anđelković) 1 CILJEVI PREDAVANJA Nastanak zemljišta. Zemljište kao trofazni sistem. Mehanički sastav zemljišta tekstura zemljišta. Gustina, poroznost,
Sastav i procesi u zemljištu
Univerzitet u Nišu Prirodno-matematički fakultet Sastav i procesi u zemljištu Četvrto predavanje Cilj predavanja 1. Zemljište - pojam, definicija, nastanak 2. Sastav zemljišta (zemljište kao trofazni sistem,
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
Kiselo bazni indikatori
Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
REGIONALNO-METAMORFNE STENE ( ºC; 2-10 kbar)
REGIONALNO-METAMORFNE STENE (200-800ºC; 2-10 kbar) PODELA PREMA TEKSTURI 1. ŠKRILJAVE I 2. MASIVNE METAMORFNE STENE PODELA PREMA STEPENU KRISTALINITETA (NE ZAVISI OD STEPENA METAMORFIZMA) 1. STENE VISOKOG
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
Osnovne veličine, jedinice i izračunavanja u hemiji
Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
KOLOIDI. suspenzija. pravi rastvori. veće od. manje od < 1 nm. > 100 nm
MATERIJA SUPSTANCE SMEŠE ELEMENTI JEDINJENJA HOMOGENE HETEROGENE pravi rastvori veće od suspenzija manje od < 1 nm od do > 100 nm Tomas Grem je dao ime rastvorima kod kojih je primetio da: Čestice dispergovane
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
RAD, SNAGA I ENERGIJA
RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
P E D O L O G I J A. Tema: Voda u tlu
MEĐUSVEUČILIŠNI STUDIJ MEDITERANSKA POLJOPRIVREDA P E D O L O G I J A Tema: Voda u tlu Doc.dr.sc. Aleksandra BENSA i Dr.sc. Boško MILOŠ Autorizirana prezentacija Split, 2011/12. Cilj Objasniti odnose između
HEMIJSKE RAVNOTEŽE. a = f = f c.
II RAČUNSKE VEŽBE HEMIJSKE RAVNOTEŽE TEORIJSKI DEO I POJAM AKTIVNOSTI JONA Razblaženi rastvori (do 0,1 mol/dm ) u kojima je interakcija između čestica rastvorene supstance zanemarljiva ponašaju se kao
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija
Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za prehrambenu tehnologiju i biotehnologiju Referati za vježbe iz kolegija PRERADA GROŽðA Stručni studij kemijske tehnologije Smjer: Prehrambena
Jednodimenzionalne slučajne promenljive
Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Drugi zakon termodinamike
Drugi zakon termodinamike Uvod Drugi zakon termodinamike nije univerzalni prirodni zakon, ne važi za sve sisteme, naročito ne za neobične sisteme (mikrouslovi, svemirski uslovi). Zasnovan je na zajedničkom
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M