Výroky, hypotézy, axiómy, definície a matematické vety
|
|
- Λυσάνδρα Σπηλιωτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Výroky, hypotézy, axiómy, definície a matematické vety Výrok je každá oznamovacia veta (tvrdenie), o ktorej má zmysel uvažovať, či je pravdivá alebo nepravdivá. Výroky označujeme pomocou symbolov: A, B, C, D, V,... atď., ktoré nazývame výrokové premenné. Výrok a) pravdivý - platí má pravdivostnú hodnotu (1) b) nepravdivý neplatí má pravdivostnú hodnotu (0) Negácia výroku Ku každému výroku A možno vytvoriť výrok A ( A), ktorý v plnom rozsahu popiera (neguje) to, čo tvrdí výrok A. Výrok A sa nazýva negácia výroku A. Negáciu vytvoríme tak, že pred výrok vložíme text Nie je pravda, že...., alebo pomocou predpony ne.., slovného spojenia nie je. Tabuľka pravdivostných hodnôt: A A (1) (0) (0) (1) Hypotéza (z gréc. hypo - pod, nižšie, znížený + thesis - tvrdenie) je tvrdenie, o ktorom v čase jeho formulovania nemožno rozhodnúť, či je pravdivé alebo nepravdivé. Tvorenie vedeckých hypotéz nie je náhodný akt. Poznávanie stavia pred vedcov potrebu tvoriť vždy nové hypotézy. Overovanie hypotéz sa nazýva testovanie hypotéz. Po uplynutí určitého času sa hypotéza môže stať výrokom. Napr.: H: V triede je žiak, ktorý má u seba 500,-. Po veľmi krátkom čase vieme v triede zistiť, či to bude výrok pravdivý alebo nepravdivý. Aj hypotéza, ktorá sa nakoniec ukáže byť nepravdivou, môže byť významným míľnikom na ceste poznávania. Axióma je tvrdenie, ktoré pri budovaní určitej teórie označíme za evidentné (bez pochybností pravdivé), tzn. nedokazujeme ho, pretože je dané. Napr.: Štvorec má všetky strany rovnako dlhé. Definícia určuje vymedzenie objektu (činnosti) a určuje jeho vlastnosti pomocou základných, alebo skôr odvodených pojmov. Je dobré, ak definícia vystihuje čo najviac vlastností definovaného objektu(veľmi to pomôže napríklad pri rozhodovaní, či definovaný objekt vôbec jestvuje). Niektoré veci a javy sú však dosť chudobné na vlastnosti. Napr.: Bod, priamka, rovina sa berú ako základné pojmy nedefinujeme ich, ale pomocou nich už definujeme iné objekty (úsečka, n-uholník, atď.). Najjednoduchšia je definícia ostenzívna, pri ktorej na vec (alebo jej obraz, fotografiu) jednoducho ukážeme: takto vyzerá morská hviezdica. 1
2 Úlohy: V prípade výrokov vytvorte ich negácie. Určite pravdivostné hodnoty pôvodných a negovaných výrokov. A: Číslo 3 je prvočíslo. I: Máš domácu úlohu? B: Bratislava leží v Egypte. J: x 2-5x +6 = 0 C: Prešovský kraj. K: Číslo je deliteľné 4. D: Matematika je veda. L: Platí že (a + b) 2 = a 2 + b 2. E: Číslo 22 je deliteľné 2. M: Obsah kruhu je S = π.r 2. F: Dobrý deň! N: 4 2 sa rovná 18. G: Existuje snežný muž Yetti. O: Mám nové auto. H: Sínus 300 je 2,1. P: Nie je tu. Kvantifikovaný výrok je oznamovacia veta, ktorá udáva určitý počet, alebo odhad počtu predmetov, osôb atď. (objektov) s rovnakou vlastnosťou. V kvantifikovanom výroku sa vyskytujú slová: práve, najviac, každý, všetci, niektorí, aspoň, žiadny...atď., ktoré sa nazývajú kvantifikátory a číslovky. Výrok aspoň 5 znamená 5 a viac. Výrok najviac 5 znamená 5 a menej Pre symbolické zápisy kvantifikovaných výrokov používame a) všeobecný kvantifikátor - pre každé (všetky) platí... b) existenčný kvantifikátor - existuje aspoň jedno..., pre ktoré platí... Negácia kvantifikovaného výroku: Výrok Negácia výroku Každý... je... Aspoň jeden... nie je... Aspoň jeden... je... Každý... nie je... Aspoň n... je...(n>1) Najviac (n-1)... je... Najviac n... je... (n>=1) Aspoň (n+1)... je... Práve n... je... Najviac (n-1) alebo aspoň (n+1) je... [ x M; V(x)] ~ x M; V (x) [ x M; V(x)] ~ x M; V (x) (x = y) ~ x y, (x < y) ~ x = y x > y, t.j. x y, (x y) ~ x < y Úlohy: Negujte nasledujúce výroky: A: Číslo 3 je koreňom rovnice x 2 = 9. B : > 7 C: Uhlopriečky štvorca sú na seba kolmé. 2
3 D: -7 N E: Každá úloha má riešenie. F: Existuje aspoň jeden obdĺžnik, ktorý má kolmé uhlopriečky. G: Existuje aspoň jeden pravouhlý trojuholník. H: Táto kniha má najviac 50 strán. I: Každá pieseň má koniec. J: Na zasadnutí ZR našej triedy bolo práve 20 rodičov. K: x Z; x 2 9 = 0. L: x N; x < 10 6 Jednoduchý výrok vety, ktoré vyjadrujú jednu myšlienku, tvoria jednu vec. Napr.: Každá rovnica má riešenie. Zložený výrok spojenia jednoduchých výrokov pomocou spojok. Napr.: Každá rovnica má riešenie alebo nemá riešenie. Logické spojky sú spojky a ustálené slovné spojenia, ktoré slúžia na spájanie výrokov a vytvárajú sa pomocou nich zložené výroky, ktorými sú konjunkcia, disjunkcia (alternatíva), implikácia, ekvivalencia ako aj tautológia a kontraindikácia. Zložené výroky a operácie s nimi Konjunkcia (A Λ B) je spojenie dvoch výrokov pomocou spojok a, aj, i, len, a súčasne. Má hodnotu pravda, len ak oba výroky majú hodnotu pravda. Poznáme ho tiež pod pojmom logický súčin. Napr.: Naučím sa všetky otázky a spravím skúšku. Disjunkcia (A V B) je spojenie dvoch výrokov pomocou spojky alebo. Má hodnotu pravda, ak aspoň jeden z výrokov je pravdivý. Poznáme ho tiež pod pojmom logický súčet alebo alternatíva. Napr.: Naučím sa otázky alebo nepôjdem na skúšku. Implikácia (A B) je spojenie dvoch výrokov pomocou slovných spojení Ak (Keď)..., tak... alebo Ak (Keď)..., potom.... Má hodnotu nepravda len vtedy, ak výrok A je pravdivý a výrok B je nepravdivý. Poznáme ju tiež pod názvom logická podmienka. Napr.: Ak sa naučím všetky otázky, tak pôjdem na skúšku. Ekvivalencia (A B) je spojenie dvoch výrokov pomocou slovných spojení práve vtedy keď, vtedy a len vtedy, je ekvivalentné. Má hodnotu pravda práve vtedy, ak oba výroky majú rovnakú pravdivostnú hodnotu. Poznáme ju tiež pod pojmom logická rovnosť. 3
4 Napr: Na skúšku pôjdem vtedy a len vtedy, keď sa naučím všetky otázky. Tabuľka pravdivostných hodnôt: A B A B A B A B A B Príklad: Zostrojte tabuľku pravdivostných hodnôt pre formuly: A B, B A, B A A B A B A B B A B A Z tabuľky vyplýva, že zložené výroky A B a B A majú vždy rovnaké pravdivostné hodnoty a preto ich môžeme navzájom zamieňať. Takéto výroky sú ekvivalentné. Výrok B A sa nazýva obmena implikácie A B a naopak. Sú navzájom zameniteľné. Výrok B A sa nazýva obrátená implikácia implikácie A B a naopak. Negácia zložených výrokov A B A B (A B) (A B) (A B) (A B) A B A B A B (A B ) (A B) Z tabuľky vyplýva, že rovnaké pravdivostné majú vždy tieto dvojice zložených výrokov: (A B) ~ A B (A B) ~ A B (A B) ~ A B (A B) ~ (A B ) (A B) Toto sú zároveň pravidlá vzorce (DE MORGANOVE PRAVIDLÁ), ktoré sa používajú na negáciu zložených výrokov. Úlohy: 1/ Negujte nasledujúce výroky: A: Príde Peter a Mária B: Prší a je mokro 4
5 C: Svieti slnko alebo fúka vietor D: Ak sa nahneváme, budeme zlí E: Ak príde Jozef, potom príde aj Eva F: Mám dobrú náladu práve vtedy, keď prší G: Každý lichobežník je rovnostranný H: Existuje aspoň jedno prvočíslo, ktoré je párne I: V triede 1.A aspoň 8 žiakov nosí okuliare J: x R; (x + 1) 2 = x 2 + 2x + 1 2/ Z daných výrokov A: Číslo 20 je nepárne. ( Uhlopriečky obdĺžnika sú rovnako dlhé. ) B: Číslo 20 končí nulou. ( Uhlopriečky obdĺžnika sú na seba kolmé. ) vytvorte výroky: A B, A B, A B, A B a ich negácie, a potom určte ich pravdivostné hodnoty. 3/ Dané sú výroky P: Prší., S: Svieti Slnko., V: Fúka vietor. (Momentálna situácia za oknom). Vytvorte z nich zložené výroky: P, (P S ), (P V) S, P S, P S, (P S) V, V S, (P S) V, (P S) V, (P S) (P V ), S (P V ), (P S) V, (P S), )S P) V, (P V ) S Výroková formula Výrokovou formulou nazývame zápis, ktorý obsahuje výrokové premenné, logické spojky a zátvorky tak, že po dosadení ľubovoľných výrokov za výrokové premenné dostaneme výrok. Napr.: A, A, A B, (P S) V,... Pomocou tabuľky môžeme zistiť, pre ktoré pravdivostné hodnoty výrokových premenných vznikne pravdivý alebo nepravdivý výrok. Napr.: V: Ak chce vodič odbočiť, tak dáva znamenie o zmene smeru jazdy. V 1 : Vodič chce odbočiť. V 2 : Vodič dáva znamenie o zmene smeru jazdy. V: V 1 V 2 V 1 V 2 V 1 V 2 čo robí vodič chce odbočiť, dá znamenie chce odbočiť, nedá znamenie nechce odbočiť, dá znamenie nechce odbočiť, nedá znamenie 5
6 Príklad: Zistite pomocou tabuľky pravdivostnú hodnotu formuly: (A B) A B Riešenie: A B A B (A B) (A B) A B (A B) A B Uvedená výroková formula reprezentuje zložený výrok, ktorý je vždy pravdivý. Tautológia je zložený výrok, ktorý má pravdivostnú hodnotu 1 bez ohľadu na pravdivostné hodnoty východiskových výrokov. Tautológia alebo totožnostno - pravdivý výrok (z gréckeho ταυτολογία tautologia) je výrok (výroková formula), ktorý je pravdivý pri akýchkoľvek významoch pravdivosti ich premenných. Kontraindikácia je zložený výrok, ktorý má pravdivostnú hodnotu 0 bez ohľadu na východiskové výroky. Je to negácia tautológie. Základ tabuľky pravdivostných hodnôt: A A B A B C A B C D Pre n výrokov A, B, C, D, platí 2 n riadkov 6
7 Definícia určuje vymedzenie nového pojmu a určuje jeho typické vlastnosti pomocou základných, alebo skôr odvodených pojmov. Napr.: Úsečka je časť priamky ohraničená dvoma bodmi. Matematická veta pravdivý výrok, sformulovaný pomocou premenných, obsahujúci kvantifikátory a logické spojky. Napr.: P: Trojuholník ABC je pravouhlý s odvesnami a, b a preponou c. T: V trojuholníku ABC platí: a 2 + b 2 = c 2. Matematická veta : P T : Trojuholník ABC s odvesnami a, b a preponou c je pravouhlý práve vtedy, keď platí: a 2 + b 2 = c 2. Úlohy - súhrn: 1) Určte pravdivostnú hodnotu zápisov pre určené hodnoty premennej x: a) x = 0 x > 5 pre x {0, 1, 5, 8}, b) x > 0 x 2 pre x { 1, 0, 1, 2}, c) x < 1 (x + 2) 2 < 9 pre x { 10, 0, 5}, d) x = 1 (x + 2) 2 = 9 pre x { 1, 1, 5}. 2) Vyjadrite stručne pomocou zložených výrokov negáciu týchto výrokov: a) Máme pivo a minerálky. b) Osviežim sa čajom alebo kávou. c) Ak budem mať na obed bravčové mäso, budem piť pivo. d) Nie som hladný a nie som smädný. e) Nie som hladný, som smädný. f) Ak dostanem čerstvé ovocie, nekúpim kompót. g) Grapefruity kúpim len vtedy, ak nebudú citróny. 3) Negáciou výroku "Každá kvadratická rovnica má najviac 2 reálne korene" je výrok A: Každá kvadratická rovnica má aspoň 2 reálne korene B: Každá kvadratická rovnica má aspoň 3 reálne korene C: Niektorá kvadratická rovnica má 3 reálne korene D: Niektorá kvadratická rovnica má viac ako 2 reálne korene E: Niektoré kvadratické rovnice nemajú reálne korene 7
8 4) Negujte výroky: a) Všetky násobky čísla osem sú párne čísla. b) Niektoré násobky čísla sedem sú násobkami čísla päť. c) Dá sa zostrojiť trojuholník, ktorý má päť zo šiestich úsečiek (strán a uhlopriečok) zhodných. d) Ktorýkoľvek trojuholník má súčet ťažníc väčší než súčet strán. e) Ani jeden koreň rovnice (x + 1).(x 6) = 0 nie je kladné číslo. f) Žiadny trojuholník s obvodom rovnajúcim sa 4 nemá väčší obsah než 1. 5) Vyslovte obmenu, obrátenie a negáciu každej z nasledujúcich viet a určte ich pravdivostnú hodnotu. a) Pre každé dva rovinné útvary U 1, U 2 platí, že ak sú zhodné, majú rovnaký obsah. b) Pre každý štvoruholník Q platí, že ak nie sú uhlopriečky štvoruholníka Q navzájom kolmé, tak Q nie je kosoštvorec. 6) Rozhodnite, ktorá z uvedených viet je definíciou a ktorá matematickou vetou: a) Prvočíslo je prirodzené číslo, ktoré má v množine N práve dvoch rôznych deliteľov: číslo 1 a seba. b) V pravouhlom trojuholníku platí Pytagorova veta. c) 2 je racionálne číslo. d) Kružnica k(s, r) je množina všetkých bodov v rovine, ktoré sú od daného bodu S vzdialené r. e) Pre každé prirodzené číslo n platí: 2 (n 2 n). f) Uhlopriečky štvorca sú na seba kolmé. 7) Opravte chyby v nasledujúcich vetách tak, aby sa stali správnymi definíciami: a) Uhlopriečka mnohouholníka je úsečka, ktorá spája dva jeho vrcholy. b) Rovnobežník je rovinný konvexný štvoruholník, ktorého dve a dve strany majú rovnakú veľkosť. c) Kvadratická rovnica je algebrická rovnica, v ktorej sa vyskytuje neznáma v druhej mocnine. d) Prirodzené číslo nazývame zložené, ak ho možno rozložiť na súčin dvoch čísel. e) Rovnobežkami nazývame priamky, ktoré nemajú žiaden spoločný bod. 8
Pravdivostná hodnota negácie výroku A je opačná ako pravdivostná hodnota výroku A.
7. Negácie výrokov Negácie jednoduchých výrokov tvoríme tak, že vytvoríme tvrdenie, ktoré popiera pôvodný výrok. Najčastejšie negujeme prísudok alebo použijeme vetu Nie je pravda, že.... Výrok A: Prší.
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
LOGIKA, DÔVODENIE, DÔKAZY VÝROK A JEHO PRAVDIVOSTNÁ HODNOTA
1 LOGIKA, DÔVODENIE, DÔKAZY VÝROK A JEHO PRAVDIVOSTNÁ HODNOTA Termíny výrok, pravdivostná hodnota výroku, pravdivý výrok, nepravdivý výrok, zložený výrok označujú základné pojmy logiky. Význam slov každý,
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
ZÁKLADY MATEMATIKY 1 UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED
UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED ZÁKLADY MATEMATIKY 1 Kitti Vidermanová, Júlia Záhorská Eva Barcíková, Michaela Klepancová NITRA 2013 Názov: Základy matematiky 1 Edícia Pírodovedec.
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
ÚVOD DO MATEMATICKEJ LOGIKY Podporné učebné texty pre vyučovanie matematiky v 1.ročníku gymnázia
ÚVOD DO MATEMATICKEJ LOGIKY Podporné učebné texty pre vyučovanie matematiky v 1.ročníku gymnázia 1. VÝROKY Pod pojmom "výrok" rozumieme v bežnom živote čosi ako VÝsledok ROKovania ( napr. súdu, alebo komisie
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Riešenia. Základy matematiky. 1. a) A = { 4; 3; 2; 1; 0; 1; 2; 3}, b) B = {4; 9; 16}, c) C = {2; 3; 5},
Riešenia Základy matematiky 1. a) A = { ; ; ; 1; 0; 1; ; }, b) B = {; 9; 16}, c) C = {; ; 5}, d) D = { 1}, e) E =.. B, C, D, F (A neobsahuje prvok 1, E obsahuje navyše prvok 1, G neobsahuje prvok 1)..
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Maturita z matematiky T E S T Y
RNr. Mário oroš Maturita z matematiky príprava na prijímacie skúšky na vysokú školu T E S T Y Všetky práva sú vyhradené. Nijaká časť tejto knihy sa nesmie reprodukovať mechanicky, elektronicky, fotokopírovaním
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Logické systémy. doc. RNDr. Jana Galanová, PhD. RNDr. Peter Kaprálik, PhD. Mgr. Marcel Polakovič, PhD.
Logické systémy doc. RNDr. Jana Galanová, PhD. RNDr. Peter Kaprálik, PhD. Mgr. Marcel Polakovič, PhD. KAPITOLA 1 Úvodné pojmy V tejto časti uvádzame základné pojmy, prevažne z diskrétnej matematiky, ktoré
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Matematická logika. Emília Draženská Helena Myšková
Matematická logika Emília Draženská Helena Myšková Košice 2014 Recenzenti: RNDr. Ján Buša, CSc. RNDr. Daniela Kravecová, PhD. Tretie rozšírene a opravené vydanie Za odbornú stránku učebného textu zodpovedajú
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL. Matematická logika
Matematická logika VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL Matematická logika Slovenská technická univerzita v Bratislave 2006 prof. Ing. Vladimír Kvasnička, DrSc., doc. RNDr. Jiří Pospíchal, DrSc. Lektori:
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Zbierka úloh z VÝROKOVEJ LOGIKY
Zbierka úloh z VÝROKOVEJ LOGIKY Martin Šrámek 0 OBSAH Úvod...2 Výrok...3 Výroková premenná...3 Logické spojky...4 Formula výrokovej logiky...4 Logická ekvivalencia...4 Tabuľková metóda riešenia úloh...4
3. Výroková logika. Princíp dvojhodnotovosti (bivalencie): Existujú práve dve pravdivostné hodnoty pravda a nepravda.
3. Výroková logika Výroková logika patrí do klasickej logiky - do jednej z dvoch oblastí, na ktoré môžeme rozdeliť súčasnú logiku. 22 Sochor (2011, 21) prirovnáva výrokovú logiku ku gramatickému rozboru
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
Rudolf Blaško MATEMATICKÁ ANALÝZA I
Rudolf Blaško MATEMATICKÁ ANALÝZA I Rudolf Blaško MATEMATICKÁ ANALÝZA I 007 c RNDr Rudolf Blaško, PhD, 007 beerb@frcatelfriunizask Obsah Základné pojm 3 Logika 3 Výrazavýrok 3 Logickéoperácie 3 3 Výrokovéform
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
1. Trojuholník - definícia
1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov,
9 Planimetria Ciele Preštudovanie tejto kapitoly vám lepšie umožní: identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, používať jednotky
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Goniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
stereometria - študuje geometrické útvary v priestore.
Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa
VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL. Matematická logika
VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL Matematická logika Slovenská technická univerzita v Bratislave 2006 prof. Ing. Vladimír Kvasnička, DrSc., doc. RNDr. Jiří Pospíchal, DrSc. Lektori: doc. PhDr. Ján Šefránek,
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Planárne a rovinné grafy
Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia
9. kapitola. Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika. priesvitka
9. kapitola Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika 1 Úvodné poznámky o viachodnotových logikách V klasickej logike existujú prípady, keď dichotomický pravdivostný
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Prednáška 1. Logika, usudzovanie a teória dôkazu
Prednáška 1 Logika, usudzovanie a teória dôkazu Logika je charakterizovaná ako analýza metód používaných v ľudskom myslení alebo uvažovaní. Logika nie je dôležitá len v matematike a informatike, ale aj
2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin
2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Úvod do diskrétnych matematických štruktúr. Daniel Olejár Martin Škoviera
Úvod do diskrétnych matematických štruktúr Daniel Olejár Martin Škoviera 24. augusta 2007 i This book was developed during the project Thematic Network 114046-CP-1-2004-1-BG- ERASMUS-TN c Daniel Olejár,
Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.
Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny
Fakulta riadenia a informatiky Žilinskej univerzity
Poznámka k úlohám o funkciách: Ak nie je uvedené inak, je definičným oborom funkcie množina všetkých reálnych čísel, pre ktoré výraz definujúci funkciu má zmysel. 0 Ktorá z nasledujúcich funkcií nie je
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
MATEMATIKA PRE FARMACEUTOV
V Y S O K O Š K O L S K Á U Č E B N I C A Farmaceutická fakulta Univerzity Komenského Vladimír Frecer MATEMATIKA PRE FARMACEUTOV UNIVERZITA KOMENSKÉHO V BRATISLAVE 1 V Y S O K O Š K O L S K Á U Č E B N
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
2-UMA-115 Teória množín. Martin Sleziak
2-UMA-115 Teória množín Martin Sleziak 20. septembra 2011 Obsah 1 Úvod 5 1.1 Predhovor...................................... 5 1.2 Sylaby a literatúra................................. 6 1.2.1 Literatúra..................................
Gymnázium v Košiciach, Opatovská 7 MATEMATIKA
Gymnázium v Košiciach, Opatovská 7 MATEMATIKA ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM (štvorročné štúdium) Vypracoval:
Úpravy výrazov na daný tvar
DSZŠM Úpravy výrazov na daný tvar. a) Ktoré z nasledujúcich výrazov nie sú druhou mocninou dvojčlena?, 9, 0, b) Zmeňte v nich koeficient pri lineárnom člene tak, aby sa stali druhou mocninou dvojčlena.
Vladimír Kvasnička. Úvod do logiky pre informatikov
Vladimír Kvasnička Úvod do logiky pre informatikov Ústav aplikovanej informatiky Fakulta informatiky a informačných technológií Slovenská technická univerzita v Bratislave 202 2 Úvod V tejto knihe, ktorá
1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17
Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy
3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1
3. kapitola Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou priesvitka 1 Axiomatická výstavba modálnej logiky Cieľom tejto prednášky je ukázať axiomatickú výstavbu rôznych verzií
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Reálna funkcia reálnej premennej
(ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od
ZÁKLADY ELEMENTÁRNEJ GEOMETRIE
UNIVERZITA KONŠTANTÍNA FILOZOFA FAKULTA PRÍRODNÝCH VIED ZÁKLADY ELEMENTÁRNEJ GEOMETRIE ŠEDIVÝ ONDREJ VALLO DUŠAN Vydané v Nitre 2009 Fakultou prírodných vied Univerzity Konštantína Filozofa v Nitre s finančnou
zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov (tento proces môžeme nazvat formalizácia), jej hlavnou úlohou je potom
0 Úvod 1 0 Úvod 0 Úvod 2 Matematika (a platí to vo všeobecnosti pre každú vedu) sa viac či menej úspešne pokúša zachytit istý zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:
Ján Buša Štefan Schrötter
Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
Obvod a obsah rovinných útvarov
Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom
ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, BRATISLAVA. VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium
ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium Vypracoval: RNDr. Marian Hanula Posúdili členovia Ústrednej
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
5. kapitola Predikátová logika I Úvod do predikátovej logiky
5. kapitola Predikátová logika I Úvod do predikátovej logiky Priesvitka 1 Gottlob Frege (1848-1925) Bertrand Russell (1872-1970) Priesvitka 2 Intuitívny prechod od výrokovej logiky k predikátovej logike
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov
ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme
Analytická geometria
Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je
Maturitné úlohy. Matematiky. Pre gymnázium
Jozef Vozár Maturitné úlohy Z Matematiky Pre gymnázium I. (Úlohy s krátkou odpoveďou) OBSAH ÚVOD... 3 1. ZÁKLADY MATEMATIKY... 3 1.1 Logika a množiny... 3 1.2 Čísla, premenné a výrazy... 7 1.3 Teória čísel...
Povrch a objem ihlana
Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
FUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
MATEMATICKÁ OLYMPIÁDA
S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n
1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3
Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia
7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.
Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B
NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory
SK skmo.sk. 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B
SK MATEMATICKÁOLYMPIÁDA skmo.sk 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B 1. Každému vrcholu pravidelného 66-uholníka priradíme jedno z čísel 1 alebo 1. Ku každej
Vybrané partie z logiky
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO Katedra informatiky Vybrané partie z logiky poznámky z prednášok martin florek 22. mája 2004 Predhovor Vďaka nude a oprášeniu vedomostí z
Učebný zdroj pre žiakov z predmetu Matematika
STREDNÁ ODBORNÁ ŠKOLA Komenského 6, 08 7 Lipany Učebný zdroj pre žiakov z predmetu Matematika Odbor: Kozmetik a Pracovník marketingu Autorka: PaedDr. Iveta Štefančínová, Ph.D. Moderné vzdelávanie pre vedomostnú
Goniometrické funkcie
Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
Číslo a číslica. Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva.
Číslo a číslica Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva. Číslica (cifra) je grafický znak, pomocou ktorého zapisujeme
Povrch a objem hranola
Povrch a objem hranola D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a priamka, ktorá nie je rovnobežná s rovinou mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme priamky rovnobežné