Indeksna števila. Vsebina. Statistika za poslovno odločanje INDEKSI. 1. Osnovni pojmi in opredelitve: Enostavni indeksi. Skupinski indeksi.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Indeksna števila. Vsebina. Statistika za poslovno odločanje INDEKSI. 1. Osnovni pojmi in opredelitve: Enostavni indeksi. Skupinski indeksi."

Transcript

1 Staska za oslovo odločaje Ideksa števila rof. dr. Lea Bregar 6. redavaje Vsebia. Osovi ojmi i oredelitve: Eostavi ideksi. Skuiski ideksi. 2. Skuiski ideksi: grega (L, P). Sredji (TS, THS). 3. Rerezetavi ideksi ce. 4. Ideksi sredje cee i strukturi remiki. 5. Preračui ideksov: Preraču veriži h ideksov a idekse s stalo osovo Srememba osove rimerjave ideksov. Združevaje ideksih serij. INDEKSI ENOSTVNI SKUPINSKI GREGTNI SREDNJI Laseyres Paasche TS THS

2 . Osovi ojmi i oredelitve eostavi i skuiski ideksi OPREDELITEV INDEKSOV () Ideksi so v staski relava števila, s katerimi rimerjamo za roučevai ojav medsebojo dvoje ali več istovrsh odatkov. Primerjai odatki morajo bi izražei v ish merskih eotah. V rimeru, da rimerjamo med seboj le dva odatka, govorimo o eostavih ideksih. OPREDELITEV INDEKSOV (2) Osovi obrazec za izraču ideksa je: Y I t *00 Y 0 Kjer omei: y t - odatek za roučevai ojav, ki je v števcu ideksa; y 0 - odatek za roučevai ojav, ki je v imeovalcu ideksa; 00 - kostata, ki jo bomo ri vseh zaisih obrazcev za izraču ideksov zaradi večje eostavos i regledos v adaljevaju izuščali. 2

3 OPREDELITEV INDEKSOV (3) Podatka v števcu i imeovalcu ideksa se lahko razlikujeta glede a: časovo oredelitev: y t omei vredost ojava v obdobju t, y 0 a vredost ojava v obdobju 0; časovi ideksi; krajevo oredelitev: y t omei vredost ojava v kraju ali regiji t, y 0 a omei vredost ojava v kraju ali regiji 0; rostorski ali krajevi ideksi; stvaro oredelitev: odatka v števcu i imeovalcu se razlikujeta glede a stvaro oredelitev ojava; stvari ideksi. OPREDELITEV INDEKSOV (4) LETO Povreča leta droborodaja cea za avado mleko v tetraaku, liter (v SIT) BZNI INDEKSI ( ) VERIŽNI INDEKSI ,5 00, ,9 06,9 06, ,2 0,5 03, ,7 0,9 00, ,2 06,3 95,9 Vir: Stasči letois 2005, str PREDNOSTI INDEKSOV () Idekse lahko račuamo e samo a odlagi absoluh odatkov, amak iz vseh vrst stasčih odatkov, tudi iz ideksov. Z ideksi dobimo zelo azoro sliko o velikos relavih srememb ojava v času oz. o velikos relavih razlik za ojav v rostoru. Ker so ideksi eimeovaa števila i torej ri izračuih ideksov ikoli e išemo %, je mogoče rimerja tudi idekse razovrsh ojavov, katerih rimerjava v absolutem izrazu e bi bila smisela. 3

4 PREDNOSTI INDEKSOV (2) Uoraba eostavih ideksov a je v raksi recej omejea. Sremembe v času i razlike v rostoru za komlekse ojave, ki jih sestavlja veliko število osamičih eot, ugotavljamo s skuiskimi ideksi. 2. Skuiski ideksi grega ideksi SKUPINSKI GREGTNI INDEKSI () S skuiskimi agregami ideksi merimo: sremembe v možici odatkov (elemetov), ki sestavljajo roučevai ojav, med dvema obdobjema ali ugotavljamo razliko v ravi za možico odatkov (elemetov), ki ozačujejo roučevai ojav, za dve geografski območji. 4

5 Primer: Kako izračua skui ideks ce za tri roizvode? Proizvod Merska eota 0 t 0 t kos B liter 30 C m SKUPINSKI GREGTNI INDEKSI (2) Skuiski ideksi so torej relava števila, s katerimi rimerjamo istoimeske zbire, sestavljee iz razovrsh elemetov GREGTI Oblikovaje agregata i vloga oderacijskih koeficietov () Fukcija oderacijskih koeficietov: določajo relavi ome vsakega elemeta v agregatu. Poderacijski koeficie oravljajo hkra dve fukciji: omogočajo oblikovaje agregatov; omogočajo rimerljivost agregatov, ki ju rimerjamo v števcu i imeovalcu ideksa. 5

6 Oblikovaje agregata i vloga oderacijskih koeficietov (2) Pri agregah ideksih imamo vedo oravi z dvema komoetama: ojav, katerega sremembe želimo ugotovi; oderacijski koeficiet. Ideks oimeujemo vedo o ojavu, katerega sremembe ugotavljamo. Poderacijski sistem te sremembe e sme zamegli oderacijski koeficie v števcu i imeovalcu ideksa morajo bi eaki. Laseyresovi i Paaschejevi ideksi Glede a uorabljei sistem oderacije imamo ri skuiskem agregatem ideksu dva obrazca: Laseyresov obrazec, ri katerem so oderacijski koeficie iz obdobja, ki je v imeovalcu ideksa oz. iz obdobja 0; Paaschejev obrazec, ri katerem so oderacijski koeficie iz obdobja, ki je v števcu ideksa oz. iz obdobja t. (Narej usmerjei i azaj usmerjei ideksi) Obrazci za izraču Laseyresovih i Paaschejevih ideksov ce i količi () i L i P i i i L P 0 i i Kjer omei: i... roizvedee količie i-tega elemeta; i... cea i-tega elemeta;, 2,...,... število elemetov (r. roizvodov), za katere račuamo skuiski ideks ce ali količi; t... obdobje t; 0... obdobje rimerjave ideksov (obdobje 0). 6

7 Obrazci za izraču Laseyresovih i Paaschejevih ideksov ce i količi (2) Skuiski ideksi: tehičo eostavi ostoki i vsebisko zahteva metodološka vrašaja. Vsaka metodologija mora oredeli asledje elemete: zajetje i oredelitev elemetov, s omočjo katerih bomo merili sremembe ojava; oderacijski sistem; obrazec izračua. Ilustracija izračuov Laseyresovih i Paaschejevih ideksov () Proizvod B C Proizvod B C SKUPJ Merska eota kos liter m 2 Merska eota kos liter m t t t t t Izraču Laseyresovih i Paaschejevih ideksov t Ilustracija izračuov Laseyrevih i Paaschejevih ideksov (2) L 2800 i 30 05,66 P 03, i i i 29 i 30 L 0,94 P 08, i i i 7

8 V razmislek! Kateri od obeh ov obrazcev daje ravilejši rezultat? Primerjava izračuov Laseyresovih i Paaschejevih ideksov () L98 / 92 39,47 P98 / 92 33, L98 / 92 08, P98 / 92 04, Pri uorabi Laseyresovega obrazca: eravilo izkaza agregat v števcu ideksa. Pri uorabi Paaschejevega obrazca: : eravilo izkaza agregat v imeovalcu ideksa. Primerjava izračuov Laseyresovih i Paaschejevih ideksov (2) Če redostavljamo, da se cee i količie roizvodov gibljejo a trgu obrato sorazmero, otem Laseyresovi ideksi recejujejo diamiko ojava; Paaschejevi ideksi a odcejujejo diamiko ojava. 8

9 Predos i omejitve Laseyresovih ideksov v rimerjavi s Paaschejevimi () Predos Laseyresovih ideksov: Imeovalec ideksa Σ 0 0 izračuamo le ekrat e glede a dolžio vrste. Za oderje otrebujemo le odatke iz eega obdobja, to je iz obdobja v imeovalcu ideksa. Laseyresov obrazec odlikuje tudi adivost. divost ri izračuavaju ideksov omei, da skuiski ideks, izračua eosredo, daje eak rezultat, kot če je izračua kot tehtaa aritmeča sredia arcialih ideksov. Predos i omejitve Laseyresovih ideksov v rimerjavi s Paaschejevimi (2) Osove omajkljivos Laseyresovega obrazca : ri izračuu so uorabljei oderji iz reteklega obdobja; oderje za ove roizvode, ki se v reteklos iso roizvajali, moramo ocejeva s osebimi ostoki. Zastarelost oderjev i veriži ideksi Pristraskost Laseyresovih i Paaschejevih ideksov je tem majša, čim krajši je časovi razmik med obdobjema, rimerjaima v ideksu. S tega vidika je ajrimereje izračuava veriže idekse, ko je osova rimerjave vsakokrato redhodo obdobje. Pri verižih ideksih se tako sremija oderacija od ideksa do ideksa v ideksi vrs, e samo ri Paaschejevem obrazcu, ač a tudi ri Laseyresovem obrazcu. 9

10 Fisherjev ideali ideks Geometrijska sredia Laseyresovega i Paaschejevega ideksa. F L P 2. Skuiski ideksi Sredji (ovreči) ideksi Postoek izračua () Uoraba obrazcev za tehtae sredie. Izbira obrazca za izraču tehtae sredie je odvisa od obdobja, a katerega se aašajo oderji. Če uorabljamo oderje iz obdobja, ki je v števcu ideksa, račuamo sredji ideks o metodi tehtae harmoiče sredie (THS). Če a uorabljamo oderje iz obdobja, ki je v imeovalcu ideksa, račuamo sredji ideks o metodi tehtae aritmeče sredie (TS). 0

11 Postoek izračua (2) Obrazci za izraču sredjih ideksov ce ( ) ( ) P 0 i H W W W W oi Postoek izračua (3) Obrazci za izraču sredjih ideksov količi ( ) ( ) oi H W W W W oi Ilustracija izračuov sredjih ideksov ce o obrazcih za TS i THS () Proizvod Merska eota 0 t 0 t B C kos liter m Proizvod Merska eota t t 0 0 i t / o ix 0 0 t t /i B C SKUPJ kos liter m ,20,00,

12 Ilustracija izračuov sredjih ideksov ce o obrazcih za TS i THS (2) H P ( 0 i ( ) ) oi 0,94 08,57 Ilustracija izračuov sredjih ideksov količi o obrazcih za TS i THS () Proizvod Merska eota 0 t 0 t B C kos liter m Proizvod Merska eota t t 0 0 i t / o ix 0 0 t t /i B C SKUPJ kos liter m ,20,33 0, Ilustracija izračuov sredjih ideksov količi o obrazcih za TS i THS (2) H ( 0 i ( ) ) oi 05,66 03, 2

13 Primerjava rezultatov Ideksi L P TS THS 0,94 05,66 08,57 03, 0,94 05,66 08,57 03, Uoraba tehtae harmoiče sredie daje ideče rezultat kot Paaschejev obrazec: PTHS. Uoraba tehtae aritmeče sredie daje ideče rezultat kot Laseyresov obrazec: LTS. Primerjava i reureditev obeh arov obrazcev H P 0 i 0 i Predos sredjih ideksov v rimerjavi z agregami ideksi Sredji ideksi temeljijo a izračuu idividualih ideksov, a kažejo diamiko ojava o osamezih elemeh. Pri izračuu sredjih ideksov uorabljamo za oderje vredos osamezih elemetov. Ti odatki so razmeroma eostavo dosegljivi (v rimerjavi s odatki, ki jih otrebujemo za oderje ri agregah ideksih). Uoraba obrazcev za sredje idekse omogoča izračuavaje ideksov a tako imeovaem rerezetavem ačelu. To a oeostavi i ocei izračuavaje ideksov v raksi, zlas ideksov ce. 3

14 3. Rerezetavi ideksi ce REPREZENTTIVNI INDEKS CEN Izračuavaje ideksa ce a rerezetavem ačelu sloi a redostavki, da: obstaja ri ormalih ekoomskih razmerah določea soodvisost med ceami; remik cee določeega roizvoda sroži remik v ceah drugih roizvodov v is smeri z bolj ali maj eako itezivostjo. Stoje v oblikovaju rerezetavega ideksa ce oblikovaje skui sorodih roizvodov; izbor rerezetavih roizvodov zotraj skui; ridobivaje odatkov: cee za rerezetate, vredost celote skuie; uskladitve; izraču rerezetavega ideksa ce. 4

15 Izraču rerezetavega ideksa ce R R R W W S S kjer omei: ir... cea rerezetavega roizvoda v i- skuii; W is... vredost (rometa, rodaje) celote i-te skuie;, 2,, ;... število skui roizvodov. 4. Ideksi sredje cee i strukturi remiki SKUPINSKI INDEKSI ENOT OPZOVNJ PROIZVOD PRODJN (PROIZVODN) ENOT Sremeljivka: cea Sremeljivka: cea eakega (homogeega) roizvoda Skuiski ideksi Skuiski ideks s stalo strukturo s stalo strukturo s sremeljivo strukturo 5

16 Ideks ovreče cee () t * t I Ideks ovreče cee je ideks s sremeljivo strukturo. Račuamo ga tedaj, kadar as zaima srememba cee za homogei roizvod, ki ga oazujemo o različih eotah. L i TS ter P i THS so ideksi s stalo strukturo. o 0 i 0 * 0 i 0 i Ideks ovreče cee (2) Ideks s stalo strukturo lahko račuamo: kadar as zaimajo cee več različih roizvodov; kadar as zaimajo cee homogeega roizvoda. Hioteče rimer () Izraču ideksa ce za eak roizvod (a rimer cemet), ki ga izdelujeta roizvajalec i roizvajalec B Proizvajalec Cea (v sočih) Proizvodja (v toah) Struktura roizvodje (v %) Pomoži izračui 0 t 0 t s 0 s t o o t o t t , B , Skuaj L 0 i 29,8 t /0 0 i 0 i

17 Hioteče rimer (2) Razlaga Laseyresovega ideksa ce: Laseyresov obrazec okaže, da sta se cei cemeta ri obeh roizvajalcih ovečali v ovrečju za 29,8%. Na ta orast so vlivali različi dejaviki ri vsakem roizvajalcu osebej (dražje surovie, ižja rodukvost dela itd.). Hioteče rimer (3) Izraču ideksa ovreče (sredje) cee 0 0 i i i 4,25 Sit/t 0 i 0 i 700 i t 7,75 Sit/t 0 7,75 t I 00 24,56 o 4,25 Hioteče rimer (4) Razlaga ideksa ovreče cee: Ideks sredje cee okaže, da se je ovreča cea cemeta ri obeh roizvajalcih dejasko ovečala za 24,56%. Ta ideks odraža vliv dveh skui dejavikov: dejavikov, ki so delovali a sremembo cee, zajeto z ideksom s stalo strukturo roizvodje; strukturih remikov, to je srememb v relavi udeležbi obeh roizvajalcev, ki roizvajata o različih ceah, v celo roizvodji. Če se oveča delež dražjega roizvajalca, bo samo to 7

18 Hioteče rimer (5) Ideks strukturih remikov Ideks s sremeljivo strukturo Ideks strukturih remikov Ideks s stalo strukturo Z eosredim izračuom ideksa strukturih remikov ugotavljamo eosredo, kolikše je vliv strukturih remikov a sremembo ovreče cee oazovaega roizvoda. Ideks strukturih remikov 24,56/29,82 95,95 Izračuai ideks strukturih remikov okaže, da so strukturi remiki zavrli rast ovreče cee za 4,05% zaradi ovečaega deleža ceejšega roizvajalca i zmajšaega deleža dražjega roizvajalca. 5. Preračui ideksov PRERČUNI INDEKSOV Srememba osove rimerjave ideksov. Preraču verižih ideksov a idekse s stalo osovo i obrato. Združevaje ideksih vrst. (Deflacija). 8

19 SPREMINJNJE INDEKSNE OSNOVE Vsak čle v ideksi vrs delimo s sm čleom, ki aj ostae ova osova. Leto Ideksi s stalo osovo , ,7 95,8 00 7,6 03 2, ,7 PRERČUNI VERIŽNIH INDEKSOV N INDEKSE S STLNO OSNOVO Leto Veriži ideksi Ideksi s stalo osovo ,0 27,0, ,0,05,03 ZDRUŽEVNJE INDEKSNIH VRST () Na stari osovi: vsak čle ove serije omožimo z zadjim čleom stare serije, člee stare serije reišemo. Na ovi osovi: vsak čle stare serije delimo z zadjim čleom stare serije, člee ove serije reišemo. 9

20 ZDRUŽEVNJE INDEKSNIH VRST (2) Leto Ideksi s staro oderacijo Ideksi z ovo oderacijo Združevaje vrst Združevaje vrst Literatura Lea Bregar: zaiski redavaj, rvi del, str

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

PODATKI, FREKVENČNE PORAZDELITVE IN NJIHOV OPIS: MERE SREDNJE VREDNOSTI IN RAZPRŠENOSTI

PODATKI, FREKVENČNE PORAZDELITVE IN NJIHOV OPIS: MERE SREDNJE VREDNOSTI IN RAZPRŠENOSTI PODATKI, FREKVENČNE PORAZDELITVE IN NJIHOV OPIS: MERE SREDNJE VREDNOSTI IN RAZPRŠENOSTI. KAKO NAREDIMO FREKVENČNO PORAZDELITEV Recimo, da so am a razpolago podatki (pr. število prijateljev, s katerimi

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Multivariabilna logistična regresija s ponovitvijo linearne regresije

Multivariabilna logistična regresija s ponovitvijo linearne regresije Multivariabila logističa regresija s oovitvijo lieare regresije doc. dr. Mitja Kos, mag. farm. Katedra za socialo farmacijo Uiverza v Ljubljai- Fakulteta za farmacijo Aaliza ovezaosti Regresija: Statističa

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

3.2.1 Homogena linearna diferencialna enačba II. reda

3.2.1 Homogena linearna diferencialna enačba II. reda 3 Homogea lieara difereciala eačba II reda V slošem se homogee lieare difereciale eačbe drugega reda e da rešiti v aljučei oblii vedar a se da v rimeru o oamo eo artiularo rešitev itegracijo dobiti drugo

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Daum: 5.. 999. Izračuaje kompoee ampliudega spekra podaega periodičega sigala! Kolikša je osova frekveca ega sigala? Tabeliraje prvih šes ampliud! -,,,,3,4,5 - [ms]. Izračuaje Fourierjev rasform podaega

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

2. Pogreški pri merjenju in merilna negotovost

2. Pogreški pri merjenju in merilna negotovost . Pogreški pri merjeju i merila egotovost Kljub objektivosti merilega postopka e dobimo prave vredosti veličie. Vzroki: učiki vplivih veliči, epopolost merilih metod, epopolost merilih aprav, M - Opravka

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Vaja 1: Računanje z napakami

Vaja 1: Računanje z napakami Vaja : Račuaje z apakami Matej Bažec 9. oktober 25 Povzetek Spozali bomo osove račuaja z apakami. Obovili bomo zaje o absolutih i relativih apakah, smiselosti zapisa decimalih mest i pravila račuaja z

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

UNIVERZA V MARIBORU. Fakulteta za kmetijstvo in biosistemske vede. Jože Nemec STATISTIKA OBRAZCI IN TABELE

UNIVERZA V MARIBORU. Fakulteta za kmetijstvo in biosistemske vede. Jože Nemec STATISTIKA OBRAZCI IN TABELE UIVERZA V ARIBORU Faulteta za metjstvo osstemse vede Jože emec STATISTIKA OBRAZCI I TABELE aror, 009 Jože emec - Statsta Orazc taele Uverza v aroru Faulteta za metjstvo osstemse vede Stroova recezeta Dr.

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik

5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik Orietacija Aleš Glavik i Boja Rotovik 52 Izvleček: Pred stav lje e so iz bra e te me iz orie ti ra ja v a ra vi, ki jih mo ra poz a ti vsak vod ik PZS, da lah ko var o vo di ude le `e ce a tu ri Pred stav

Διαβάστε περισσότερα

Simulacija delovanja trifaznega sinhronskega motorja s kratkostično kletko v programskem okolju MATLAB/Simulink

Simulacija delovanja trifaznega sinhronskega motorja s kratkostično kletko v programskem okolju MATLAB/Simulink Simulacija delovanja trifaznega sinhronskega motorja s kratkostično kletko v rogramskem okolju MATAB/Simulink Damir Žniderič jubljana, maj 1 Mentor: dr. Damijan Miljavec Vsebina 1. Slošno o sinhronskih

Διαβάστε περισσότερα

STATISTIKA 5. predavanje. Doc.dr. Tadeja Kraner Šumenjak

STATISTIKA 5. predavanje. Doc.dr. Tadeja Kraner Šumenjak STATISTIKA 5. predavaje Doc.dr. Tadeja Kraer Šumejak PORAZDELITVE VZORČNIH STATISTIK Imejmo vzorec velikosti. Na tem vzorcu ima spremeljivka X vredosti: x 1, x 2,, x. Vzorča statistika je poljuba fukcija

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Polgrupe i grupe (1) Razišči strukturo asledjih grupoidov: (a) S = R za operacijo x y = x + y + xy, { [ ] 1 x (b) S = 0 1 x R za operacijo možeje matrik, (c) S = R 3 za operacijo vektorski produkt, (d)

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Modeliranje električnih strojev

Modeliranje električnih strojev Uiverza v Ljubljai Fakulteta za elektrotehiko Dailo Makuc Modeliraje električih strojev Zbirka rešeih alog Dailo Makuc, FE UNI LJ, jauar Predgovor Zbirka vsebuje rešee aloge, ki pridejo v poštev za pisi

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici. VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako

Διαβάστε περισσότερα

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013 Postavitev hipotez NUJNO! Milena Kova 10. januar 2013 Osnove biometrije 2012/13 1 Postavitev in preizku²anje hipotez Hipoteze zastavimo najprej ob na rtovanju preizkusa Ob obdelavi jih morda malo popravimo

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Aritmetički i geometrijski niz

Aritmetički i geometrijski niz Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23. Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,

Διαβάστε περισσότερα

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

NASTAVITVE PARAMETROV PID REGULATORJEV ZA PROCESE 2. REDA

NASTAVITVE PARAMETROV PID REGULATORJEV ZA PROCESE 2. REDA Delovno oročilo Univerza v Ljubljani Institut Jožef Stefan, Ljubljana, Slovenija IJS Delovno oročilo DP-678 NASAVIVE PARAMEROV PID REGULAORJEV ZA PROCESE. REDA Damir Vrančić Janko Petrovčič Đani Juričić

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

Poklicna matura matematika ustni del šol. leto 2013 / 2014

Poklicna matura matematika ustni del šol. leto 2013 / 2014 Poklica matura matematika usti del šol. leto 03 / 04 IZPITNI LISTEK Prirediti ameravamo družabo srečaje. Dobimo poudbo, pri kateri zašajo fiksi stroški (ajem dvorae i ivetarja) 80, variabili stroški (

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

ČHE AVČE. Konzorcij RUDIS MITSUBISHI ELECTRIC SUMITOMO

ČHE AVČE. Konzorcij RUDIS MITSUBISHI ELECTRIC SUMITOMO ČHE AVČE Konzorcij RUDIS MITSUBISHI ELECTRIC SUMITOMO MONTAŽA IN DOBAVA AGREGATA ČRPALKA / TURBINA MOTOR / GENERATOR S POMOŽNO OPREMO Anton Hribar d.i.s OSNOVNI TEHNIČNI PODATKI ČRPALNE HIDROELEKTRARNE

Διαβάστε περισσότερα