#define #elif #else #endif #error #if #ifdef #ifndef #include #line #pragma #undef. Jednotlivé direktívy popíšeme v rámci nasledujúcich podkapitol.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "#define #elif #else #endif #error #if #ifdef #ifndef #include #line #pragma #undef. Jednotlivé direktívy popíšeme v rámci nasledujúcich podkapitol."

Transcript

1 4. PREPROCESOR 4.1. Definícia makier. Symbolické konštanty Makrá 4.2. Štandardné preddefinované makrá. Operátory # a ##. Podmienený preklad. Ostatné direktívy. Názov kapitoly napovedá, že sa budeme venovať prostriedku, ktorý predchádza prekladač. Preprocesor spracováva vstupný text ako text, prevádza v ňom textové zmeny a jeho výstupom je opäť text. Od preprocesora teda nemôžeme čakať kontrolu syntaxu, a ani typovú kontrolu. Preprocesor spracováva hlavičkové súbory, rozvíja makrá, neprepúšťa komentáre a umožňuje prevádzať podmienený preklad zdrojového textu. Pri spustení prekladu je najprv prevedený rozvoj makier, až výstup spracováva prekladač. Pokiaľ chceme získať výstup, ktorý preprocesor produkuje, môžeme ho zavolať samostatne príkazom cpp (od C Pre Processor). Preprocesor neprevádza rozvoj makier tam, kde nemôžu byť umiestnené ani príkazy jazyka C (napríklad v komentároch a reťazcoch). C preprocesor prijíma tieto direktívy: #define #elif #else #error #if #ifdef #ifndef #include #line #pragma #undef Jednotlivé direktívy popíšeme v rámci nasledujúcich podkapitol. Direktíva preprocesora musí byť vždy uvedená znakom #. # naviac musí byť v riadku prvým znakom. Od direktívy samotnej ho opäť môžu oddeľovať oddelovače. Zdôraznime ešte jednu dôležitú skutočnosť. Direktíva preprocesoru nie je príkaz jazyka C. Neukončujme ju preto bodkočiarkou Definícia makier. Definícia makier vo význame rozsahov polí je typickým príkladom použitia preprocesoru. V zdrojovom texte sa neodvolávame na magické čísla, ale na vhodne symbolicky pomenované makrá. Program to nielen sprehľadní, ale prípadnú zmenu hodnoty makra prevedieme na jednom mieste.

2 Pomocou preprocesoru a makier môžeme vytvárať konštrukcie, ktoré zvýšia čitateľnosť programu. Môžeme napríklad označiť začiatok a koniec bloku práve identifikátormi začiatok a koniec, ktoré pomocou preprocesoru správne prevedieme na znaky { a }. Uveďme však, že sme skôr popísali možnosť nie nástroj. Makrá majú zvýšiť čitateľnosť programu, nemajú za úlohu urobiť s programu ťažko zrozumiteľný rébus. Pokiaľ sa text makra nevojde na jeden riadok, môžeme ho rozdeliť na viac nasledujúcich riadkov. Skutočnosť, že makro pokračuje na nasledujúcom riadku, sa určí umiestnením znaku \ ako posledného znaku na riadku. Pre väčšiu prehľadnosť si makrá rozdeľme na symbolické konštanty a makrá. Kľúčom nech je skutočnosť, že makro na rozdiel od symbolickej konštanty má argumenty. Symbolické konštanty Ich definovanie a oddefinovanie môžeme syntakticky popísať takto: #define macro_id [token_sequence] #undef macro_id kde macro_id predstavuje meno (identifikátor) makra token_sequence je nepovinný súvislý reťazec Pri svojej činnosti prehľadáva preprocesor vstupný text a pri výskyte reťazca macro_id prevádza jeho nahradenie reťazcom token_sequence. Tejto činnosti sa hovorí rozvoj (expanze) makra. Z tohoto popisu je jasné, prečo sa preprocesoru niekedy zjednodušene hovorí makroprocesor. #define START 2 #define PRIRASTOK 1 #define DLZKA_RIADKU 100 int main() { int pocet = 0, alokovane = START, prirastok = PRIRASTOK; pole_retezca p_ret = NULL; Makrá Makrá už podľa nášho delenia majú argumenty. Definujeme ich takto: #define macro_id([arg_list]) [token_sequence] kde (ostatné položky sú rovnaké, ako sme už uviedli pri symbolických konštantách): arg_list predstavuje zoznam argumentov navzájom oddelených len čiarkou.

3 Ako klasický príklad makra si uveďme vrátenie maximálnej hodnoty z dvoch: #define max(a,b) ((a>b)?a:b) Výhodou aj nevýhodou je, že nepracuje s typmi. Výhodou preto, že pokiaľ by sme chceli definovať podobnú funkciu, museli by sme napísať toľko ich verzií, koľko by bolo navzájom nezlučiteľných variant dátových typov argumentov. Nevýhodou je netypovosť makra teda, ak uvedieme napríklad omylom ako argumenty reťazca (potom by sa porovnávali adresy ich prvých znakov) alebo dva argumenty neporovnateľných typov (štruktúra a číslo, ). Také chyby potom (niekedy) odhalí až prekladač. Pri definícii makra max nás možno prekvapia zdanlivo nadbytočné zátvorky oddeľujúce token_sequence. Musíme len pripomenúť, že makrá nie sú príkazy jazyka C. Ich rozvoj prebieha na textovej úrovni. Preprocesor teda nemôže v závislosti na kontexte raz nadbytočné zátvorky vypustiť, inokedy chýbajúce pridať. Preto radšej sami nadbytočné zátvorky nevypúšťame. Z textovosti rozvoja makra môžu plynúť aj nečakané problémy. Porovnajme makro a funkciu, počítajúcu druhú mocninu argumentu: #define SQR(x) int sqr(int x) { return x * x; } (x*x) a predstavme si ich použitie: int x, y, n = 3; x = sqr(n+1); /* sqr(4) -> 4*4 = 16 */ y = SQR(n+1); /* (n+1*n+1) t.j. (4+1*4+1) = 9 */ čo nám v prípade makra dáva úplne iný (nesprávny) výsledok, než sme očakávali. Pokiaľ opravíme (x*x) na správnejší ((x)*(x)), dostaneme síce výsledok správny, ale opäť nájdeme príklad, kedy správny nebude. Ide o skutočnosť, že pri volaní funkcie sa argument vyhodnotí len raz. Pri makre to tak byť nemusí. Pozrime sa (s lepším variantom makra): int x, y, n = 3; x = sqr(++n); /* sqr(4) -> 4*4 = 16 */ y = SQR(++n); /* ((++n)*(++n)) t.j. ((4)*(5)) = 20 */ Opäť dostaneme chybný výsledok pri použití makra SQR(). Práve z dôvodov popísaných vedľajších efektov a netypovosti makier sa nedoporučuje používať makrá ako náhradu funkcií. Doporučuje sa použitie funkcií s prípadným modifikátorom inline.

4 4.2. Štandardné preddefinované makrá. Podľa ANSI štandardu musí preprocesor C identifikovať a v uvedenom význame vyhodnocovať nasledujúce makrá (identifikátory makier sú obklopené dvoma podtržníkmi): DATE dátum prekladu, mmm dd yyyy, pr. Nov FILE meno zdrojového súboru LINE práve spracovávaný riadok v zdrojovom súbore STDC definuje typ (úroveň) prekladu (STanDard C) TIME čas prekladu, hh:mm:ss, (hh 00-24), pr. 16:02:59 Aj výrobcovia prekladačov však vybavujú svoje produkty radou preddefinovaných makier. Najmä takých, ktoré nám umožňujú použiť špeciálne vlastnosti ich produktu. Z dôvodu ľahkého prenosu sa im radšej vyhneme. Na druhé strane sú preddefinované makrá popisujúce operačný systém, prípadne jeho verziu. Pokiaľ píšeme program pre viac OS (obvykle sa hovorí o platformách), zrejme sa odvoláme na tieto symbolické preddefinované konštanty na miestach, kde sú volané funkcie závislé na OS. Túto možnosť popíšeme ďalej v podkapitole venovanej podmienenému prekladu. Uveďme si aspoň niektoré neštandardné makrodefinície: _DECVAX, IAPX286, MWC, COHERENT, _IEEE, _I386 z produktu Coherent, a niektoré z BC z prostredia MS-DOS: CDECL, cplusplus, MSDOS, OVERLAY, PASCAL, a ešte MS-DOSovské makrá pre použitý pamäťový model TINY, SMALL_, COMPACT, MEDIUM, LARGE, HUGE. Operátory # a ##. ANSI definuje tieto dva operátory a určuje ich vyhodnotenie takto: Operátor # prevádza prevod argumentu na reťazec (umiestni argument medzi pár úvodzoviek. Napríklad ak definujeme #define display(x) show((long)(x), #x) potom preprocesor rozvinie riadok display(abs(-5)); na riadok show((long)(abs(-5)), "abs(-5)");

5 Operátor ## prevádza spojovanie tokenov tak, že argumenty oddelené týmto operátorom po rozvoji makra vytvoria jeden celok (reťazec). Opäť si ukážme činnosť popisovaného operátoru. Ak definujeme #define printvar(x) printf("%d\n", variable ## x) potom nasledujúci riadok printvar(3); preloží preprocesor na printf("%d\n", variable3); Ako vidíme na ukážke, môžu byť medzi argumentmi a operátorom ## medzery. Podmienený preklad. Preprocesor môže behom svojej činnosti vyhodnocovať, či je nejaké makro definované alebo nie. Pri použití kľúčového slova preprocesoru defined potom môže spájať také vyhodnotenia do rozsiahlejších logických výrazov. Argument defined nemusí byť uzavretý do zátvoriek. Môže sa však vyskytnúť len za #if nebo #elif. Napríklad si ukážme zložitejšiu podmienku: #if defined LIMIT && defined OSTRA && LIMIT==10 V závislosti na splnení či nesplnení podmienky môžeme určiť, či bude ohraničený úsek programu ďalej spracovaný, alebo či bude odfiltrovaný a tak teda nebude preložený. Tejto možnosti použitia preprocesoru hovoríme podmienený preklad. Vždy musí byť jasné, kde podmienená časť zdrojového textu začína a kde končí. Preto nesmieme zabúdať na či #elif. Podmienené časti musia byť ukončené a obmedzené v rámci jedného zdrojového textu. Inak oznámi preprocesor chybu. Podmienky veľmi pripomínajú konštrukcie jazyka C. Naviac je oproti C zavedená i podmienka #elif. Nenechajme sa však mýliť. Vyhodnotenie podmienok prevádza už preprocesor. Ukážka neúplného programu s jednoduchým podmieneným prekladom. #define LADENIE #include <conio.h> void volno(void) void uvolni(pole_retezcov *p_r, int pocet) int main(void) volno(); if (alokacia(&p_ret, alokovane)) uvolni(&p_ret, pocet); volno();

6 Ostatné direktívy. Doposiaľ sme nepopísali štyri direktívy preprocesora. Teda postupne. #include je direktívou úplne nepostrádateľnou. Používame ju na včlenenie zdrojového textu iného súboru. Tento súbor môže byť určený viacerými spôsobmi. Preto má direktíva #include tri možné formy (pre ľahšie odkazy ich očíslujme): 1. #include <header_name> 2. #include "header_name" 3. #include macro_identifier ktoré postupne znamenajú: Κ Κ súbor header_name je hľadaný v štandardnom adresári pre include. Takto sa obyčajne začleňujú štandardné hlavičkové súbory. Ak nie je súbor nájdený, je ohlásená chyba. súbor header_name je hľadaný v aktívnom (pracovnom) adresári. Ak tam nie je, postupuje sa podľa prvej možnosti. Takto sa obyčajne začleňujú naše (užívateľské) hlavičkové súbory. Κ macro_identifier je nahradený. Ďalšia činnosť podľa 1. alebo 2. varianty. Poznamenajme, že pri práci na veľkom projekte sa aj vlastné hlavičkové súbory umiestňujú do zvláštneho adresára. Potom sa pochopiteľne pripájajú podľa 1. varianty. Pretože 2. variant pri neúspechu prechádza do 1., môžeme aj v tomto prípade popísaným spôsobom odlíšiť vlastné a štandardné hlavičkové súbory. Nesmieme však zabudnúť definovať viac než jeden štandardní adresár. #error je direktívou, ktorou môžeme zaistiť výstup nami zadaného chybového hlásenia. Najčastejšie sa používa v súvislosti s podmieneným prekladom. Má formát: #error chybové hlásenie kde chybové hlásenie bude súčasťou protokolu o preklade. #line umožňuje nastaviť hodnotu štandardného makra LINE a prípadne aj FILE. Používa sa najmä pri strojovo generovaných zdrojových textoch. Má formát #line číslo ["meno"] kde číslo udáva hodnotu uloženú do LINE a platnú pre nasledujúci zdrojový riadok. meno udáva nepovinnú hodnotu uloženú do makra FILE. #pragma je špeciálnou direktívou, ktorá má uvádzať všetky implementačne závislé direktívy. Pokiaľ iný prekladač špeciálnu direktívu nepozná, proste ju bez chybového stavu ignoruje. Predchádzajúca kapitola Začiatok Nasledujúca kapitola

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017 Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 18: Ο προεπεξεργαστής της C. Βασική ιδέα Ο προεπεξεργαστής (pre-proccesor) της C είναι ένα πρόγραμμα που εκτελείται και μετασχηματίζει τον πηγαίο κώδικα πριν αυτός δοθεί

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Προεπεξεργαστής της C. C Preprocessor. Προγραμματισμός II 1

Προεπεξεργαστής της C. C Preprocessor. Προγραμματισμός II 1 Προεπεξεργαστής της C C Preprocessor Προγραμματισμός II 1 lalis@inf.uth.gr Τι κάνει ο προεπεξεργαστής; Ο προεπεξεργαστής (pre-proccesor) της C είναι ένα πρόγραμμα που μετασχηματίζει τον πηγαίο κώδικα προτού

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 % Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO

Διαβάστε περισσότερα

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

2 Chyby a neistoty merania, zápis výsledku merania

2 Chyby a neistoty merania, zápis výsledku merania 2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií

Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií Derivácia funkcie Derivácia funkcie je jeden z najužitočnejších nástrojov, ktoré používame v matematike a jej aplikáciách v ďalších odboroch. Stručne zhrnieme základné informácie o deriváciách. Podrobnejšie

Διαβάστε περισσότερα

Reálna funkcia reálnej premennej

Reálna funkcia reálnej premennej (ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

3. Operátory a výrazy

3. Operátory a výrazy 3. Operátory a výrazy 3.1 Operand, operátor, výraz. 3.2. Rozdelenie operátorov. 3.3. Operátor priradenie, l-hodnota a p-hodnota. 3.4. Aritmetické operátory - aditívne a multiplikatívne. 3.5. Logické operátory.

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že

Διαβάστε περισσότερα

Προγραμματισμός Ι. Προεπεξεργαστής. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Προγραμματισμός Ι. Προεπεξεργαστής. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Προγραμματισμός Ι Προεπεξεργαστής Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαδικασία Μεταγλώττισης πρόγραµµα επεξεργασίας κειµένου if a

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

Προγραμματισμός σε C. Πράξεις με bits (bitwise operators)

Προγραμματισμός σε C. Πράξεις με bits (bitwise operators) Προγραμματισμός σε C Πράξεις με bits (bitwise operators) Όλοι οι τελεστές για πράξεις με bits Τελεστής Περιγραφή x & y x y AND bit-προς-bit OR bit-προς-bit x ^ y XOR bit-προς-bit ~ x Αντιστροφή των bits

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

Numerické metódy Učebný text pre bakalárske štúdium

Numerické metódy Učebný text pre bakalárske štúdium Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu

Διαβάστε περισσότερα

Zložené funkcie a substitúcia

Zložené funkcie a substitúcia 3. kapitola Zložené funkcie a substitúcia Doteraz sme sa pri funkciách stretli len so závislosťami medzi dvoma premennými. Napríklad vzťah y=x 2 nám hovoril, ako závisí premenná y od premennej x. V praxi

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

Spojitosť a limity trochu inak

Spojitosť a limity trochu inak Spojitosť a limity trochu inak Štefan Tkačik Abstrakt Spojitosť funkcie alebo oblastí je základným stavebným kameňom matematickej analýzy. Pochopenie jej podstaty uľahčí chápanie diferenciálneho a integrálneho

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

KURZ JAZYKA C učebný text pre kvartu a kvintu osemročného gymnázia

KURZ JAZYKA C učebný text pre kvartu a kvintu osemročného gymnázia Škola pre Mimoriadne Nadané Deti a Gymnázium, Teplická 7, 831 02 Bratislava Mgr. Anino BELAN KURZ JAZYKA C učebný text pre kvartu a kvintu osemročného gymnázia BRATISLAVA 2003 1 2 Obsah Úvod...4 Totálny

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Kódovanie a dekódovanie

Kódovanie a dekódovanie Kódovanie a deovanie 1 Je daná množina B={0,1,2} Zostrojte množinu B* všetkých možných slov dĺžky dva 2 Je daná zdrojová abeceda A={α,β,ϕ,τ} Navrhnite príklady aspoň dvoch prostých ovaní týchto zdrojových

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

SLOVENSKO maloobchodný cenník (bez DPH)

SLOVENSKO maloobchodný cenník (bez DPH) Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom... (TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23

Διαβάστε περισσότερα

KURZ JAZYKA C učebný text pre kvartu a kvintu osemročného gymnázia

KURZ JAZYKA C učebný text pre kvartu a kvintu osemročného gymnázia Škola pre Mimoriadne Nadané Deti a Gymnázium, Teplická 7, 831 02 Bratislava Anino BELAN KURZ JAZYKA C učebný text pre kvartu a kvintu osemročného gymnázia 2. vydanie BRATISLAVA 2003 2011 Copyright 2011,

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

BALTÍK PRE MIERNE POKROČILÝCH. Zuzana Krištofová Eva Uličná

BALTÍK PRE MIERNE POKROČILÝCH. Zuzana Krištofová Eva Uličná BALTÍK PRE MIERNE POKROČILÝCH Zuzana Krištofová Eva Uličná Bratislava 2014 OBSAH ÚVOD 3 1 NÁHODNÉ ČÍSLO 4 2 JEDNODUCHÝ PODMIENENÝ PRÍKAZ 5 3 ÚPLNÝ PODMIENENÝ PRÍKAZ 8 4 VNORENÁ PODMIENKA 11 5 OVLÁDANIE

Διαβάστε περισσότερα

Základy matematickej štatistiky

Základy matematickej štatistiky 1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu

Διαβάστε περισσότερα

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin 2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi

Διαβάστε περισσότερα

Ohraničenosť funkcie

Ohraničenosť funkcie VaFu05-T List Ohraničenosť funkcie RNDr. Beáta Vavrinčíková U: V bežnom živote sa často stretávame s funkciami, ktorých hodnot sú určitým spôsobom obmedzené buď na celom definičnom obore D alebo len na

Διαβάστε περισσότερα

zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov (tento proces môžeme nazvat formalizácia), jej hlavnou úlohou je potom

zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov (tento proces môžeme nazvat formalizácia), jej hlavnou úlohou je potom 0 Úvod 1 0 Úvod 0 Úvod 2 Matematika (a platí to vo všeobecnosti pre každú vedu) sa viac či menej úspešne pokúša zachytit istý zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov

Διαβάστε περισσότερα

#define, 70, 575 #elif, 580 #else, 580 #endif, 580 #error, 584 #if, 580 #ifdef, 583 #ifndef, 580, 583 #include, 70, 227, 574 #undef, 579

#define, 70, 575 #elif, 580 #else, 580 #endif, 580 #error, 584 #if, 580 #ifdef, 583 #ifndef, 580, 583 #include, 70, 227, 574 #undef, 579 Ευρετήριο Η γλώσσα C σε βάθος # #define, 70, 575 #elif, 580 #else, 580 #endif, 580 #error, 584 #if, 580 #ifdef, 583 #ifndef, 580, 583 #include, 70, 227, 574 #undef, 579 A abs(), 625 AND, 64 ASCII πίνακας

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΦΑΣΗΣ Οι παρακάτω λύσεις είναι απολύτως ενδεικτικές

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΦΑΣΗΣ Οι παρακάτω λύσεις είναι απολύτως ενδεικτικές 21 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΦΑΣΗΣ Οι παρακάτω λύσεις είναι απολύτως ενδεικτικές Θέμα 1 ο : HydroloGIS C++ Γαϊτανίδης Απόστολος Ιδ. ΓΕΛ Εκπ/τηρίων Μαντουλίδη LANG:

Διαβάστε περισσότερα

Vzorové riešenia 3. kola zimnej série 2014/2015

Vzorové riešenia 3. kola zimnej série 2014/2015 riesky@riesky.sk Riešky matematický korešpondenčný seminár Vzorové riešenia. kola zimnej série 04/05 Príklad č. (opravovali Tete, Zuzka): Riešenie: Keďže číslo má byť deliteľné piatimi, musí končiť cifrou

Διαβάστε περισσότερα

Analýza údajov. W bozóny.

Analýza údajov. W bozóny. Analýza údajov W bozóny http://www.physicsmasterclasses.org/index.php 1 Identifikácia častíc https://kjende.web.cern.ch/kjende/sl/wpath_teilchenid1.htm 2 Identifikácia častíc Cvičenie 1 Na web stránke

Διαβάστε περισσότερα

Úprava textu. Použitie schránky: Hlavička a Päta: Poznámka pod čiarou: Modul č.3 WORD pre pokročilých

Úprava textu. Použitie schránky: Hlavička a Päta: Poznámka pod čiarou: Modul č.3 WORD pre pokročilých Úprava textu Použitie schránky: Pomocou schránky je možné prenášať objekty (texty, obrázky, tabuľky...) medzi rôznymi aplikáciami. Pri prenosoch sa používajú nasledovné klávesy: CTRL/ C kopírovanie CTRL/

Διαβάστε περισσότερα

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie, Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne

Διαβάστε περισσότερα

Základné vzťahy medzi hodnotami goniometrických funkcií

Základné vzťahy medzi hodnotami goniometrických funkcií Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť

Διαβάστε περισσότερα

ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ. for (παράσταση_1; παράσταση_2; παράσταση_3) εντολή επόμενη εντολή

ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ. for (παράσταση_1; παράσταση_2; παράσταση_3) εντολή επόμενη εντολή ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ for (παράσταση_1; παράσταση_2; παράσταση_3) εντολή επόμενη εντολή παράσταση_1 = Παράσταση Αρχικοποίησης παράσταση_2 = Παράσταση Ελέγχου Επανάληψης παράσταση_3 = Παράσταση Ενημέρωσης

Διαβάστε περισσότερα

Planárne a rovinné grafy

Planárne a rovinné grafy Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia

Διαβάστε περισσότερα

Teória pravdepodobnosti

Teória pravdepodobnosti 2. Podmienená pravdepodobnosť Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 23. februára 2015 1 Pojem podmienenej pravdepodobnosti 2 Nezávislosť náhodných udalostí

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Ο προεπεξεργαστής της C. Βασική ιδέα Ο προεπεξεργαστής (pre-proccesor) της C είναι ένα πρόγραμμα που εκτελείται και μετασχηματίζει τον πηγαίο κώδικα πριν αυτός δοθεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΙΣΤΗΜΟΝΩΝ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΕΛΟΣ IFIP, IOI Org. GREEK COMPUTER SOCIETY MEMBER OF IFIP, IOI Org.

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΙΣΤΗΜΟΝΩΝ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΕΛΟΣ IFIP, IOI Org. GREEK COMPUTER SOCIETY MEMBER OF IFIP, IOI Org. 21 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ B ΦΑΣΗΣ (Μαθητές Λυκείου, ΕΠΑΛ, ΕΠΑΣ) ΧΑΛΚΙΔΙΚΟ ΑΛΦΑΒΗΤΟ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Οι παρακάτω λύσεις είναι απολύτως ενδεικτικές. Αρσένης Γεράσιμος 2 ο ΓΕΛ Μοσχάτου

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme

Διαβάστε περισσότερα

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk SLUŽBY s. r. o.

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk   SLUŽBY s. r. o. SLUŽBY s. r. o. Staromlynská 9, 81 06 Bratislava tel: 0 456 431 49 7, fax: 0 45 596 06 http: //www.ecssluzby.sk e-mail: ecs@ecssluzby.sk Asynchrónne elektromotory TECHNICKÁ CHARAKTERISTIKA. Nominálne výkony

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα