Fizičko tehnička merenja Laboratorijski vežba PTC i NTC termistori, tranzistor kao senzor temperature

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fizičko tehnička merenja Laboratorijski vežba PTC i NTC termistori, tranzistor kao senzor temperature"

Transcript

1 VIII VEŽBA 8. SNIMANJE KARAKTERISTIKA TERMISTORA SA POZITIVNIM TEMPERATURSKIM KOEFIIJENTOM (PT) I NEGATIVNIM TEMPERATURSKIM KOEFIIJENTOM () ; TERMOMETAR SA TRANZISTOROM ( PN SPOJEM) KAO SENZOROM TEMPERATURE PT termistor otpornik čija otpornost eksponencijalno raste sa porastom temperature u određenom ospegu iznad Kirijeve temperature. Osnovni materijal za proizvodnju PT termistora je barijum titanat (BaTi0 3 ). Kirijeva temperatura se podešava dopiranjem, u zavisnosti od primene termistora. PT termistori se koriste kao prekidački elementi za zaštitu motora od samozagrevanja, indikatore nivoa, itd. Kao termometri se koriste samo za uske temperatune opsege, kada ih odlikuje odlična osetljivost, i kotiste se u digitalnim toplomerima, za merenje telesne temperature. Termistor Poluprovodnički otporni pretvarač čija otpornost ekponencijalno opada sa porastom temperature. Karakteriše ih velika osetljivost. Mogu biti minijaturnih dimenzija što omogućava merenje veoma brzih temperaturnih promena. Napon direktno polarisanog PN spoja linearno opada sa porastom temperature. Temperaturni opseg termometara na bazi PN spoja je uzak i kreće se od oko -50 pa do oko 150. Ipak zbog niske cene često se koriste. Da bi se obezbedila lineranost neophono je korišćenje stujnog ogledala kojim se poništava uticaj nereproduktivnosti karakteristika traznistora u procesu njihove proizvodnje ZADATAK VEŽBE a) Snimiti karakteristiku otpornost - temperatura, RPT ( T ) i R ( T ), PT i termistora i odrediti konstantu B [1/K] za oba termistora. b) Podesiti izlaznu karakteristiku (nulu i osetljivost) tranzistorskog termometra tako da se temperatura u opsegu 0 80 očitava na skali digitalnog milivoltmetra. Osetljivost merenja treba da iznosi 10 mv/. c) Na više ustaljenih temperatura izmedu 0 i 80 izmeriti greške tranzistorskog termometra poredeći ga sa preciznim živinim termometrom. d) Za vreme izvođenja eksperimenta meriti napon baza-emitor senzorskog tranzistora i odrediti srednju osetljivost napona U u [mv/ ]. be 8.2. TEORIJSKI OSNOVI Termistori sa pozitivnim temperaturskim koefieijentom ( PT ) predstavljaju poluprovodničke senzore temperature koji se izrađuju od feroelektričnih materijala. U ograničenom temperaturskom opsegu počev od jedne određene temperature, PT termistori naglo povećavaju otpornost. Tipičan oblik RPT ( T ) karakteristike prikazan je na sl Pri nižim temperaturama PT termistori imaju otpornost od samo stotinak oma. U ovoj oblasti temperaturski koeficijent otpornosti ima malu negativnu vrednost. Počev od tzv. Kirijeve temperature započinje brzi porast otpornosti od oko 50 %/º. To predstavlja više od 100 puta veću osetjivost od metalnih otpornih termometara i oko 10 puta veću od termistora. Pri visokim temperaturarna otpornost dostiže oko tri reda veličine veću vrednost nego ispod Kirijeve temperature. Radi upoređenja na sl. 8.1 je isprekidanom linijom prikazana i tipična karakteristika termistora. Porast otpornosti PT termistora iznad Kirijeve tačke je toliko brz da se oni uglavnom koriste za diskretnu (on/off) signalizaciju premašenja neke temperature. PT termistori se ne primenjuju u merenjima temperature, osim u uskom temperaturnom opsegu (npr. merenju temperature ljudskog tela). Osnovni materiji za proizvodnju PT termistora je barijum titanat (BaTiO 3). On se koristi takođe i za izradu piezoelektričnih pretvarača. U čistom stanju barijum titanat je izolator koji kao strana 1 od 7

2 feroelektrik ima veoma veliku relativnu dielektričnu konstantu ( r >100). PT termistori se proizvode postupkom sinterovanja, što znači da oni imaju strukturu keramike. Pre sinterovanja sprašenom barijum titanatu se dodaju određene primese koje materijalu daju osobine poluprovodnika. Sinterovanje se obavlja pri temperaturi od oko Sinterovani materijal sastoji se od mnoštva 4 monokristalnih zrna dimenzija oko 5 10 cm, koja su međusobno razdvojena graničnim slojevima 5 debljine 10 cm. Barijum titanat, iznad Kirijeve temperature T, menja tip kristalne rešetke i gubi feroelektrične i piezoelektrične osobine. Opadanje dielektrične konstante iznad Kirijeve tačke prikazuje Kiri - Vajsov zakon: onst ( T ) (8.1) T Kirijeva temperatura T, na RPT ( T ) karakteristici sl. 8.1, odgovara otpornosti koja je dva puta veća od minimalne otpornosti, tj. RPT ( T ) 2 Rmin. Iznad Kirijeve temperature porast otpornosti prikazuje se izrazom: gde konstante B ( T T ) T PT R( T ) A e, ( T T ), (T > T ) (8.2) PT A PT i B PT karakterišu dati termistor. U literatmi se takođe koristi i izraz: B T PT PT PT R( T ) A e, ( T T ) (8.3) Slika 8.1: Otporno temperaturske karakteristike PT i termistora. Počev od tačke M na sl. 8.1, porast otpornosti je sporiji, a u tački P otpornost dostiže svoju maksimalnu vrednost, koja je preko tri reda veličine veća od R min. Pri daljem povišenju tempetature otpornost počinje da se smanjuje što je tipična pojava kod poluprovodnika. Kirijeva temperatura čistog barijum titanata iznosi 118. Dopiranjem se može ostvariti i sniženje i povišenje Kirijeve temperature. Na taj način se proizvode PT termistori sa različitim temperaturama reagovanja koje odgovaraju pojedinim namenama. Kirijeva temperatura komercijalnih PT termistora kreće se od 30 do 170. Smatra se da je otpornost PT termistora prvenstveno određena otpornošću slojeva koji okružuju monokristalna zrna, a ne otpornošću zrna. Iznad Kirijeve temperature smanjuje se dielektrična konstanta i raste potencijalna barijera na granici zrna, što rezultuje naglim porastom otpornosti termistora. Otpornost termistora se smanje sa porastom napona što se naziv varistorski efekt. Zato pri merenjima treba navesti koliki je bio radni napon termistora. Pri naizmeničnoj struji PT termistor se prikazuje ekvivalentnom šemom paralelne veze otpornika i kondenzatora. Impedansa termistora i temperaturska osetljivost se smanjuju sa porastom frekvencije. termistori predstavljaju otporne pretvarače za merenje temperature, koji se u električnom pogledu svrstavaju u poluprovodnike. Oni se dobijaju sinterovanjem smeše oksida metala sa dodatkom dopirajućih primesa. Ime su dobili skraćenjem engleskog termina "Negative Temperature oefficient strana 2 od 7

3 THERMally sensitive resistor". Pri zanemarljivo maloj sopstvenoj disipariji zavisnost otpornosti od temperature data je izrazom R T A e B T (8.4) gde je T [K] apsolutna temperatura, a A i B konstante koje zavise od tipa termistora. Izraz (8.4) može se napisati i u obliku 1 1 B T T1 (8.5) R ( T) R ( T ) e gde je R ( T 1 ) otpornost termistora na temperaturi T 1. Ako se na dve temperature T 1 i T 2 izmere otpornosti R ( T 1 ) i R ( T 2 ), iz (8.5) za konstantu B izračunava se B 1 ln R ( T2 ) / R ( T1 ) 1 1 T T 2 1 Termistor kao temperaturski senzor se karakteriše velikom osetljivošću, koja je oko deset puta veća od osetljivosti platinskog otpornog termometra. Međutim, otpornost termistora je veoma nelinearna, što se vidi na tipičnoj karakteristici, sl 8.1. termistori mogu imati minijaturne dimenzije, manje od milimetra, što ih čini pogodnim za merenje brzih temperaturskih promena. Zbog svoje velike osetljivosti termistori su pogodni za merenje u užim temperaturskim intervalima, kao na primer u medicini, biologiji, meteorologiji, klimatizaciji itd. Poluprovodničke komponente na bazi PN spoja, kao što su silicijumske diode i tranzistori koriste se sa uspehom kao senzori temperature. Napon direktno polarisanog PN spoja diode i tranzistora, u širokom opsegu temperature, menja se priblizno linearno sa osetljivošću od oko 2.2 mv/. Međutim, termometri na bazi PN spoja ipak se ne mogu konkurisati termometrima kao što su termoparovi ili platinski termometri, iz više razloga. Maksimalna temperatura PN spoja je relativno niska i kreće se oko 150. Napon PN spoja i njegova temperaturska zavisnost su nereproduktivne veličina, tj. menjaju se od jedne do druge serije proizvedenih komponenti. Međutim termometri na bazi PN spoja imaju i svoje dobre strane. Pre svega tranzistori i diode su jeftine komponente i raspoloživi su u svakoj laboratoriji. Tačnost koja je red a veličine 0.5, a takođe i merni opseg zadovoljavaju u mnogim praktičnim merenjima. Osim toga, oblik i dimenzije manjih tranzistora i dioda su pogodni za konstrukciju temperaturskih senzora uobičajenog oblika i brzine odziva. Već duže vremena postoje komercijalni tranzistorski termometri u formi jedne integrisane komponente koja sadrži i senzor i pojačavač u istom kućištu PRIMERI PRAKTIČNE PRIMENE PT TERMISTORA Na slici 8.2.a prikazana jc blok šema uređaja za zaštitu statorskih namota trofaznog električnog motora od pregrevanja pomoću PT termistora. Pri izradi, u namote se ugrađuju PT termistori čija Kirijeva temperatura odgovara maksimalno dozvoljenoj temperaturi namota. Kod pregrevanja (usled kratkog spoja ili blokiranja rotora), temperatura namota raste iznad Kirijeve, pa se otpornost PT termistora naglo povećava. Time se aktivira zaštitna sklopka (rele) i isključuje napon napajanja. Na sl. 8.2 b, c i d ilustrovane su neke od primena PT termistora u samozagrejanom režimu, tj. u nelinearnom opsegu U I karakteristika. Sl. 8.2 b prikazuje U I karakteristike u mirnom vazduhu i vodi. Disipaciona konstanta termistora u vodi je veća, pa je nelinearni deo karakteristike viši nego u vazduhu. U vazduhu radna tačka je A, a u vodi B. Prelaskom iz vazduha u vodu dobija se skokovita promena struje i napona, što predstavlja signal da je, na primer, nivo presao kritičnu granicu. U pokretnom fluidu strujni maksimum U I karakteristike se povećava sa porastom brzine. Pri različitim brzinama vazduha može se snimiti familija U I krivih, i na bazi njih projektovati uređaj za merenje brzine vazduha pomoću samozagrejanih PT termistora. Na sl. 8.2 c prikazano je merenje nivoa pomoću niza samozagrejanih PT termistora postavljenih duž rezervoara. U vazduhu svi termistori su veoma zagrejani i ukupna struja koju pokazuje instrument je mala. Kada neki od termistora dospe u tečnost, njegova temperatura opada, što (8.6) strana 3 od 7

4 prouzrokuje skokovito povećanje struje u glavnom kolu. Na taj način je pokazivanje ampermetra srazmerno nivou tečnosti. Slika 8.2: a) Primena PT termistora za zaštitu trofaznog motora, b) U I karakteristike u vazduhu i vodi c) merenje nivoa lečnosti pomoću niza samozagnjanih termistora, d) termistor kao ograničavac struje potrošača. Termistor se koristi i kao osigurač u kolima potrošača male snage. Termistor je spojen redno sa potrošačem, sl. 8.2 d. Pri struji većoj od maksimalno dozvoljene, otpornost termistora naglo raste, struja u kolu opada, što zaštićuje potrošač. Pri tome ne dolazi do oštećenja termistora ŠEME VEZA I UPUTSTVO ZA RAD a) Otpornost termistora meri se pomoću digitalnog ommetra. PT termistor ima Kirijevu termperaturu od oko 80 º, a nalazi se u posudi sa vodom zajedno sa termistorom. Voda se zagreva električnim grejačem. Merenje započinje od sobne temperature. Zagrevanje se vrši do oko 90. Dobijeni rezultati prikazuju se na dijagramu sa polulogaritamskom razmerom, log R f ( T ). Konstanta B jednaka je recipročnoj vrednosti koeficijnta pravca prave log R f ( T). Konstanta B PT PT termistora predstavlja nagib prave linije kojom se najbolje aproksimira strmi deo karakteristike log R f ( T ). PT PT SENZORI NA BAZI PROMENE NAPONA BAZA-EMITOR Pri analizi rada tranzistora dolazi se do sledećeg izraza za struju kolektora: qvg qube r I kt Kt 1 c T e e (8.7) gde je konstanta zavisna od geometrijskih parametara, r konstanta određena temperaturskom zavisnošću pokretljivosti manjinskih nosilaca elektriciteta u bazi, q elementarno naelektrisanje. V G potencijal zabranjene zone, k Boltzmannova konstama, T apsolutna temperatura i U be napon bazaemitor. Pošto je pri direktnoj polarizaciji baze qube / kt 1 q, izraz (8.7) se prikazuje u aproksimativnom obliku: U be c r kt T VG ln (8.8) q I strana 4 od 7

5 Formula (8.8) pokazuje da napon U be predstavlja temperaturski zavisnu veličinu, koja se pri porastu temperature smanjuje. Pri rasponima temperature manjim od oko 100, i pri stalnoj struji kolektora, logaritamski član u izrazu (8.8) je približno konstantan. Napon baza-emitor tada predstavlja linearnu funkciju temperature, što omogućava primenu tranzistora kao temperaturskog senzora. Slika 8.3: Operacioni pojačavač satlranzistorskim senzorom temperatre u režimu sa konstantnom strujom kolektora. Kolo pomoću koga se ostvaruje konstantna struja tranzistorskog pretvarača prikazano je na slici 8.3. Tranzistor je priključen u kolo povratne sprege operacionog pojačavača. Ulazna otpornost pojačavača može se smatrati veoma velikom. Pošto je ulaz bez inverzije "+" uzemljen, to je i napon na ulazu sa inverzijom "-" takođe nula (tzv. vituelna masa). Struja otpornika R je konstantna i iznosi: I E (8.9) R Samim tim i struja kolektora tranzistora je konstantna. Pošto je baza uzemljena, napon baza-kolektor je blizak nuli, što eliminiše površinske struje na spoju. Izlazni napon operacionog pojačavača je temperaturski osetljiv parametar tranzistora U LINEARIZOVANI TRANZISTORSKI TERMOMETRI be Ako dva tranzistora sa identičnim parametrima V G, r i imaju različite kolektorske struje I 1 i I 2, iz (8.8) se za razliku napona baza emitor dobija: kt I c1 U be U be1 U be2 ln (8.10) q I Treba uočiti da je izraz (8.10) u potpunosti linearan po temperaluri, za razliku od približno linearnog izraza (8.8). Jedan od principa konstrukcije linearnog tranzistorskog termometra u formi integrisanog kola prikazan je na sl. 8.4 a. Strujno ogledalo koje čine tranzistori Q 3 i Q 4, deli struju I T na dve jednake struje I1 I2 IT / 2. Q 2 se sastoji od nekoliko identičnih tranzistora (obično 8) koji imaju jednake parametre sa tranzistorom Q 1. Svaki od 8 tranzistora ima kolektorsku struju Ii I1 / 8. Napon U ( T ) na emitorskom otporniku R e iznosi: c2 kt I c1 k ln8 U ( T ) U be1 U be2 ln T (8.11) q I q Tranzistorski termometar na sl. 8.4 a daje naponski signal U i koji je linearno srazmeran temperaturi, ali se isto kolo češće primenjuje kao senzor koji daje strujni signal proporcionalan temperaturi. Pošto je napon U linearno srazmeran sa temperaturom, to je i slučaj sa strujom I U R 1 T / e T. Ukupna struja I T kojom se napaja kolo iznosi: c2 I T 2k ln I c1 T (8.12) qr R e e 6 Ako se podesi da je Re 358, dobija se I T A T gde je 6 A 10 [A/K]. Drugim rečima kolo na sl. 8.4 a predslavlja strujni generator čija je struja potrošnje izražena u mikroamperima brojno jednaka apsolutnoj temperaturi u K. Ovo kolo se kao komponenta sa dvožičnom vezom koristi za merenja temperature na većim rastojanjima, jer struja praktično ne zavisi od otpornosti veza i napona izvora za strana 5 od 7

6 napajanje, sl. 8.4 b. Izvor za napajanje spojen je sa rednim otpornikom R na kome se dobija izlazni napon. Ako je, npr. R 1000, izlazni napon u milivoltima je brojno jednak temperaturi u Kelvinima. Slika 8.4: a) Uz objašnjenje principa rada lineamog tranzistorskog termometra, b) kolo sa sl. a) primenjeno za daljinsko merenje temperature kao komponenta sa dvožičnom vezom ŠEMA TERMOMETRA I UPUTSTVO ZA RAD Šema ispitivanog termometra prikazana je na sl Kao pretvarač se koristi silicijumski tranzistor, koji je izolovan epoksidnom smolom i smešten zajedno sa živinim termometrom u termostatiranu posudu. Operacionim pojacavačem P 1 određen je radni režim senzorskog tranzistora, a na njegovom izlazu dobija se napon U be. Zener-dioda i otpornik R 1 obezbeđuju konstantan napon na otporniku R c a time i konstantnu kolektorsku struju tranzistora. Operacioni pojačavačem P 2 postiže se potrebno pojačanje napona U be. Otpornici R 2, R 3, i potenciometar R 4 služe za podešavanje nule izlaznog napona kada je pretvarač na tački topljenja leda. Naponsko pojačanje pojačavača P 2 je veće nego što je potrebno da se ostvari tražena osetljivost od 10 mv/. Smanjenje osetljivosti na potrebnu vrednost postiže se pomoću potenciometra R 5, sa čijeg se klizača izlazni napon vodi na ulaz digitalnog voltmetra. Slika 8.5: Šema eksperimentalnog tranzistorskog termometra. Pre početka merenja, pretvarač i živin termometar koji se koristi za kalibraciju, stavljaju se u termostatsku posudu sa smešom leda i vode. U toj posudi postaju sve dok živin termometar ne pokaže nulu, i dok se ne dobije konstantan izlazni napon na digitalnom voltmetru. Tada se pomoću strana 6 od 7

7 potenciometra R 4 "Podešavanje nule", postiže nulto pokazivanje voltmetra. Epruveta sa pretvaračem se zatim stavlja u termički izolovanu posudu sa vodom na temperaturi u opsegu (80-90), i uz stalno mešanje sačeka se dok se ne uspostavi kvazi-stacionarno stanje pri kome se opaža samo manje smanjivanje temperature termometra usled hlađenja vode u posudi. U tom trenutku se pomoću potenciometra R 5 podešava izlazni napon, tako da njegova vrednost u jedinicama 10 mv bude jednaka sa temperaturom u. Na primer, pri ustaljenoj temperaturi 81.5 izlazni napon treba da iznosi 815 mv. Opisanim postupkom izvršena je kalibracija termometra u dve tačke. Tačnost tranzistorskog termometra potrebno je proveriti na više ustaljenih temperatura unutar opsega kalibracije. Jedna od tih temperatura može da bude sobna. Pri tome je potrebno izmeriti znak i veličinu greške. Na ustaljenim temperaturama, pored izlaznog napona termometra potrebno je meriti takode napon U be. Promena napona Ube ( t) Ube( t) Ube(0 ) ΔUbe(t) = Ube(t) Ub (0 ) nanosi se na dijagram prikazan na slici 8.6, i kroz dobijene tačke povlači optimalna prava. Iz nagiba ove prave određuje se temperaturska osetljivost napona baza emitor izražena u mv/. Slika 8.6: Promena napona baza-emitor u zavisnosti od temperature. strana 7 od 7

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj Bipolarni tranzistor 1 Bipolarni tranzistor 2 Ebers-Molov model Strujno-naponske

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji

Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Električna shema temeljnog spoja Električna shema fizički realiziranog uzlaznog pretvarača +E L E p V 2 P 2 3 4 6 2 1 1 10

Διαβάστε περισσότερα

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE Laboratorijske vežbe 2014/2015 LABORATORIJSKI PRAKTIKUM-ELEKTRONSKE KOMPONENTE Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka

IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka Stančić Goran Jevtić Milun Niš, 2004 2 IMPULSNA ELEKTRONIKA Glava 1 Logička kola i njihova primena 3 4 IMPULSNA ELEKTRONIKA 1.1 Na slici 1.1 prikazano je standardno

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

FIZIČKO-TEHNIČKA MERENJA: SENZORI TEMPERATURE

FIZIČKO-TEHNIČKA MERENJA: SENZORI TEMPERATURE : SENZORI TEMPERATURE UVOD Merenje temperature predstavlja jedno od najčešćih merenje, jer je temperaturu potrebno odrediti ne samo zbog upravljanja određenim procesom, već mnogi senzori drugih veličina

Διαβάστε περισσότερα

4 IMPULSNA ELEKTRONIKA

4 IMPULSNA ELEKTRONIKA 4 IMPULSNA ELEKTRONIKA 1.1 Na slici 1.1 prikazano je standardno TTL kolo sa parametrima čije su nominalne vrednosti: V cc = 5V, V γ = 0, 65V, V be = V bc = V d = 0, 7V, V bes = 0, 75V, V ces = 0, 1V, R

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Snimanje karakteristika dioda

Snimanje karakteristika dioda FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU LINEARNA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM.. IME I PREZIME BR. INDEKSA

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

MAGNETNO SPREGNUTA KOLA

MAGNETNO SPREGNUTA KOLA MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,

Διαβάστε περισσότερα

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora Sadržaj predavanja: 1. Operacijsko pojačalo Operacijsko Pojačalo Kod operacijsko pojačala izlazni napon je proporcionalan diferencijalu

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA ANALIZA TTL, DTL I ECL LOGIČKIH KOLA Zadatak 1 Za DTL logičko kolo sa slike 1.1, odrediti: a) Logičku funkciju kola i režime rada svih tranzistora za sve kombinacije logičkih nivoa na ulazu kola. b) Odrediti

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Električna merenja Analogni instrumenti

Električna merenja Analogni instrumenti Električna merenja Analogni instrumenti 4..7. Analogni instrumenti Elektro-mehanički instrumenti Elektronski instrumenti Elektro-mehanički instrumenti Prednosti Ampermetri i voltmetri ne zahtevaju izvor

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA:

PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA: ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: ELEKTRONIKA Godina 2006/2007 PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA: ELEKTRONIKA (SGE, SGMIM, SGUS) ELEKTRONIKA U TELEKOMUNIKACIJAMA

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Poluprovodničke komponente -prateći materijal za računske i laboratorijske vežbe-

Poluprovodničke komponente -prateći materijal za računske i laboratorijske vežbe- Aneta Prijić Poluprovodničke komponente -prateći materijal za računske i laboratorijske vežbe- Studijski program Mikroelektronika i mikrosistemi (IV semestar) Označavanje jednosmernih i naizmeničnih veličina

Διαβάστε περισσότερα

JEDAN DOPRINOS ENERGETSKOJ EFIKASNOSTI U DOMAĆINSTVU. -specijalistički rad-

JEDAN DOPRINOS ENERGETSKOJ EFIKASNOSTI U DOMAĆINSTVU. -specijalistički rad- UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET JEDAN DOPRINOS ENERGETSKOJ EFIKASNOSTI U DOMAĆINSTVU -specijalistički rad- Mentor: Kandidat: Prof. dr Rada Dragović-Ivanović Alija Dervić, 21/2013 Podgorica,

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj 1 MOSFET - model za male signale 2 Struja kroz i disipacija snage Model za male

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona lementi elektronike septembar 2014 ŠNJA. Za rednosti ulaznog napona V transistor je isključen, i rednost napona na izlazu je BT V 5 V Kada ulazni napon dostigne napon uključenja tranzistora, transistor

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE Laboratorijske vežbe 2017/2018 LABORATORIJSKI PRAKTIKUM-ELEKTRONSKE KOMPONENTE Laboratorijske vežbe Određivanje osvetljenosti laboratorije korišćenjem fotootpornika

Διαβάστε περισσότερα

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k.

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k. OT3OS1 7.11.217. Definicije Funkcija prenosa Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k Y z X z k Z y n Z h n Z x n Y z H z X z H z H z n h

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα