antene Slika 1. Postavljena antena 9A4ZZ bipol za 40-metarski opseg
|
|
- Αμφιτρίτη Ζάχος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 antene Piše: Mladen Petroviæ, 9A4ZZ Antena 9A4ZZ bipol 9A4ZZ Bipole Antenna 9A4ZZ bipol je kratkovalna antena, originalno rješenje do kojeg sam došao nakon duljeg rada i eksperimentiranja tijekom godine. S njom sam, uz snagu od 100 W, na 20-metarskom i 40-metarskom opsegu, održao veze sa svim kontinentima. Namijenjena je za rad u uvjetima skuèenoga prostora, odnosno tamo gdje se ne može postaviti uobièajena kratkovalna antena, bilo zbog dimenzija bilo zbog smetnji (TVI), kao i upotrebu u portablu, na brodu i slièno (sl. 1.). Radi bez antenskoga tunera, jer je ulazna impedancija antene 50 Ω. Nazvao sam je bipol kako bi se razlikovala od uobièajenoga dipola (jer ima isto dva pola). Princip rada antene 9A4ZZ bipol Da biste lakše razumjeli naèin rada bipol antene usporedit æu je s antenom magnetic loop (magnetska petlja), koja je poznata veæini radioamatera. Antena magnetic loop je ustvari paralelni rezonantni titrajni krug, kojemu je induktivnost zavojnice L zamijenjen malom induktivnosti cijevi smotane u kružnicu (èime se morao poveæati kapacitet, da bi se održala rezonantna frekvencija kruga). Na taj su naèin otpori X L, X i R postali mali i kroz krug teèe velika VF struja. Ona uzrokuje jako VF magnetno polje, koje opet inducira elektrièno polje. Poyntingov vektor kojim se definira zraèenje S = E H u ovom sluèaju ima Slika 1. Postavljena antena 9A4ZZ bipol za 40-metarski opseg malu elektriènu komponentu E, a veliku magnetsku komponentu H, te kažemo da je to magnetna antena. 9A4ZZ bipol je kratka, rezonantna, elektrièna antena koja je nastala tako da je paralelni rezonantni titrajni krug (Sl. 2a.) otvoren na mjestu kapaciteta (Sl. 2b.). Na taj se naèin smanjio kapacitet, a da bi se održala rezonantna frekvencija kruga, 1 f, 2 L mora se poveæati induktivnost L. Zbog toga se poveæao otpor, što se vidi iz jednadžbi za induktivni i kapacitivni otpor: X L X 2 f L, 1. 2 f Iz tog razloga se pojavio visok napon na sastavnicama titrajnoga kruga, a mala struja u krugu. Elektrièno polje E oko antene je veliko, a magnetno polje H je malo. Poyntingov vektor je S = E H, gdje je elektrièna komponenta E velika, a magnetna komponenta H mala, te kažemo da je to elektrièna antena. Na krajevima bipola pojavljuje se visok napon, dok je struja kroz antenu mala i zato su gubici maleni. Pod pretpostavkom da je titrajnom krugu u oba sluèaja privedena ista snaga, oko takve antene stvara se polje visoke impedancije te se prilagoðuje naponskom transformacijom impedancije s velike impedancije, na malu od 50 Ω. Konstrukcija i opis antene 9A4ZZ bipol 9A4ZZ bipol je zbog praktiènosti i manje cijene napravljena na standardnim PV cijevima, koje služe kao nosaè i zaštita antene (Sl. 3.). Antena je napravljena od zavojnice L od bakrene žice s PV izolacijom, namotane na PV cijev. Duljina žice za zavojnicu L je približno polovica valne duljine (λ/2), a presjek žice je 1,5 mm 2 (kako bi imala što manje gubitke). Zavojnica je spojena s dva valjka od aluminijskoga lima, koji su montirani na krajevima cijevi. To su dva pola bipola, koji èine kapacitete i 1, s kojima se ugaða na željenu frekvenciju. Antena se napaja preko sprežne zavojnice L s, isto od bakrene žice 1,5 mm 2 (da bi imala što manje gubitke), u izolaciji koja je namotana preko antenske zavojnice L. Od omjera broja zavoja zavojnica L i L s zavisi omjer transformacije i ulazna impedancija antene. U tablici 1. prikazane su dimenzije antene za više opsega. Broj zavoja dan je za srednju frekvenciju opsega, a rezonantnu frekvenciju odredite prema vašoj želji Radio HRS 2/2007 L L s Slika 2. Titrajni krug, a) zatvoren i b) otvoren L L s
2 antene Zavojnice namotajte tako da antena bude rezonantna na najvišoj željenoj frekvenciji opsega pri uvuèenim valjcima 1 potpuno preko valjka, tako da kasnije izvlaèenjem valjka 1 ugodimo antenu na nižu, odnosno bilo koju željenu frekvenciju. Na krajevima je antenska zavojnica L, spojena s valjcima, a na sredini je spojena s hladnim krajem sprežne zavojnice L s, te je na taj naèin antena simetrièna. Zavojnice L i L s moraju se zaštititi od atmosferilija, jer bi u protivnom došlo do promjene induktivnosti antenske zavojnice i do razgaðanja antene. Zaštita se izvodi s PV cijevima veæeg promjera, koje se navlaèe na zavojnicu i sa strana zabrtve protiv prodora vode. Mehanièka izvedba vidi se na slikama, gdje se vidi i prikljuènica SO 239, na koju se prikljuèuje koaksijalni kabel 50 Ω. Moguæe su i druge kombinacije broja zavoja i dimenzija valjaka, kao i antene za druge opsege, ali sam ove izabrao kao reprezentativne. Ugaðanje antene 9A4ZZ bipol Ulazna impedancija ugoðene antene je 50 Ω. Antene se ugaða dovoðenjem u rezonanciju ukupne induktivnosti i ukupnoga kapaciteta antene, tj. izjednaèavanjem vrijednosti ukupnoga induktivnog otpora s ukupnom vrijednosti kapacitivnoga otpora. Antena se fino ugaða na impedanciju 50 Ω promjenom kapaciteta antene, i to jednakim produženjem ili skraæenjem obaju krakova bipola, tj. valjaka 1. Skraæivanjem krakova bipola mijenja se rezonantna frekvencija na više, odnosno produženjem na niže. Fino se ugaða promjenom induktivnosti zavojnice L. To se obavlja kratkospojnim prstenom širine 5 10 cm od aluminijskoga lima, koji se omota oko zaštitne cijevi vruæega kraja zavojnice L, i pomièe uzduž cijevi. 9A4ZZ bipol je rezonantna monobandna antena s visokom koncentracijom elektromagnetskoga polja u neposrednoj blizini antene, pa se zbog sigurnosti operatora treba ugaðati dok odašiljaè nije u odašiljanju. Ugoðenost antene kontrolira se SWR metrom postavljenim što bliže anteni, kao i maksimalnim svjetlom fluorescentne cijevi primaknutoj uz antenu. Uz oba kraka bipola fluorescentna cijev mora svijetliti jednakom jakošæu, s tim da je u sredini bipola svijetli minimalno. Nakon ugaðanja antene napajane s kratkim kabelom, antena se poslije postavljanja dodatno ugodi s napojnim kabelom u punoj radnoj duljini. Ova antena ima široki opseg, a podaci su dani u nastavku. Antena 9A4ZZ bipol maksimalno zraèi uzduž bipola na obje strane, a minimalno pod pravim kutom na središte antene (Sl. 4.). Napaja se preko koaksijalnoga kabela impedancije 50 Ω (RG 58/U). Duljina kabela nije kritièna, 1 d 2 d 1 d 3 odnosno impedancija se bitno ne mijenja promjenom duljine koaksijalnoga kabela. Kako se ne bi inducirale VF struje u opletu koaksijalnog kabela, on se vodi pod kutom od 90 u odnosu na bipol, jer je jakost elektromagnetskoga polja (EM) najmanja uz središte bipola. Da bi se to potpuno uklonilo, može se namotati VF èok ili staviti feritne perle, ali 2 m od prikljuènice, jer se VF napon u kabelu ne javlja od povratnih struja, veæ se inducira u opletu kabela zbog jakog polja u blizini antene. Takoðer je potrebno uzemljiti odašiljaè. D L 50 L s Slika 3. Nacrt antene 9A4ZZ bipol f/mhz d 1 /cm d 2 /cm d 3 /cm D/cm Broj zavoja L Broj zavoja L s 1, , * 12 *Bakrena žica 1 mm (lakom izolirana) Slika 4. Dijagram zraèenja antene 9A4ZZ bipol Postavljanje antene 9A4ZZ bipol Buduæi da je elektrièno polje u blizini antene vrlo jako, antenu je potrebno odmaknuti od metalnih objekata kako bi se sprijeèili gubici. Preporuèa se postaviti antenu na visini od najmanje desetine valne duljine. Antena se može 1 postaviti horizontalno ili vertikalno, upotrebljavajuæi odgovarajuæe uobièajene PV cijevi. Kad se postavlja vertikalno dobije se kružni dijagram, a postavljanjem horizontalno usmjereni dijagram zraèenja. To treba uzeti u obzir kod postavljanja antene. Dijagram zraèenja prikazan je na slici 4. Za bliže veze preporuèa se horizontalno postavljanje, a za DX rad vertikalno. Antena 9A4ZZ bipol vrlo je uèinkovita i jak izvor VF zraèenja, te nije preporuèljivo biti u njezinoj blizini kada se radi snagom veæom od 100 W. Antena 9A4ZZ bipol ima prednost u odnosu na EH antenu jer je simetrièna i nema problema s VF strujama po koaksijalnome kabelu, te se lakše ugaða. U odnosu na antenu magnetic loop ima deset puta veæu širinu opsega rada ugoðene antene, nema skupih i kritiènih sastavnica. Tablica 1. Slika 5. Izgled izraðene antene za 160-metarski opseg Radio HRS 2/
3 antene Tehnièke karakteristike antene 9A4ZZ bipol za 160-metarski opseg - Ulazna impedancija prilagodiva po cijelom opsegu na 50 Ω. - Maksimalno dopuštena privedena VF snaga 500 W (PEP za SSB/W). - Širina opsega antene pri VSWR 2:1 je 50 khz. - Dimenzije: duljina/promjer: 240 cm/11cm. Tehnièke karakteristike antene 9A4ZZ bipol za 80-metarski opseg - Ulazna impedancija prilagodiva po cijelom opsegu na 50 Ω. - Maksimalno dopuštena privedena VF snaga 500 W (PEP za SSB/W). - Širina opsega antene pri VSWR 2:1 je 150 khz. - Dimenzije: duljina/promjer: 240 cm/5 cm. Slika 6. Izgled izraðene antene za 80-metarski opseg Tehnièke karakteristike antene 9A4ZZ bipol za 40-metarski opseg - Ulazna impedancija prilagodiva po cijelom opsegu 50 Ω. - Maksimalno dopuštena privedena VF snaga 500 W (PEP za SSB/W). - Širina opsega antene pri VSWR 2:1 je 300 khz - Dimenzije: duljina/promjer: 120 cm/5 cm. Slika 7. Izgled izraðene antene za 40-metarski opseg Tehnièke karakteristike antene 9A4ZZ bipol za 20-metarski opseg - Ulazna impedancija prilagodiva po cijelom opsegu 50 Ω. - Maksimalno dopuštena privedena VF snaga 500 W (PEP za SSB/W). - Širina opsega antene pri VSWR 2:1 je 600 khz. - Dimenzije: duljina/promjer: 40 cm/3 cm. (Konstruktor antene 9A4ZZ bipol je Mladen Petroviæ, 9A4ZZ, Slika 8. Izgled izraðene antene za 20-metarski opseg 20 Radio HRS 2/2007
4
5
6
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
GP antena EVA-DX 30/40
Mladen Petrović, 9A4ZZ GP antena EVA-DX 30/40 Ground plane antenna EVA-DX 30/40 Nakon konstrukcije antene podignute od tla, EVA (elevated vertical antenna) za 80m, odlučio sam konstruirati EVA antenu i
ispod 20, što joj daje odlike izvrsne antene za DX rad na 80 m opsegu gdje je optimalni elevacijski kut od 15 do 20.
Piše: Mladen Petrović, 9A4ZZ GP antena EVA-DX 80 Ground plane antenna EVA-DX 80 Uobičajeno je da se vertikalne antene visine reda λ/4 i više, za donje opsege 40 m, 80 m i 160 m postavljaju neposredno iznad
Mladen Petrović, 9A4ZZ NA KRAJU NAPAJANA KV MULTIBAND ANTENA
Mladen Petrović, 9A4ZZ NA KRAJU NAPAJANA KV MULTIBAND ANTENA THE END FED HF MULTIBAND ANTENNA Mnogi od nas nemaju mogućnosti postaviti dipol, windom ili neku antenu koja zahtjeva dvije uporišne točke i
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
antene Piše: Mladen Petrović, ing. 9A4ZZ EH-antena - nova antena Slika 1. - Autor članka, 9A4ZZ, s pokusnim verzijama EMA-antena.
Piše: Mladen Petrović, ing. 9A4ZZ EH-antena - nova antena Uvod Pretražujući po internetu, na kraju 2002. godine naišao sam na jednu web stranicu na kojoj se objašnjava koncept EH-antene. Nakon toga sam
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Vježba 081. ako zavojnicom teče struja jakosti 5 A? A. Rezultat: m
Zadatak 8 (Marija, medicinska škola) Kolika je jakost magnetskog polja u unutrašnjosti zavojnice od 5 zavoja, dugačke 5 cm, ako zavojnicom teče struja jakosti A? ješenje 8 N = 5, l = 5 cm =.5 m, = A, H
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I
Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Unipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
BIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
Pitanja iz izmjenične struje i titranja
Pitanja iz izmjenične struje i titranja 1. Objasni inducirani napon na krajevima ravnog vodiča. 2. Kada će se u vodiču koji se nalazi u magnetskom polju inducirati napon? 3. Što je elektromagnetska indukcija?
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
MEHANIKA FLUIDA. Složeni cevovodi
MEHANIKA FLUIDA Složeni cevovoi.zaata. Iz va velia otvorena rezervoara sa istim nivoima H=0 m ističe voa roz cevi I i II istih prečnia i užina: =00mm, l=5m i magisalni cevovo užine L=00m, prečnia D=50mm.
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
5. Ako žica ima otpor 10,94 Ω, duljine je l=750 m i presjeka 1,2 mm²:
PRIMJERI PITANJA IZ STRUČNE TEORIJE 1. Kako glasi II. Kirchhoffov zakon? 2. Kako glasi Faradeyev zakon? 3. Kako glasi Coulombov zakon? 4. Izračunajte otpor žice od aluminija otpornosti ρ=0,028 10 6 i presjeka
Magnetsko polje ravnog vodiča, strujne petlje i zavojnice
Magnetske i elektromagnetske pojave_intro Svojstva magneta, Zemljin magnetizam, Oerstedov pokus, magnetsko polje ravnog vodiča, strujne petlje i zavojnice, magnetska sila na vodič, Lorentzova sila, gibanje
Priprema za državnu maturu
Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.
Snage u kolima naizmjenične struje
Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna
OSNOVE ELEKTROTEHNIKE II Vježba 11.
OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone
Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo
Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora Sadržaj predavanja: 1. Operacijsko pojačalo Operacijsko Pojačalo Kod operacijsko pojačala izlazni napon je proporcionalan diferencijalu
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Magneti opis i namena Opis: Napon: Snaga: Cena:
Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
TEORIJA BETONSKIH KONSTRUKCIJA 79
TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni