SVETLOBNI MIKROSKOP IN OSNOVE MIKROSKOPIRANJA
|
|
- Ἀλαλά Κασιδιάρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 SVETLOBNI MIKROSKOP IN OSNOVE MIKROSKOPIRANJA 1 Uvod Mikroskop je optični instrument sestavljen iz sistema leč, ki so v isti optični osi nameščene v primerni medsebojni razdalji in nam omogočajo, da opazujemo drobne predmete pod večjim zornim kotom, kot z golim očesom. 1.1 Vrste mikroskopov: - na presevno svetlobo - transmisijski (biologija, medicina); - na vpadno svetlobo - svetloba s strani (za opazovanje neprosojnih teles kot so npr. površina semen, kristalov...). 1.2 Delitev mikroskopov na: - enostavne (en sistem leč, manjše povečave); - sestavljene (vsaj 2 sistema leč, večja povečava).
2 2 Zgradba mikroskopa: mehanični del (daje trdnost in mogoča razvrščenost optičnih delov v pravilnem zaporedju, razdaljah in točno nacentriranost v optični osi): podstavek, nanj pritrjeno telo mikroskopa (stativ), nosilec kondenzorja, vijak kondenzorja, zaslonka z ročico, mizica z odprtino in peresi, naprava za premikanje preparata z dvema vijakoma, nosilec tubusa, nastavek stativa za revolver z objektivi, tubus, mikrometrski vijak, makrometrski vijak... optični del: objektiv, okular (+ sistem prizem v spodnjem delu tubusa), kondenzor zrcalo za usmerjanje svetlobe
3 3 LEČE Leče so sestavni del naprav s katerimi povečamo zorni kot pod katerim opazujemo predmete. V ta namen izkoriščamo lom svetlobe pri prehodu iz optično redkejšega sredstva (zrak) v optično gostejše (voda 1,3x optično gostejša, steklo 1,5x optično gostejše). Leče so prozorna telesa ploščate oblike in različnih ukrivljenosti. a-bikonveksna; b-plankonveksna; c-konveksno-konkavna; d-bikonkavna; e- plankonkavna; f-konkavno-konveksna leča. konveksne leče so zbiralne, vzporedne žarke zberejo v skupno GORIŠČE; konkavne leče so razpršilne, vzporedne žarke razpršijo. Bikonveksna leča preslika predmete, ki so pred prednjim goriščem na nasprotno stran, kjer nastane obrnjena realna slika predmeta za zadnjim goriščem; -če je predmet med enojno in dvojno goriščno razdaljo je slika povečana; -če je predmet dalj od dvojne goriščne razdalje je slika pomanjšana. -predmete, pred lečo (med goriščem in lečo) vidimo skozi lečo navidezno, povečano in pokončno (lupa).
4 4 NASTANEK SLIKE F ob - gorišče objektiva F ok - gorišče okularja f ok - goriščna razdalja okularja y - objekt y' - obrnjena, povečana, realna slika objekta I - pokončna, povečana, navidezna slika
5 5 UKLON in INTERFERENCA Pomembna pojava, ki jih srečamo pri vseh mikroskopih sta uklon in interferenca. 5.1 Interferenca: Svetloba je elektromagnetno valovanje, električno in magnetno valovanje poteka pravokotno na smer širjenja. Za pojav svetlobe je neposredno važno le električno nihanje, ki si ga lahko predstavimo kot sinusno krivuljo z določeno valovno dolžino in amplitudo. Dva žarka v isti smeri, ki potekata vzporedno sta lahko v različnih medsebojnih odnosih: ista ali različna: valovna dolžina faza amplituda. V točki, kjer se žarka sekata pride do interference. Amplitude se seštejejo. 5.2 Uklon: Svetloba, ki prehaja skozi ozko odprtino, se na robovih te odprtine uklanja. Del svetlobe, ki potuje skozi odprtino direktno, imenujemo direktni žarek, na zaslonu, ki ga postavimo za odprtino, pa lahko prestrežemo še več svetlejših kolobarjev. To so uklonski maksimumi (prvega reda, drugega reda,...). Podoben pojav srečamo v mikroskopu, kjer svetloba zadeva drobne strukture, na katerih se žarki uklanjajo. Žarek, ki potuje skozi strukturo premočrtno, je direktni žarek, v objektiv pa padejo vsaj še žarki uklonskega maksimuma prvega reda. Objektivi z večjo NA (numerično aperturo) zberejo več uklonskih maksimov. Valovno dolžino svetlobe zaznamo kot barvo, amplitudo pa kot intenziteto. S svetlobnim mikroskopom raziskujemo prozorne ali vsaj prosojne objekte, ki jih vidimo, kadar se od medija ki jih obdaja ločijo bodisi po barvi ali intenziteti svetlobe, ki prodre skozi. Če se objekti od okolice ločijo le po optični gostoti objekta ne opazimo za opazovanje takih objektov uporabljamo fazno kontrastni mikroskop (razliko v fazi žarkov spremenimo v razliko v amplitudi). (Žarek(S), ki pride skozi objekt (nekoliko zakasni, spremeni se faza) se ukloni, poleg direktnega nastane še uklonski žarek(d), njuna vsota(s+d) pa je ravno enaka žarku ki pripotuje skozi nekoliko redkejši medij v okolici (P).)
6 6 LOČLJIVOST (d) Je najmanjša razdalja med dvema točkama, ki ju še ločimo. -oči: 0,2 mm (z razdalje 25 cm); -mikroskop: 0,2 µm ( x večja od očesnih leč). Ločljivost je mera za jasnost slike, ki nam pove koliko morata biti med seboj oddaljena dva okrogla madeža (točki), da ju še vidimo, kot dva ločena madeža. λ d = 2 Ločljivost modernih mikroskopov je omejena z valovno dolžino svetlobe, s kotno odprtino objektiva in celotnega sistema leč v mikroskopu. (kotna odprtina objektiva - stožec svetlobe, ki pade iz točke v objektiv) NUMERIČNA APERTURA je produkt lomnega količnika (n) medija med pokrovnim steklom in objektivom in sinusa polovice kotne odprtine (α). NA = n sinα sinα je sinus polovičnega kota skrajnih žarkov ob vstopu v objektiv 0,61λ NA = 0,61λ ali d d = NA NA je merilo za ločljivost pri svetlobnem mikroskopu. Zveza med NA in ločljivostjo: Večja kot je NA boljša je ločljivost objektiva. NA max. 1,3-1,4 d=0,4µm (ločljivost tudi ob uporabi modre svetlobe (λ=4000ä) ne more biti veliko manjša od 2000 Ä. Del žarkov zgreši objektiv. Pomagamo si s tekočinami z visokim lomnim količnikom. Objektivi z visokimi NA imajo majhno delovno razdaljo (razdalja med sprednjo čelno lečo objektiva in med pokrovnim steklom). Delovna razdalja je odvisna od od NA in od povečave objektiva.
7 7 POVEČAVA V praksi je povečava zmnožek povečav objektiva in okularja. P = P ob P ok Teoretično je povečava sistema leč sicer neomejena, njena koristna meja pa je dosežena, ko najmanjše objekte, ki jih s pomočjo optičnega mikroskopa še lahko ločimo, povečamo do tolikšne velikosti, da jih lahko vidimo. Največjo koristno povečavo si lahko izračunamo: povečava = d očesa/d mikroskopa = 0,4 mm/2000 Ä = 2000x Koristna meja povečave je približno 1000x vrednost NA.
8 8 PREPARATI 1. sveži preparati (v vodi, v suhem stanju 1/2 ure) 2. začasni preparati (v glicerinu, nekaj tednov) 3. trajni preparati (fiksacija v alkohol:ocetna kislina 3:1; rezanje na rezine-5µm ali mečkanje; barvanje; vložitev v cedrovo olje, kanadski balzam ali umetne smole)
9 9 KONDENZOR Kondenzor je naprava, ki jo sestavlja ena ali več leč. Kondenzor zbere svetlobne žarke in jih preslika v ravnino objekta. Njegova glavna naloga je, da enakomerno in intenzivno osvetli objekt. Pri slabših mikroskopih, ki nimajo kondenzorja lahko uporabimo za zbiranje in usmerjanje svetlobe na objekt kar konkavno zrcalo, pri boljših pa je potrebno spremeniti smer žarkov in povečati njihovo količino. Kondenzor sestavlja več leč, ki so nameščene tako, da cel kondenzor deluje kot zbiralna leča z goriščem 1,2-1,4 mm nad čelno lečo kondenzorja. Ko je kondenzor v najvišji legi se gorišče ujema z ravnino objekta na objektnem stekelcu. Vrednost kondenzorjev ocenjujemo po njihovi numerični aperturi (NA). Leče objektiva so polno osvetljene, kadar je NA kondenzorja približno enaka NA objektiva. NA kondenzorja je lahko največ za 1/3 manjša od NA objektiva. Velikost slike svetlobnega vira je odvisna od goriščne razdalje kondenzorja in oddaljenosti svetila od kondenzorja. Pri velikih NA so goriščne razdalje kondenzorja kratke in slika svetlobnega vira je zelo majhna, zato kondenzorji z velikimi NA ne osvetlijo vidnega polja šibkih objektivov. Vrste kondenzorjev: -klasični Abbejev kondenzor: manjše NA (0,5), predvsem za šolske mikroskope -visoko sposobni kondenzorji (akromatični): visoke NA, za raziskovalno delo -kondenzorji za mikroskopijo v temnem vidnem polju: temno ozadje, predmet osvetljen -kondenzor za fazno kontrastno mikroskopijo: brez barvanja povečamo kontrast določene celične strukture. Z zaslonko pod kondenzorjem lahko spreminjamo NA kondenzorja in z njo NA celotnega sistema leč (aperturna zaslonka). Če zaslonko zapremo se zmanjša NA kondenzorja, kar pomeni, da tudi objektiv ne dela z največjo močjo, kar zmanjša ločljivost mikroskopa.
10 10 OBJEKTIVI Objektivi so najpomembnejši del svetlobnega mikroskopa. Objektiv sestavlja dobro korigiran sistem leč, ki omogoča, da je slika predmeta kar najboljša. Število leč v objektivu se povečuje s povečano močjo objektiva in s stopnjo odpravljenosti napak leč. Čelna leča objektiva ponavadi najbolj poveča opazovani predmet, medtem ko ostale leče služijo predvsem za korekcijo napak. Leče so iz kremenjaka ali še bolje iz fluoridnega stekla. Funkcija objektiva je, da zbere svetlobne žarke, ki prihajajo iz predmeta in jih pretvori v povečano sliko. Ločljivost objektiva (sposobnost da loči dve majhni točki) je odvisna od njegove NA. NA izraža optične lastnosti objektiva. Večja NA objektiva pomeni večjo sposobnost objektiva, da jasno prikaže najmanjše podrobnosti. Pomembna lastnost objektiva je delovna razdalja, ki je odvisna od od NA in povečave objektiva. Glede na možnosti odpravljanja napak ločimo več vrst objektivov: -akromatski (dokaj enostaven sistem 2 leč z različnimi lastnostmi) -plan-akromatski -apokromatski (tu široko razstavimo barve in jih s pomočjo kompenzacijskega okularja spet združimo skupaj, namenjeni za vrhunsko raziskovalno delo) -plan-apokromatski Ločimo: -suhe objektive -imerzijske objektive Oznake objektivov: povečava 40X /0,65 NA 100X /1,25 160/0,17 debelina kr. stekla HI dolžina tubusa homogena imerzija
11 11 OKULAR je tretji del optičnega dela mikroskopa, ki se nahaja na zgornjem delu tubusa. Njegova glavna funkcija je povečava slike, ki jo formira objektiv (tvori pokončno, povečano, navidezno sliko predmeta). Pomembna funkcija okularja je tudi odstranjevanje dela napak leč objektiva (ukrivljenost slike in kromatična aberacija). Služi za vlaganje merilnih skal (merilna skala z razmaki 2µm) ali kazalčkov (kosi žime). Vrste okularjev: -navadni Huygensov okular (se uporablja z akromatskimi objektivi, iz dveh leč, vmes je zaslon) -kompenzacijski okular (z apokromatskimi objektivi) -planokularji (odpravljajo ukrivljenost ravnine slike)
12 12 NAPAKE LEČ 1. SFERIČNA ABERACIJA je posledica loma svetlobe na kroglastih površinah. Žarki, ki prihajajo skozi osrednji del leče se lomijo manj, kot žarki, ki prihajajo skozi periferni del leče. Zato je slika točke, ki jo da obrobni del leče bliže leči, kot slika, ki jo da osrednji del leče. Namesto točke ujamemo na zaslon večji okrogel madež, ki ima v neki ravnini (c) najmanjšo površino-ravnina najmanjše aberacije. Zaradi sferične aberacije je slika točke neostra okrogla površina. Odprava sferične aberacije: -z zaslonkami, ki odstranijo obrobne žarke -z odbrušenjem roba leč -z ustrezno izbiro radijev obeh sferičnih površin leče (meniskus) 2. KROMATIČNA ABERACIJA je posledica razlik v lomu žarkov različnih valovnih dolžin. Modri žarki se bolj lomijo od rdečih. Ker je bela svetloba sestavljena iz več svetlob različnih λ se žarek bele svetlobe pri prehodu skozi stekleno prizmo razstavi v mavrico. Razliko med lomnimi količniki svetlob z različnimi λ imenujemo DISPERZIJA. Leče, zlasti njihovi obrobni deli učinkujejo kot svetlobna prizma in lomijo svetlobo, ter jo obenem razpršijo. Odprava kromatične aberacije: -sklop dveh leč-akromat, od katerih je ena konveksna in druga konkavna, ena popravlja napake druge -uporaba leč iz različnih vrst stekla 3. UKRIVLJENOST RAVNINE SLIKE Ta napaka (astigmatizem) nastane, če točka ne leži na optični osi in se žarki iz točke širijo v dveh ravninah, pravokotnih druga na drugo. Primarne in sekundarne slike, ter krogi najmanjše aberacije nastanejo na ukrivljenih površinah. Ker vzamemo za ravnino nastanka slike krog najmanjše aberacije, je slika predmeta ukrivljena. To se najbolje vidi ko pod mikroskopom izostrimo sredino vidnega polja in robovi niso ostri in obratno. Odprava ukrivljenosti ravnine slike: -s pomočjo planobjektivov in planokularjev -z globinskim pregledovanjem DISTORZIJA, KOMA
13 13 PRAKTIČNA UPORABA MIKROSKOPA -postavimo na sredino -preverimo, če je v optični osi objektiv z najmanjšo povečavo -če ni, obrnemo revolver... -z makrometrskim vijakom spustimo mizico v najnižji položaj -prižgemo luč -na mizico postavimo preparat (pazimo, da je krovno stekelce na vrhu) in ga vpnemo s peresci -premaknemo mizico, da je sredina preparata v optični osi -z MAKROMETRSKIM vijakom najdemo sliko in jo po potrebi izostrimo z mikrometrskim vijakom -po potrebi uravnamo višino kondenzorja in odprtost zaslonke Če želimo predmet opazovati pod večjo povečavo -obrnemo revolver, da je v optični osi naslednji (po povečavi) objektiv in -izostrimo sliko LE z MIKROMETRSKIM vijakom (ne uporabljaj makrom. vijaka) Ob koncu dela z mikroskopom je zelo pomembno, da 1. ponovno nastavimo v optično os objektiv z najmanjšo povečavo (rdeč obroč), 2.spustimo mizico v najnižji položaj (z makrometrskim vijakom), 3. odstranimo preparat z mizice, 4. ugasnemo luč, 5. postavimo mikroskop na rob mize, 6. pokrijemo mikroskop s pokrivalom.
Gimnazija Ptuj. Mikroskop. Referat. Predmet: Fizika. Mentor: Prof. Viktor Vidovič. Datum: Avtor: Matic Prevolšek
Gimnazija Ptuj Mikroskop Referat Predmet: Fizika Mentor: Prof. Viktor Vidovič Datum: 14. 3. 2010 Avtor: Matic Prevolšek Kazalo Opis mikroskopa 3 Povečava mikroskopa 5 Zgradba mikroskopa Ločljivost mikroskopa
1. vzporedni žarek (vzporeden je optični osi), ki ga zbiralna leča lomi tako, da gre na drugi strani skozi gorišče,
6 Mikroskop Pri tej vaji bomo spoznali uporabo leč, sestavili preprost mikroskop, določili njegovo povečavo in ločljivost ter se naučili, kako pravilno nastaviti osvetlitev. Mikroskop in druge optične
Vaje: Slike. 1. Lomni količnik. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Naloga: Določite lomna količnika pleksi stekla in vode.
Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Slike. Lomni količnik Naloga: Določite lomna količnika pleksi stekla in vode. Za izvedbo vaje potrebujete optično klop, svetilo z ozko režo,
MERJENJE Z MIKROSKOPOM
1. laboratorijska vaja MERJENJE Z MIKROSKOPOM Uvod Mikroskop Mikroskop (iz grških besed mikrós majhno in skopeîn gledati, videti) je posebna optična naprava, ki je sestavljena iz sistema leč, za opazovanje
MIKROSKOP IN MIKROSKOPIRANJE
Gimnazija Murska Sobota POROČILO K LABORATORIJSKI VAJI MIKROSKOP IN MIKROSKOPIRANJE Sandra Gorčan, 4.c prof. Edita Vučak Murska Sobota,8.10.2003 UVOD: Mikroskop je naprava, ki služi za gledanje mikroskopsko
Mikroskop Osnove mikroskopiranja
Mikroskop Osnove mikroskopiranja Uvod v svetlobni mikroskop B.T. 2001 PRVI DEL Osnovna načela v svetlobni mikroskopiji Uvod v svetlobni mikroskop Kaj je mikroskop? Kako deluje? V knjižici bo bralec našel
Teoretične osnove za poučevanja naravoslovja za 6. in 7. razred devetletke
Teoretične osnove za poučevanja naravoslovja za 6. in 7. razred devetletke T. Kranjc, PeF 6. marca 2009 Kazalo 1 Modul 7: Svetloba in slike 1 1.1 Uvod................................ 1 2 Odboj svetlobe
Mikroskop in mikroskopiranje
Škofijska klasična gimnazija Mikroskop in mikroskopiranje Projektna naloga pri informatiki in biologiji Avtor: Alja Hanuna, 1.c Mentor: Brigita Brajkovič, prof. Helena Medvešek, prof. Šolsko leto 2007/2008
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Svetlobni mikroskop. Princip delovanja Pomembna kakovost leč
Mikroskopija Steklena krogla napolnjena z vodo - prva povečevalna naprava - Plinij prvo stoletje Antonij van Leeuwenhoek (1632 1723) izdelal leče v velikosti bucikine glave (eritrocite, bakterije) Zaharias
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Jerneja Čučnik Mikroskopiranje in tipi celic Gimnazija Celje Center Mikroskopiranje in tipi celic
Ime in priimek: Jerneja Čučnik Razred: 4.b Šola: Gimnazija Celje Center Mentor: Saša ogrizek, prof. Datum izvedbe vaje: 24.9.2009 1 1. UVOD Mikroskop je instrument za preučevanje predmetov, ki so premajhni,
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
EMV in optika, izbrane naloge
EMV in optika, izbrane naloge iz različnih virov 1 Elektro magnetno valovanje 1.1 Električni nihajni krogi 1. (El. nihanje in EMV/8) (nihajni čas) Nihajni krog sestavljata ploščati kondenzator s ploščino
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
F2_ zadaća_ L 2 (-) b 2
F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI
ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI Spoznavanje osnovnih vlakensko-optičnih (fiber-optičnih) komponent, Vodenje svetlobe po optičnem vlaknu, Spoznavanje načela delovanja in praktične uporabe odbojnostnega
EMV in optika, zbirka nalog
Barbara Rovšek EMV in optika, zbirka nalog z rešitvami 1 Električni nihajni krogi in EMV 1.1 Električni nihajni krogi, lastno nihanje 1. Električni nihajni krog z lastno frekvenco 10 5 s 1 je sestavljen
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje
Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,
VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA
VALOVANJE 10.1. UVOD 10.2. POLARIZACIJA 10.3. STOJEČE VALOVANJE 10.4. ODBOJ, LOM IN UKLON 10.5. INTERFERENCA 10.6. MATEMATIČNA OBDELAVA INTERFERENCE IN STOJEČEGA VALOVANJA 10.1. UVOD Valovanje je širjenje
11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune
11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih
TRANSMISIJSKI ELEKTRONSKI MIKROSKOP - TEM
TRANSMISIJSKI ELEKTRONSKI MIKROSKOP - TEM Princip mikroskopa - delovni prostor s p = 10-4 torr (sipanje in absorpcija snopa elektronov na plinu) - ogrevan filament iz W kot vir elektronov paralelen elektronski
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
ROBERT HOOKE IN MIKROSKOP
ROBERT HOOKE IN MIKROSKOP UČENKA: Tjaša Šabeder,9.b Herzog UČITELJICA: Andreja DATUM: 30.10.2014 PREDMET: Biologija 1. ROBERT HOOK Robert Hooke se je 18. julija leta 1635 rodil na otoku Wight v Freshwaterju
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Polarizacija laserske svetlobe
Polarizacija laserske svetlobe Optični izolator izvedba z uporabo λ/4 retardacijske ploščice Odboj polarizirane svetlobe na meji zrak-steklo; Brewster-ov kot Definicija naloge predstavitev teoretičnega
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)
Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Michelsonov interferometer
Michelsonov interferometer Uvod Michelsonov interferometer [1] je sestavljen iz treh osnovnih elementov: dveh ravnih zrcal ter polprepustnega zrcala. Shema interferometra je prikazana na sliki 1. Interferenčno
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Poročilo laboratorijskih vaj pri predmetu Gradiva. Optični mikroskop
Optični mikroskop Mikroskop (Beseda izhaja iz dveh grških besed: mikro pomeni majhno, drobno in skop - ki pomeni gledati. Torej lahko mikroskop poimenujemo tudi drobnogled.) je priprava s katero lahko
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
SEMINARSKA NALOGA Funkciji sin(x) in cos(x)
FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.
7 Lastnosti in merjenje svetlobe
7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine in izmeri gostoto
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
50 odtenkov svetlobe
50 odtenkov svetlobe Evgenija Burger, Katharina Pavlin, Tamara Pogačar, Mentor: Žiga Krajnik Povzetek Za vsakim dežjem posije sonce. Je pojav mavrice res tako preprost kot ta rek? Kakšna fizikalno-matematična
7 Lastnosti in merjenje svetlobe
7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine, katere valovne
Pisni izpit iz predmeta Fizika 2 (UNI)
0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni
VEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO SAGNACOV POJAV. Alenka Bajec
UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO SAGNACOV POJAV Alenka Bajec Mentor: prof. dr. Andrej Čadež 29. november 2007 1 NALOGA 1 1 Naloga Opiši Sagnacov pojav. 2 Uvod Sagnacov
Uklon svetlobe. P + r O )) rpˆn
Uklon svetlobe Uvod Valovna narava svetlobe se dobro pokaže pri razširjanju svetlobe za ovirami ali odprtinami v neprozornih zaslonih, ki imajo tipične dimenzije primerljive z valovno dolžino svetlobe.
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
Fizikalne osnove svetlobe in fotometrija
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Fizikalne osnove svetlobe
FIZIKA NAVODILA ZA OCENJEVANJE
Dr`avni izpitni center *M0441113* JESENSKI ROK FIZIKA NAVODILA ZA OCENJEVANJE Torek, 31. avgust 004 SPLO[NA MATURA C RIC 004 M04-411-1-3 Rešitve: POLA 1 VPRAŠANJA IZBIRNEGA TIPA REŠITVE 1. C 1. D. B. A
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
2. Uklon rentgenskih žarkov na kristalih
Kristalne ravnine in indeksi Kristalne (mrežne) ravnine = geometrični koncept za prikaz pojava difrakcije na kristalnih strukturah 2. Uklon rentgenskih žarkov na kristalih Indeksi h k l (Miller-jevi indeksi)
Leica DM750 M Uporabniški priročnik
Leica DM750 M Uporabniški priročnik Kazalo Sestavljanje mikroskopa Leica DM750 M 7 Sestavljanje osi presvetljave 8 Sestavljanje binokularnega tubusa 9 Tubus Leica EZ z vgrajenima okularjema 10 Standardni
Fotometrija mersko vrednotenje svetlobe
EDC Kranj - višja strokovna šola Kumunala Javna razsvetljava Fotometrija mersko vrednotenje svetlobe 4. poglavje predavatelj doc. dr. Grega Bizjak, u.d.i.e. Javna razsvetljava: Fotometrija 2 Svetloba kot
CO2 + H2O sladkor + O2
VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)
1 Seštevanje vektorjev in množenje s skalarjem
Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo
Fotometrija mersko vrednotenje svetlobe
Fotometrija mersko vrednotenje svetlobe Svetloba kot del EM spektra Pri fotometriji svetlobo obravnavamo kot del elektromagnetnega spektra, ki se nahaja med mikrovalovi in rentgenskimi žarki. Ima pa tudi
2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA
2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano
Elektrooptični pojav
Elektrooptični pojav Uvod Močno zunanje električno polje znatno vpliva na strukturo snovi. V kristalih se denimo spremeni oblika osnovne celice, v tekočinah pride do orientacijskega urejanja molekul (podolgovate
Kvantni delec na potencialnem skoku
Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:
Leica DM500, DM500 B Uporabniški priročnik
Leica DM500, DM500 B Uporabniški priročnik Pregled poglavij Varnostni predpisi 4 Leica DM500, DM500 B 15 Pripravljeni! 18 Pozor! 25 Zdaj! 34 Nega mikroskopa 36 Dimenzije 39 Leica DM500, DM500 B Priročnik
Fizika (BF, Biologija)
dr. Andreja Šarlah Fizika (BF, Biologija) gradivo za vaje 2009/10 Vsebina 1. vaje: Matematični uvod: funkcije, vektorji & Newtnovi zakoni gibanja: kinematika, sile, navori, energija 2 2. vaje: Coulombov
vezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
GEOMETRIJA V RAVNINI DRUGI LETNIK
GEOMETRIJA V RAVNINI DRUGI LETNIK 2 1 Geometrija v ravnini 1.1 Osnove geometrije Točka je tisto, kar nima delov. Črta je dolžina brez širine. Ploskev je tisto, kar ima samo dolžino in širino. Osnovni zakoni,
Razsvetljava z umetno svetlobo
Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Razsvetljava Razsvetljava z umetno svetlobo predavatelj
Michelsonov interferometer
Michelsonov interferometer Namen vaje: Spoznavanje valovnih značilnosti laserske svetlobe Spoznavanje načela delovanja interferometra Brezdotično merjenje kratkih pomikov Eksperimentalne naloge 1. Sestaviti
3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.
3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
Vaje: Barve. 1. Fotoefekt. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Vse vaje izvajamo v zatemnjenem prostoru.
Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Barve Vse vaje izvajamo v zatemnjenem prostoru. 1. Fotoefekt Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe. Za izvedbo
Fazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Fizika (BF, Biologija)
dr. Andreja Šarlah Fizika (BF, Biologija) gradivo za vaje 2013/14 Vsebina 1. vaje: Velikostni redi, leče, mikroskop 2 2. vaje: Newtnovi zakoni gibanja: kinematika, sile, navori, energija 4 3. vaje: Gravitacija,
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
1. kolokvij iz predmeta Fizika 2 (UNI)
0 0 0 2 7 1 5 0 0 0 0 0 9 vpisna št: 1 kolokvij iz predmeta Fizika 2 (UNI) 16042010 1 Kvadratni žičnati okvir s stranico 2 cm in upornostjo 007 Ω se enakomerno vrti okoli svoje diagonale tako da naredi
Vaje iz MATEMATIKE 2. Vektorji
Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo