LABORATORIJSKE VEŽBE IZ PREDMETA OSNOVI OPTIKE za generaciju 2015/16.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LABORATORIJSKE VEŽBE IZ PREDMETA OSNOVI OPTIKE za generaciju 2015/16."

Transcript

1 LABORATORIJSKE VEŽBE IZ PREDMETA OSNOVI OPTIKE za generaciju 2015/16. Spisak vežbi: 1. Određivanje žižne daljine sočiva pomoću direktne metode 2. Određivanje parametara otootpornika 3. Snimanje karakteristike LE diode i primer upotrebe otootpornika 4. Snimanje I-U karakteristike otodiode 5. Određivanje kontinualnog spektra otoluminescentne diode 1

2 Vežba broj 1: Određivanje žižne daljine sočiva pomoću direktne metode 1.1 Cilj vežbe Kao cilj ove laboratorijske vežbe potrebno je odrediti žižnu daljinu i optičku moć sočiva korišćenjem direktne metode. Potrebno je utvrditi o kom se sočivu radi, sabirnom ili rasipnom. 1.2 Teorijski uvod Za tanko sabirno sočivo važi jednačina 1 1 1, s p l gde su s žižna daljina sabirnog sočiva, p rastojanje predmeta od centra sočiva i l rastojanje lika od centra sočiva. Merenjem rastojanja p i l, iz gornje jednačine može se odrediti žižna daljina sabirnog sočiva. Ako su dva sočiva u optičkom kontaktu, jednačina za ekvivalentnu žižnu daljinu takve kombinacije je 1 1 1, e gde s žižna daljina sabirnog sočiva, a x žižna daljina sočiva koje pored sabirnog čini sistem sočiva. Nepoznata žižna daljina određuje se kao s x e s x, e s a onda će odgovarajuća optička moć tog sočiva biti 1 x. x 1.3 Opis aparature Na optičkoj klupi postavljeni su svetao predmet P, sočivo S i zaklon L na stativima, koji mogu da se pomeraju duž šine optičke klupe. Svetao predmet je strelica, prorezana na kutiji u kojoj se nalazi sijalica. Rastojanja predmeta i lika od sočiva mere se lenjirom ili je na šini optičke klupe postavljena skala na kojoj se ova rastojanja mogu čitati. 2

3 1.4 Metod merenja Direktan metod Uključi se sijalica u kutiji i zaklon se postavi na željeno rastojanje. Stativ sa sočivom se pomera duž optičke klupe sve dok se na zaklonu ne pojavi oštar i jasan lik svetlog predmeta (strelica). Za takav položaj sočiva izmere se rastojanja p i l i pomoću ormule se izračuna žižna daljina sabirnog sočiva, odnosno s p l p l Promeni se rastojanje između svetlog predmeta i zaklona i postupak se ponovi pet puta. Isti postupak ponoviti za sistem sočiva koji se sastoji od dva sočiva. Izmerene vrednosti uneti u tabele.. 1) Sabirno sočivo R.br. p l s ssr s s [%] s s ssr s 2) Sistem sočiva R.br. p l e esr e e [%] e e esr e Na osnovu srednjih vrednosti žižnih daljina sabirnog i sistema sočiva, koje su dobijene direktnom metodom, naći žižnu daljinu drugog sočiva iz sistema sočiva x i ustanoviti o kom sočivu je reč. Potom, izračunati optičku moć tog sočiva. 3

4 Vežba 2: Određivanje parametara otootpornika 2.1 Cilj vežbe Određivanje parametara otootpornika C i γ za tri različite vrednosti napona na otootporniku. 2.2 Teorijski uvod Fotootpornik je otpornik čija otpornost zavisi od osvetljenosti njegove površine. Otpornost otootpornika je najveća u mraku (tipično je reda MΩ) i opada sa povećanjem osvetljenosti njegove površine. Kada se otootpornik nalazi u mraku i prključen je na neki napon V, kroz njega će proticati struja mraka, gde R0 otpornost otootpornika u mraku. Kako je ova otpornost veoma velika, ova struja se uglavnom može zanemariti čak i pri većim naponima. Kada se otootpornik osvetli nekim izvorom svetlosti doći će do indukcije slobodnih nosioca naelektrisanja unutar tela otootpornika. Ovi nosioci naelektrisanja će se kretati usled primenjenog električnog polja čineći otostruju I. Ukupna struja će u ovom slučaju biti jednaki zbiru otostruje i struje mraka. I t V R 0 I I t I. Fotostruja zavisi od osvetljenosti površine otootpornika i napona na njemu. Ona u opštem slučaju nije linearna unkcija napona, već je data jednačinom, I ) C( V E, gde je E je osvetljenost izražena u luksima. Ukupna struja otootpornika će onda biti, I It C( V) E C( V) E. Da bi se okarakterisao otootpornik potrebno je odrediti parametar γ i vrednost parametra C na nekoliko različitih napona. To se može postići na osnovu graika zavisnosti log I od log E. Naime, logaritmovanjem izraza za struju otootpornika se dobija, log I logc log E, što predstavlja jednačinu prave čiji odsečak na logi osi iznosi log C, i čiji je koeicijent pravca γ. Ovi koeicijenti mogu se odrediti i sa graika zavisnosti struje I od osvetljenosti E nacrtanim u log-log razmeri na način koji je objašnjen na slici. 4

5 Slika 1. Određivanje koeicijenta otootpornika sa graika u log-log razmeri Otpornost otootpornika pri osvetljenosti E i naponu V se može odrediti na osnovu izmerene vrednosti struje ili na osnovu određenih parametara otootpornika, 2.3 Metod merenja V V R. I C( V E ) 1. Povezati ampermetar i napajanje na odgovarajuća mesta na šemi. Unutar kutije nalazi se otootpornik iksiran na postolju koje se može kretati po šini. U desnom delu kutije nalazi se izvor svetlosti. Uključuje se napajanje kutije i proverava da li sijalica svetli. Fotootpornik se postavlja u položaj najudaljeniji od sijalice. Zatvara se kutija i napon napajanja dovodi na 1 V. Očitava se struja koja će biti reda A, međutim pri otvaranju kutije može porasti i do reda ma, pa treba biti obazriv sa opsegom ampermetra. Šinu približavati ka sijalici u koracima od 5 cm. 2. Postupak merenja ponovite i za napone V = 2 V i V = 3 V. Izmerene vrednosti uneti u tabele. 5

6 V = 1 V r [m] 2 E 1 r [lx] I [µa] R V I [kω] R 1 V C E [kω] V = 2 V r [m] 2 E 1 r [lx] I [µa] R V I [kω] R 2 V C E [kω] V = 3 V r [m] E 1 r [lx] 2 I [µa] R V [kω] I R 3 V C E [kω]

7 3. Za sve tri vrednosti napona nacrtati graik prikazano primerom na slici. I (E) u log-log razmeri kao što je Sa graika odrediti parametre C i χ, kao što je opisano u teorijskom delu vežbe. 7

8 Vežba 3: Snimanje karakteristike LE diode i primer upotrebe otootpornika 3.1 Cilj vežbe Snimiti zavisnost napona na LE diodi i njoj redno vezanom otporniku od napona napajanja. Snimiti i strujno-naponsku zavisnost LE diode. U drugom delu vežbe demonstrirati upotrebu otootpornika za kontrolu bipolarnog tranzistora kao prekidača. 3.2 Teorijski uvod Pad napona LE dioda je veći nego kod obične diode. Tipične LE diode zahtevaju struju od 5 do 15 ma kako bi postigle maksimalnu osvetljenost. Međutim, uobičajeno ne mogu podneti struju veću od 20 ma, pa se moraju redno vezati sa otpornikom da ne bi pregorele. Na protoploči povezati komponente i voltmetre po šemi prikazanoj na slici. Povećavati ulazni napon od 0 do 5 V u koracima od 0.5 V i na osnovu merenih vrednosti popunjavati tabelu, pri čemu struju treba računati na osnovu vrednosti pada napona na otporniku. Izmerene vrednosti napona uneti u tabelu. VS (V) VLED (V) VR (V) I (ma)

9 Na osnovu izmerenih vrednosti na jednom graiku nacrtati zavisnost pada napona na obe komponente od ulaznog napona, a na drugome skicirati strujno-naponsku karakteristiku LEdiode. Fotootpornik se može iskoristiti kao prekidač za paljenje i gašenje uličnog osvetljenja. Ovu unkciju obavlja kolo sa sledeće slike. 5V 5V RC 220 R1 15k D1 LED Q1 NPN 2 1 LDR1 TORCH_LDR Kada je otootpornik osvetljen njegova otpornost je mala, pa će pad napona na njemu biti mali i tranzistor neće voditi. U mraku njegova otpornost raste, tranzistor počinje da vodi i uključuje se LE dioda. Otpornik R1 i kolektorski otpornik RC potrebno je proračunati tako da pri nivou osvetljenosti pri kome se zahteva uključivanje LE diode tranzistor bude na granici zasićenja, tj. da je VCE = 0.3 V, a struja kolektora IC = 15 ma. Ove vrednosti daju otpornost kolektorskog otpornika od: VCC VCE VD R 180 C. 3 I 1510 C Najbliža standardna vrednost otpornosti je 220 Ω, pa se ona uzima za vrednost kolektorskog otpornika. Ova vrednost daje kolektorsku struju u zasićenju od: I C 2.7V 12.3 ma. 220 Sada treba izračunati vrednost otpornosti otpornika R1 tako da se pri graničnom nivou osvetljenosti dobije bazna struja koja će dati ovu kolektorsku struju, tj. treba da je I 123μA. Ako se izabere da je otpornost otootpornika pri graničnom nivou B I C 9

10 osvetljenosti 4 kω i pretpostavi se da je napon VBE kada tranzistor vodi 0.7 V, iz ulaznog kola tranzistora se dobija: odakle sledi V BE V R 1 CC V R B I B 0, R ( VCC VBE ) R k 15k. V I R BE B Šemu sa slike realizovati na protopločici. Uveriti se da do uključivanja otodiode dolazi pri smanjenom intenzitetu svetlosti. 10

11 Vežba 4: Snimanje strujno-naponske karakteristike otodiode 4.1 Cilj vežbe Snimiti strujno-naponske karakteristike otodiode pri različitim osvetljenostima. 4.2 Teorijski uvod Fotodiode konvertuju svetlosnu energiju u električnu i mogu se koristiti kao senzori ili kao generatori napona. Shodno tome, postoje dva režima rada otodioda, režim otodiode (senzorski) i režim solarne ćelije. Fotodiode se najčešće realizuju kao PIN diode kako bi se dobila što veća osiromašena oblast koja ima ulogu kolektora otona. Naime, otoni koji padaju na otodiodu prodiru do osiromašene oblasti gde generišu višak slobodnih nosilaca, parova elektron-šupljina. Ovi nosioci se kreću pod dejstvom električnog polja u osiromašenoj oblasti obrazujući na taj način otostruju. Treba primetiti da je smer tog kretanja takav da će rezultovati strujom suprotnom od normalnog smera struje kroz diodu. Dakle, dolazi do generisanja inverzne otostruje. Karakteristike otodiode se prikazuju tako da se pozitivnom strujom smatra struja koja protiče u skladu sa direktnom strujom diode, odnosno struja koja utiče u anodu i ističe kroz katodu. Za napon na diodi se uzima napon između anode i katode, pa negativne vrednosti napona znače da je napon na katodi veći od napona na anodi, tj. da je dioda inverzno polarisana. Pri objašnjavanju dva režima rada diode pridržavamo se ovih konvencija. I. Režim otodiode U ovom režimu dioda je inverzno polarisana, i ukupnu struju diode čini otostruja generisanih nosioca naelektrisanja i inverzna struja zasićenja otodiode. Kako broj generisanih nosioca naelektrisanja praktično ne zavisi od vrednosti negativnog napona na diodi, u ovom režimu struja ne zavisi od napona i otodioda se može modelovati izvorom konstantne struje, kontrolisanim intenzitetom upadne svetlosti i klasičnom diodom kroz koju u ovom režimu protiče inverzna struja zasićenja. Strujno-naponska karakteristika otodiode prikazana je na slici. 11

12 Slika 1. Strujno-naponske karakteristike otodiode Sa graika se vidi da sa porastom inverznog napona dolazi do blagog porasta struje. Ovo se može modelovati uvođenjem otpornika šanta u model diode, vezanog paralelno strujnom izvoru. Dodatna struja kroz diodu potiče od struje kroz ovaj otpornik i proprcijalna je naponu na diodi. Model otodiode koji uključuje i ovaj otpornik prikazan je na narednoj slici. Slika 2. Model otodiode II. Naponski režim (režim otonaponske ćelije) Kada se paralelno otodiodi veže otpornik i otodioda osvetli, kroz nju će teći inverzna otostruja i ona će se ponašati kao generator (slika 3). U ovom slučaju je struja kroz diodu i dalje negativna, ali napon na njoj je sada određen padom napona na otporniku koji potiče od otostruje i biće pozitivan. Sa karakteristike otodiode (slika 1) se vidi da sa porastom direktnog napona opada inverzna struja otodiode sve dok jednog trenutka ne postane pozitivna. Ovo se može objasniti pomoću modela diode sa slike 2. Sa porastom direktne polarizacije počinje da vodi dioda D1, a kako je njena direktna struja suprotnog smera od otostruje, doći će do umanjenja ukupne inverzne struje otodiode. 12

13 Slika 3. Fotodioda u naponskom režimu. 4.3 Metod merenja Snimanje karakteristika otodiode u oba režima se najeikasnije i najpreciznije vrši pomoću instrumenta koji se zove Source-Measure unit, što se može prevesti kao izvor-merač. To su izvori konstantnog napona ili struje, koji mogu precizno da mere struju koju vuče priključeni potrošač kada rade kao izvori konstantnog napona, odnosno napon na potrošaču kada rade kao izvori konstantne struje. Pored toga, oni poseduju mogućnost ograničavanja vrednosti struje (režim konstantnog napona) ili napona (režim konstantne struje), što omogućava merenje bez upotrebe dodatnog otpornika za zaštitu koji unosi termički šum čime se umanjuje tačnost merenja. Za snimanje karakteristike otodiode koristi se SMU Keithley 2400, sa koga se konstantan napon direktno dovodi na otodiodu sa ograničavanjem struje (compliance) na 1 ma, pri čemu će instrument meriti struju kroz diodu. Radi lakšeg rukovanja instrumentom on je pomoću GPIB i GPIBtoUSB interejsa povezan na računar, sa koga se pomoću sotvera podešava napon na diodi i čita izmerena vrednost struje. Ograničenje stuje je unapred sotverski podešeno na vrednost od 1 ma. Karakteristika otodiode se snima za nekoliko različitih vrednosti osvetljenosti. Osvetljenost se podešava promenom intenziteta svetlosti sijalice podešavanjem izvora napajanja, a vrednost osvetljenosti se meri luksmetrom. Postupak izrade vežbe dat je u sledećim koracima. 1. Snimiti karakteristiku otodiode pri osvetljenosti od 500 lx. i) Diodu namontiranu na protopločicu staviti na optičku klupu i povezati sa instrumentom. ii) Snimiti karakteristiku otodiode u režimu otodiode povećavanjem negativne vrednosti napona od 0 V do -10 V sa koracima od 0.5 V. iii) Snimiti karakteristiku otodiode u režimu solarne ćelije povećavanjem pozitivne vrednosti napona počev od 0 V sa koracima od 50 mv sve dok struja otodiode ne postane pozitivna. 2. Snimiti karekteristiku otodiode za vrednosti osvetljenosti od 1000 i 1500 lx ponavljanjem celokupnog navedenog postupka. 13

14 4.4 Rezultati merenja Nacrtati strujno-naponske karakteristike otodiode u oba režima rada za različite vrednosti osvetljenosti. Nacrtati strujno-naponske karakteristike otodiode u naponskom režimu prateći konvenciju pozitivne struje u smeru suprotnom smeru direktne struje diode. 500 lx 1000 lx 1500 lx V V I µa V V I µa V V I µa V mv I µa V mv I µa V mv I µa

15 Vežba 5: Određivanje kontinualnog spektra otoluminescentne diode 5.1 Cilj vežbe Snimiti spektar emitovane svetlosti različitih LE dioda. 5.2 Opis aparature Za određivanje talasnih dužina zračenja LE dioda koristi se spektrometar kompanije Avantes AvaSpec Spektrometar ima priključno mesto za optički kabl, detektorski uređaj od 2048 piksela, kolimatorsko i okusirajuće ogledalo i dirakcionu rešetku što se može videti na slici. Uređaj se povezuje preko USB kabla, a kontroliše putem sotverskog paketa AvaSot 7.4, preko koga se takođe analiziraju podaci. Svetlost do spektrometra dopire preko optičkog kabla FC-xx800-2, koji se priključuje na konektor. Radi veće preciznosti i mogućnosti što tačnijeg merenja apsolutnog intenziteta svetlosti, optički kabl i spektrometar su zajedno kalibrisani u kompaniji Avantes. Svetlost se okusira sernim kolimatorskim ogledalom, a okusiran zrak se diraktuje na relektujućoj dirakcionoj rešetki, posle čega pada na okusirajuće serno ogledalo. Ovo ogledalo usmerava snop svetlosti ka linearnom detektoru, odakle se rezultati prosleđuju ka računaru. Za radni opseg i rezoluciju talasnih dužina najbitnije su dve karakteristike: tip dirakcione rešetke i veličina proreza koji se ugrađuje na ulazu u spektrometar. Dirakciona rešetka ugrađena u ovaj spektrometar ima 600 linija/mm, čime je moguće razdvajanje linija u opsegu 15

16 od nm, s tim što najveću eikasnost, od oko 75%, poseduje za talasne dužine u opsegu nm. Dirakciona rešetka bitno utiče na rezoluciju između dve bliske linije, zato što deiniše koliko su linije razdvojene. Drugi bitan parametar za određivanje rezolucije između dve bliske linije je i širina proreza na ulazu spektrometra, koja određuje propusnu širinu snopa svetlosti. U našem slučaju, širina proreza je 10 µm, što u kombinaciji sa dirakcionom rešetkom daje minimalnu rezoluciju između dve bliske linije 0.27 nm. Pored pomenutih, kao bitnu karakteristiku treba istaći i činjenicu da je procenat izgubljene svetlosti ispod 0.1 %, a da je opseg integracionog vremena 10 µs 10 min, gde integraciono vreme predstavlja interval za koji spektrometar registruje otone posmatranog spektra. 5.3 Metod merenja Na protopločici postaviti otpornik i LE diodu i povezati napajanje. Treba snimiti spektar emitovane svetlosti zelene, crvene i žute LE diode. Na računaru startovati sotverski paket Avaspec. U prozoru pored naziva Integration time ukucati 1000 i pritisnuti Enter. U prozoru pored naziva Average ukucati 10 i pritisnuti Enter. Integration time određuje koliko vremena spektrometar prikuplja svetlost. Broj u prozoru Average određuje broj merenja posle kojih se uzima srednja vrednost. Pritiskom na dugme Start počinje snimanje spektra. Posle nekoliko sekundi pojavljuju se rezultati merenja na graiku. Pritiskom na Save dark (crni kvadrat), a zatim Setup/Subtract Saved Dark snima se pozadinski spektar, dok LE dioda ne svetli, i oduzima se od budućih merenja. Sledeći korak predstavlja snimanje spektra LE diode dok ona svetli i to se postiže pritiskom na File/Save/Experiment. Dobijene rezultate u obliku graika potrebno je konvertovati u excel tabelu (File/Convert Graph/To Excel). Sačuvati ajl i u komentaru napisati o kojoj diodi se radi. Isti postupak sprovesti za sve tri diode. Na osnovu vrednosti iz tabela potrebno je nacrtati spektre svih korišćenih dioda na istom graiku. 16

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Snimanje karakteristika dioda

Snimanje karakteristika dioda FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA

Διαβάστε περισσότερα

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE Laboratorijske vežbe 2014/2015 LABORATORIJSKI PRAKTIKUM-ELEKTRONSKE KOMPONENTE Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE Laboratorijske vežbe 2017/2018 LABORATORIJSKI PRAKTIKUM-ELEKTRONSKE KOMPONENTE Laboratorijske vežbe Određivanje osvetljenosti laboratorije korišćenjem fotootpornika

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj Bipolarni tranzistor 1 Bipolarni tranzistor 2 Ebers-Molov model Strujno-naponske

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Ogledala. H h. Na osnovu zakona odbijanja može se zaključiti da je: CD = OB 2 = h 2. i EF = OA 2 = H h, a sa slike se vidi da je visina ogledala DE:

Ogledala. H h. Na osnovu zakona odbijanja može se zaključiti da je: CD = OB 2 = h 2. i EF = OA 2 = H h, a sa slike se vidi da je visina ogledala DE: Ogledala 9.. Koliku najmanju visinu treba da ima i na kojoj visini na zidu mora biti postavljeno ravno ogledalo, da bi čovek visok H =,7m mogao u njemu da vidi ceo svoj lik? Čovekove oči nalaze se na visini

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

VEŽBA 4 DIODA. 1. Obrazovanje PN spoja

VEŽBA 4 DIODA. 1. Obrazovanje PN spoja VEŽBA 4 DIODA 1. Obrazovanje PN spoja Poluprovodnik može da bude tako obrađen da mu jedan deo bude P-tipa, o drugi N-tipa. Ovako se dobije PN spoj. U oblasti P-tipa šupljine čine pokretni oblik elektriciteta.

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

Iz zadatka se uočava da je doslo do tropolnog kratkog spoja na sabirnicama B, pa je zamjenska šema,

Iz zadatka se uočava da je doslo do tropolnog kratkog spoja na sabirnicama B, pa je zamjenska šema, . Na slici je jednopolno prikazan trofazni EES sa svim potrebnim parametrima. U režimu rada neposredno prije nastanka KS kroz prekidač protiče struja (168-j140)A u naznačenom smjeru. Fazni stav struje

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU LINEARNA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM.. IME I PREZIME BR. INDEKSA

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA ANALIZA TTL, DTL I ECL LOGIČKIH KOLA Zadatak 1 Za DTL logičko kolo sa slike 1.1, odrediti: a) Logičku funkciju kola i režime rada svih tranzistora za sve kombinacije logičkih nivoa na ulazu kola. b) Odrediti

Διαβάστε περισσότερα

Kola u ustaljenom prostoperiodičnom režimu

Kola u ustaljenom prostoperiodičnom režimu Kola u ustalenom prostoperiodičnom režimu svi naponi i sve strue u kolu su prostoperiodične (sinusoidalne ili kosinusoidalne funkcie vremena sa istom kružnom učestanošću i u opštem slučau različitim fazama

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

4 IMPULSNA ELEKTRONIKA

4 IMPULSNA ELEKTRONIKA 4 IMPULSNA ELEKTRONIKA 1.1 Na slici 1.1 prikazano je standardno TTL kolo sa parametrima čije su nominalne vrednosti: V cc = 5V, V γ = 0, 65V, V be = V bc = V d = 0, 7V, V bes = 0, 75V, V ces = 0, 1V, R

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

F2_ zadaća_ L 2 (-) b 2

F2_ zadaća_ L 2 (-) b 2 F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.

Διαβάστε περισσότερα

Budi kreativan/kreativna

Budi kreativan/kreativna ELEKTROTEHNI CKI FAKULTET, UNIVERZITET U BEOGRADU KATEDRA ZA ELEKTRONIKU UVOD U ELEKTRONIKU - OO1UE LABORATORIJSKA VE ZBA BROJ 4 Budi kreativan/kreativna 1. 2. IME I PREZIME BROJ INDEKSA BROJ GRUPE OCENA

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

MAGNETNO SPREGNUTA KOLA

MAGNETNO SPREGNUTA KOLA MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Električne struje. Električne struje. Električne struje. Električne struje

Električne struje. Električne struje. Električne struje. Električne struje Električna struja (AP47-5) Elektromotorna sila (AP5-53) Omov zakon za deo provodnika i otpor provodnika (AP53-6) Omov zakon za prosto električno kolo (AP6-63) Kirhofova pravila (AP63-66) Vezivanje otpornika

Διαβάστε περισσότερα

POLUPROVODNIČKI IZVORI I DETEKTORI SVETLOSTI

POLUPROVODNIČKI IZVORI I DETEKTORI SVETLOSTI 1. Uvod POLUPROVODNIČKI IZVORI I DETEKTORI SVETLOSTI U poluprovodničke izvore svetlosnog zračenja spadaju emiterske ili svetleće diode i poluprovodnički laseri, a u poluprovodničke detektore fotootpornici,

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka

IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka Stančić Goran Jevtić Milun Niš, 2004 2 IMPULSNA ELEKTRONIKA Glava 1 Logička kola i njihova primena 3 4 IMPULSNA ELEKTRONIKA 1.1 Na slici 1.1 prikazano je standardno

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Diode. Z. Prijić predavanja Univerzitet u Nišu, Elektronski fakultet Katedra za mikroelektroniku. Elektronske komponente. Diode.

Diode. Z. Prijić predavanja Univerzitet u Nišu, Elektronski fakultet Katedra za mikroelektroniku. Elektronske komponente. Diode. Univerzitet u Nišu, Elektronski fakultet Katedra za mikroelektroniku Z. Prijić predavanja 2014. Definicija Dioda je naziv za poluprovodničku komponentu koja ima dva priključka, anodu i katodu. Električni

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

Aneta Prijić Poluprovodničke komponente

Aneta Prijić Poluprovodničke komponente Aneta Prijić Poluprovodničke komponente Modul Elektronske komponente i mikrosistemi (IV semestar) Studijski program: Elektrotehnika i računarstvo Broj ESPB: 6 JFET (Junction Field Effect Transistor) -

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona lementi elektronike septembar 2014 ŠNJA. Za rednosti ulaznog napona V transistor je isključen, i rednost napona na izlazu je BT V 5 V Kada ulazni napon dostigne napon uključenja tranzistora, transistor

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Bipolarni tranzistor

Bipolarni tranzistor i princip Univerzitet u Nišu, Elektronski fakultet Katedra za mikroelektroniku Zoran Prijić predavanja 2014. Sadržaj i princip i princip Definicija i princip (bipolar junction transistor BJT) je poluprovodnička

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona.

Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona. Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona Prema osnovnoj formuli za dimenzionisanje maksimalni tangencijalni napon τ max koji se javlja u štapu mora biti manji

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Dosadašnja analiza je bila koncentrirana na DC analizu, tj. smatralo se da su elementi

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα