PROCESI PRERADE NAFTE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PROCESI PRERADE NAFTE"

Transcript

1 SVEUČILIŠTE U ZAGREBU Fakultet kemijskog inženjerstva i tehnologije Zavod za tehnologiju nafte i petrokemiju Zagreb, Savska cesta 16 / II PROCESI PRERADE NAFTE Prof.Katica Sertić - Bionda

2 REFORMIRANJE BENZINA Cilj procesa: povećanje vrijednosti oktanskog broja teškog primarnog benzina Reakcije: konverzije parafinskih i naftenskih ugljikovodika u aromatske, izomerizacija, hidrokrekiranje Procesne varijable: temperatura, tlak, prostorna brzina, omjer vodika i sirovine Procesi: u nepokretnom katalitičkom sloju, kontinuirani procesi Proizvodi: reformat-benzin, plin

3 REFORMIRANJE BENZINA Sirovine: frakcija benzina s atmosferske destilacije ( C), benzini sekundarnih procesa niskog oktanskog broja. Prinos tekućeg produkta - bitno ovisi o sastavu sirovine: naftenska sirovina veći prinos dehidrogenacija naftena Previsoka gornja točka destilacije stvaranje koksa na katalizatoru Potreba obrade vodikom radi uklanjanja katalitičkih otrova: Sumpor: blokira metalne katalitički aktivne centre (reakcije dehidrogenacije) Dušik: uzrokuje pad aktivnosti za kiselo katalizirane reakcije (izomerizacija, hidrokreking) Osjetljivost na metale (posebno, As, Pb, Cu)

4 REFORMIRANJE BENZINA Reakcije: 1. Reakcije kojima nastaje vodik 2. Reakcije kojima se troši vodik 3. Reakcije kojima se mijenja oblik molekule, uz održanje iste molekulske mase. 1.a. Dehidrogenacija naftenskih u aromatske ugljikovodike +3H 2 1.b. Dehidrociklizacija parafinskih u aromatske ugljikovodike n-c 6 H 14 +3H 2

5 REFORMIRANJE BENZINA 2.a. Hidrokrekiranje parafinskih ugljikovodika C 6 H 14 + H 2 C 4 H 10 + C 2 H 6 C 6 H H 2 C 3 H 8 + C 2 H 6 + CH 4 2.b. Dealkilacija aromatskih ugljikovodika

6 REFORMIRANJE BENZINA 3.a Izomerizacija parafinskih ugljikovodika 3.b. Izomerizacija naftenskih ugljikovodika

7 REFORMIRANJE BENZINA Katalizatori: Difunkcionalna kataliza - ravnoteža metalne i kisele komponente katalizatora Metalna komponenta Pt Re dispergirana je na nosaču - Al 2 O % mas. Cl (promotor kisele funkcije) - površina m 2 /g. Monometalni katalizatori % mas. Pt Bimetalni katalizatori % mas. Pt % mas. Re - niža cijena, veća stabilnost katalizatora

8 REFORMIRANJE BENZINA Reakcijski mehanizam - difunkcionalna kataliza Mehanizam reakcija u katalitičkom reformiranju (dehidrociklizacija n C 6 )

9 REFORMIRANJE BENZINA Dehidrogenacija naftena (najviše doprinosi OB i prinosima benzina) endotermna reakcija povoljan utjecaj više temperature i nižeg tlaka. Izomerizacija parafina i naftena blago egzotermna reakcija, mala vrijednost - ΔH. Dehidrociklizacija parafina endotermna reakcija - pospješena višim temperaturama i nižim tlakom, ograničena kinetičkim parametrima. Hidrokrekiranje parafina - vrlo egzotermna reakcija - ograničena u procesu kinetičkim parametrima. Najsporije reakcije u procesu - dehidrociklizacija parafina i hidrokrekiranje ugljikovodika manje molekulske mase.

10 REFORMIRANJE BENZINA Procesne varijable utjecaj na prinose i kakvoću produkata Tlak - stariji procesi - visokotlačni (27-40 bar) - noviji procesi - niskotlačni (8-20 bar) - bimetalni katalizatori porastom tlaka raste stupanj hidrokrekiranja, a smanjuju se udjeli reakcija aromatizacije (dehidrogenacija naftena i dehidrociklizacija parafina) utjecaj na smanjenje prinosa tekućeg produkta. visoki tlak smanjuje nastajanje koksa na katalizatoru - usporava proces deaktivacije. Temperatura Temperaturno područje: C na temperaturama nižim od C - reakcije prespore iznad C brzina krekiranja prevelika - gubitak tekućeg produkta, brža deaktivacija katalizatora (koksiranje). porast temperature - povećava OB benzina veće brzine svih reakcija u procesu.

11 REFORMIRANJE BENZINA Prostorna brzina Definira se kao omjer volumnog protoka sirovine i volumena katalizatora. LHSV (liquid hourly space velocity) m 3 /h/m 3 = h -1 WHSV (weight hourly space velocity) kg /h/kg = h -1 prostorna brzina (vrijeme zadržavanja) - ima velik utjecaj na raspodjelu produkata. Brže reakcije - veće prostorne brzine (kraće vrijeme zadržavanja) - dehidrogenacija naftena, izomerizacija i hidrokrekiranje dužih molekula. sporije reakcije manje prostorne brzine (duže vrijeme zadržavanja) - hidrokrekiranje kraćih molekula i dehidrociklizacija parafina. Omjer vodik/sirovina Definicija: molovi H 2 u recirkulirajućem plinu / molovi sirovine. Primarni utjecaj - na sprječavanje deaktivacije katalizatora monometalni katalizatori: 5-10:1 (manje stabilni) bimetalni katalizatori: 3,5-7:1 (stabilniji) u kontinuiranim procesima - omjeri mogu biti niži

12 REFORMIRANJE BENZINA Procesi: 1. Proces s nepokretnim slojem katalizatora Raspodjela katalizatora po reaktorima u različitim omjerima ( 1:2:4 ) Peći Kompresor rec. plina Dobivanje čistog vodika Zagrijavanje na ulazu u reaktore endoterman proces Reaktori Suhi plin 1. reaktor visoki prinosi C 5 + frakcije i H 2. Sirovina Separator Debutanizer C3-C4 U.N.P. Reformirani benzin 3. reaktor reakcije hidrokrekiranja manjih ugljikovodika i dehidrociklizacija parafina porast temperature uz duže vrijeme zadržavanja opasnost od deaktivacije katalizatora.

13 REFORMIRANJE BENZINA 2. Proces s kontinuiranom regeneracijom katalizatora Najčešće tri reaktora jedan iznad drugoga. Katalizator prolazi kroz prvi, zatim drugi i treći reaktor s dna trećeg reaktora ulazi u regenerator nakon regeneracije - ponovno u prvi reaktor. Kontinuirana regeneracija omogućuje rad u uvjetima: nižeg omjera H 2 /CH smanjeni troškovi energenata. nižeg tlaka viši prinosi tekućeg produkta. viših temperatura niži zahtjevi vezani uz katalizator mogućnost korištenja katalizatora niže stabilnosti.

14 ALKILACIJA Namjena: dobivanje alkilat-benzina iz frakcije UNP-a. olefin + parafin izo-parafin olefini: etilen, propilen, n-buten, i-buten ili smjese. parafin: i-butan ( izomerizacija n-butana ). Mehanizam reakcije karbokationski, uz prisutnost jakih kiselina kao katalizatora (HF ili H 2 SO 4 ). alkilat-benzin karakterizira: visoka vrijednost oktanskog broja (IOB=92-96). mala osjetljivost razlika između IOB i MOB. ne sadrži aromate i olefine. niski tlak para omogućuje veće učešće komponenata s većim tlakom para (butani).

15 ALKILACIJA Reakcije: CH 3 CH 3 CH 3 CH 3 1. H 3 C CH CH 3 + CH 3 C CH 2 CH 3 C CH 2 CH CH 3 CH 3 izobutan izobuten izooktan (2,2,4-trimetilpentan) 2. izobutan + propen izoheptan Sekundarne reakcije: Izomerizacija Prijelaz vodika Polimerizacija (povoljan omjer alkan:alken ( 5 10 : 1 ) inhibira polimerizaciju). Krekiranje

16 ALKILACIJA Procesi: razlikuju se u izvedbi s obzirom na katalizator. Danas komercijalno postoje dvije vrste tehnologija: 1. Alkilacija s H 2 SO 4 2. Alkilacija s HF Procesni uvjeti ovise o vrsti katalizatora (temperatura C uz HF, C uz H 2 SO 4 ). Ravnoteža reakcije pomiče se prema proizvodu smanjenjem temperature (egzotermna reakcija) i povećanjem tlaka. Potrošnja i-butana po molu olefina ovisi o primjenjenom olefinu. Obje kiseline su vrlo korozivne, te mogu biti štetne za zdravlje (dodir s kožom, inhalacija). Alkilat dobiven procesom s H 2 SO 4 iz butena ima najveći OB. Iz ekoloških razloga istražuju se procesi s nepokretnim slojem katalizatora.

17 POLIMERIZACIJA 1. Namjena: dobivanje polimer-benzina(iob~97) konverzijom lakih olefina iz frakcije UNP-a. plinoviti alkeni viši alkeni (granati) propen, buten (buten-1, -2, -izo) di -, tri -, tetra Sirovine za polimerizaciju: C 3 /C 4 frakcija FCC procesa (sadrži oko 70% propena u C 3 frakciji, te 55% butena u C 4 frakciji), zatim plinske frakcije kokinga, visbreakinga i nekih drugih procesa. C 4 i smjesa C 3 /C 4 C 6, C 7 i C 8 C 9, C 12, C 16 itd. daljnja adicija Nedostatci polimer-benzina: olefinski sastav, velika osjetljivost. Mogućnost namješavanja u motorni benzin je manja (FCC benzin kao temeljna komponenta sadrži puno olefina) zato se preferira alkilacija, dok proces polimerizacije gubi na značenju.

18 IZOMERIZACIJA Namjena procesa: 1. Konverzija n-butana u i-butan sirovina za alkilaciju. 2. Povećanje oktanskog broja frakcije laganog benzina (C 5 -C 6 ) konverzijom n-parafina u i-parafine. Sirovina: frakcija primarnog benzina vrelišta do~ 80 0 C potrebno ukloniti katalitičke otrove (S i N) hidrodesulfurizacijom. Voda smanjuje kiselost katalizatora i djeluje korozivno sušenje molekulnim sitima. Proizvod: izomerizat- benzin ( visokooktanska sastavnica motornog benzina).

19 IZOMERIZACIJA 1. Reakcije izomerizacije 2. Reakcije cijepanja, pregradnje i deciklizacije: n-c5 i-c5 n-c6 2,2-DMB n-c6 2,3-DMB n-c6 2-MP n-c6 3-MP 2-MP 2,2-DMB 2-MP 2,3-DMB 3-MP 2,2-DMB 3-MP 2,3-DMB n-c 5 C 4 + C 1 n-c 5 C 2 + C 3 n-c 6 C 5 + C 1 n-c 6 C 4 + C 2 n-c 6 2 C 3 MCP CH MCP + H 2 n-c 6 CH + H 2 n-c 6

20 IZOMERIZACIJA Vrijednosti oktanskih brojeva za C 5 -C 6 ugljikovodike: Parafin i-butan n-pentan i-pentan n-heksan 2-metilpentan 3-metilpentan 2,3-dimetilbutan 2,2-dimetilbutan IOB

21 IZOMERIZACIJA Katalizatori Pt/Al 2 O 3 katalizatori zahtjevaju dodavanje organskih klorida (CCl 4 ) za postizanje željene kiselosti. Temperature procesa su oko 150 C. Ovi katalizatori su vrlo osjetljivi na prisutnost sumpora, dušika i vode u sirovini (katalitički otrovi, korozija) - potrebno je provesti postupak hidrodesulfurizacije, te sušenje sirovine (molekularna sita). Pt/zeolit katalizatori ne zahtijevaju kontin. kloriranje, ne iziskuju korozijske probleme i manje su osjetljivi na katalitičke otrove. Nedostatak ovih katalizatora su visoke radne temperature (250 do 270 ) - posljedica su niže ravnotežne koncentracije razgranatih izomera u produktu.

22 IZOMERIZACIJA Procesne varijable Temperatura u reaktoru Kemijskoj ravnoteži odgovara niža temperatura. Uz višu temperaturu pojava cijepanja molekula je znatnija. Prostorna brzina (LHSV) Povećanje prostorne brzine (smanjenje vremena zadržavanja) - utječe na smanjenje kakvoće izomerizata. Omjer H 2 / ugljikovodici Pozitivan utjecaj na smanjenje brzine deaktivacije katalizatora.

23 IZOMERIZACIJA Procesni uvjeti za Pt/Al 2 O 3 i Pt / zeolit katalizatore: Pt/Al 2 O 3 Pt/zeolit Temperatura, C Tlak, bar Prostorna brzina, h H 2 /ugljikovodici, mol/mol IOB izomerizata

24 IZOMERIZACIJA C 3 - Sirovina Izomerizacija Molekulska sita Izomerizat n-c 4, n-c 5 i n-c 6 Izomerizacija s recirkulacijom n-parafina molekulskim sitima Izomerizat Proces bez unapređenja Proces s molekulskim sitima IOB Oktanski broj % povećanje

25 HIDRODESULFURIZACIJA Hidrodesulfurizacija - blagi hidrokreking u kojem se uz prisustvo katalizatora razgrađuju i uklanjaju sumporni dušikovi i kisikovi spojevi iz naftnih derivata. Hidrodesulfurizacijom se povećava kemijska stabilnost benzina, dorađuju se srednji i teški destilati radi uklanjanja S, poboljšanja C.B., poboljšanja stabilnosti, boje, te općenito ekološke podobnosti goriva. Vodik potreban za proces dobiva se u procesu katalitičkog reformiranja. Različite metode obrade vodikom razlikuju se u potrošnji vodika: H 2 za hidrodesulfurizaciju do 20 m 3 /m 3 sirovine. H 2 za hidrokreking iznad 180 m 3 /m 3 sirovine

26 Sirovine HIDRODESULFURIZACIJA Procesom HDS obrađuju se frakcije u širokom području vrelišta: benzini - sirovine za katalitički reforming benzini s procesa krekiranja dizelska goriva, mlazna goriva vakuum destilati - sirovine za katalitički kreking Katalizator Uobičajeno se koriste Co i Mo oksidi kao smjese: (MoO 3 i CoMoO 4 ) na nosaču ( -Al 2 O 3 ). Katalizator sadrži 3-4% Co i 7-10%Mo. Katalitička aktivnost (radi prisustva vodika) dugo se održava - ponekad godinama nije potrebna regeneracija. Regeneracija - "in situ" - spaljivanjem koksa u struji zraka ( konc. kisika do 1% vol.) na temperaturi od C.

27 HIDRODESULFURIZACIJA Reakcije sumporovih spojeva: Spoj Reakcija ΔH (KJ/mol) Merkaptani C 2 H 5 -SH + H 2 C 2 H 6 + H 2 S Sulfidi C 2 H 5 -S-C 2 H 5 + 2H 2 2C 2 H 6 + H 2 S Tiofan C 4 H 8 S +2 H 2 C 4 H 10 + H 2 S Tiofen C 4 H 4 S +4 H 2 C 4 H 10 + H 2 S Dibenzotio fen C 12 H 8 S +2 H 2 C 12 H 10 + H 2 S

28 HIDRODESULFURIZACIJA Reakcije dušikovih i kisikovih spojeva + hidrogenacija olefina: 2. Hidrodenitrifikacija +5H 2 pentan + NH 3 N 3. Hidrodeoksigenacija R COOH + 3H 2 RCH 3 + 2H 2 O 4. Hidrogenacija C = C R CH = CH 2 R CH 2 CH 3 H 2

29 HIDRODESULFURIZACIJA Procesne varijable: Temperatura ( C) iznad C - neželjene reakcije hidrokrekiranja ovisi o vrsti sirovine:"lakše" frakcije (benzin) - niže temperature, teže sirovine (plinska ulja) - više temperature. Tlak (25-85 bara) ovisi o vrsti sirovine: lakše sirovine - niži tlakovi, teže sirovine - viši tlakovi. Ako su tlakovi viši - vijek trajanja aktiviranog katalizatora duži. Omjer vodik / sirovina ovisi o čistoći vodika (veća čistoća potrebno manje vodika) i vrsti sirovine ( teže sirovine zahtjevaju više vodika). Prostorna brzina (0,2-6 h -1 ) ovisi o vrsti sirovine. Što je sirovina teža potrebna je manja prostorna brzina (duže vrijeme zadržavanja).

30 Striper Opis procesa: HIDRODESULFURIZACIJA Sirovina i vodik ( svježi + recikl.) zagrijavanje (izmj. topl. + peć) Zagrijana smjesa se uvodi u reaktor gdje se odvijaju reakcije na katalizatoru (Co-Mo oksidi / ( -Al 2 O 3 ). Iz reaktora produkti odlaze u 1. separator (visokotlačni) odvajanje plina bogatog vodikom (recirkulacija), a nakon toga u 2. separator (niskotlačni) odvajanje H 2 S, NH 3, C 1 -C 4. u striper koloni odvajanje plina od tekućeg rafiniranog produkta koji s dna kolone odlazi u spremnik potom na namješavanje gotovih proizvoda (dizel, m. benzini), ili na preradu u sekundarnim procesima (izomerizacija, katal. reforming, kreking i sl.). Vodik Sirovina Rec. vodik Peć Reaktor 1 Separator 1 Separator 2 Loživi plin Raf. produkt

PROCESI PRERADE NAFTE

PROCESI PRERADE NAFTE SVEUČILIŠTE U ZAGREBU Fakultet kemijskog inženjerstva i tehnologije Zavod za tehnologiju nafte i petrokemiju Zagreb, Savska cesta 16 / II PROCESI PRERADE NAFTE Prof. Katica Sertić - Bionda PROCESI PRERADE

Διαβάστε περισσότερα

PROCESI PRERADE NAFTE

PROCESI PRERADE NAFTE SVEUČILIŠTE U ZAGREBU Fakultet kemijskog inženjerstva i tehnologije Zavod za tehnologiju nafte i petrokemiju Zagreb, Savska cesta 16 / II PROCESI PRERADE NAFTE Prof. Katica Sertić - Bionda ATMOSFERSKA

Διαβάστε περισσότερα

NAFTNO-PETROKEMIJSKO INŽENJERSTVO

NAFTNO-PETROKEMIJSKO INŽENJERSTVO SVEUČILIŠTE U ZAGREBU Fakultet kemijskog inženjerstva i tehnologije Zavod za tehnologiju nafte i petrokemiju Zagreb, Savska cesta 16 / II NAFTNO-PETROKEMIJSKO INŽENJERSTVO Prof. dr. sc. Katica Sertić -

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

PARNO KREKIRANJE - PIROLIZA UGLJIKOVODIKA Proizvodi etena, propena i butena

PARNO KREKIRANJE - PIROLIZA UGLJIKOVODIKA Proizvodi etena, propena i butena Fakultet kemijskog inženjerstva i tehnologije Sveučilište u Zagrebu Diplomski studij KEMIJSKO INŽENJERSTVO Kolegij: N a f t n o - p e t r o k e m i j s k o i n ž e nj e r s t v o PARNO KREKIRANJE - PIROLIZA

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Vodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju

Vodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju Vodik Najzastupljeniji element u svemiru (maseni udio iznosi 90 %) i sastavni dio Zvijezda. Na Zemlji je po masenom udjelu deseti element po zastupljenosti. Zemljina gravitacija premalena je da zadrži

Διαβάστε περισσότερα

EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZVOR EMISIJE

EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZVOR EMISIJE Prof. dr. sc. Z. Prelec INŽENJERSTO ZAŠTITE OKOLIŠA Poglavlje: (Emisija u atmosferu) List: 1 EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZOR EMISIJE Izgaranje - najveći uzrok

Διαβάστε περισσότερα

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1 (Regenerativni zagrijači napojne vode) List: 1 REGENERATIVNI ZAGRIJAČI NAPOJNE VODE Regenerativni zagrijači napojne vode imaju zadatak da pomoću pare iz oduzimanja turbine vrše predgrijavanje napojne vode

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima

Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Heterogene ravnoteže taloženje i otapanje u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Ako je BA teško topljiva sol (npr. AgCl) dodatkom

Διαβάστε περισσότερα

- dobivaju iz: petrokemijskih sirovina (nafta i prirodni plin) - petrokemija nepetrokemijskih sirovina (ugljen, drvo) - karbokemija

- dobivaju iz: petrokemijskih sirovina (nafta i prirodni plin) - petrokemija nepetrokemijskih sirovina (ugljen, drvo) - karbokemija Sirovinske komponente za organsku sintezu su sljedeće skupine kemijskih spojeva: alkani (parafini) alkeni (olefini ) aromatski ugljikovodici etin (acetilen) sintezni plin (CO + H 2 ) - dobivaju iz: petrokemijskih

Διαβάστε περισσότερα

A B C D. v v k k. k k

A B C D. v v k k. k k Brzina kemijske reakcije proporcionalna je aktivnim masama reagirajućih tvari!!! 1 A B C D v2 1 1 2 2 o C D m A B v m n o p v v k k m A B o C D p C a D n A a B A B C D 1 2 1 2 o m p n 1 2 n v v k k K a

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

REAKCIJE ELIMINACIJE

REAKCIJE ELIMINACIJE REAKIJE ELIMINAIJE 1 . DEIDROALOGENAIJA (-X) i DEIDRATAIJA (- 2 O) su najčešći tipovi eliminacionih reakcija X Y + X Y 2 Dehidrohalogenacija (-X) X strong base + " X " X = l, Br, I 3 E 2 Mehanizam Ova

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija

PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za prehrambenu tehnologiju i biotehnologiju Referati za vježbe iz kolegija PRERADA GROŽðA Stručni studij kemijske tehnologije Smjer: Prehrambena

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

ZAŠTITA OKOLIŠA U PRERADBI NAFTE

ZAŠTITA OKOLIŠA U PRERADBI NAFTE SVEUČILIŠTE U ZAGREBU Fakultet kemijskog inženjerstva i tehnologije Zavod za tehnologiju nafte i petrokemiju Zagreb, Savska cesta 16 / II ZAŠTITA OKOLIŠA U PRERADBI NAFTE Prof. Katica Sertić - Bionda ONEČIŠĆENJA

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

ENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović

ENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović Fakultet kemijskog inženjerstva i tehnologije Zavod za termodinamiku, strojarstvo i energetiku ENERGETIKA Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović Prirodni plin nije jedino

Διαβάστε περισσότερα

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc.

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Lidija Furač Pri normalnim uvjetima tlaka i temperature : 11 elemenata su plinovi

Διαβάστε περισσότερα

O ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola)

O ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) 1 Adicija alkohola 2 AETALI I PLUAETAL AETALI 3 Adicijom jednog mola alkohola na mol aldehida ili ketona nastaje poluacetal

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Postupak rješavanja bilanci energije

Postupak rješavanja bilanci energije Postupak rješavanja bilanci energije 1. Postaviti procesnu shemu 2. Riješiti bilancu tvari 3. Napisati potreban oblik jednadžbe za bilancu energije (zatvoreni otvoreni sustav) 4. Odabrati referentno stanje

Διαβάστε περισσότερα

UKUPAN BROJ OSVOJENIH BODOVA

UKUPAN BROJ OSVOJENIH BODOVA ŠIFRA DRŽAVNO TAKMIČENJE II razred UKUPAN BROJ OSVOJENIH BODOVA Test regledala/regledao...... Podgorica,... 008. godine 1. Izračunati steen disocijacije slabe kiseline, HA, ako je oznata analitička koncentracija

Διαβάστε περισσότερα

KATALITIČKA OKSIDACIJA TOLUENA NA MIJEŠANIM METALNIM OKSIDIMA

KATALITIČKA OKSIDACIJA TOLUENA NA MIJEŠANIM METALNIM OKSIDIMA VJEŽBA 1. KATALITIČKA OKSIDACIJA TOLUENA NA MIJEŠANIM METALNIM OKSIDIMA Hlapljivi organski spojevi (VOC) Hlapljivi organski spojevi (eng. volatile organic compounds, VOC) velika su grupa organskih spojeva

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Heterogeno-katalitički reaktori

Heterogeno-katalitički reaktori (A): Reaktori s nepokretnim slojem a- adijabatski reaktor; b- NINA reaktor s nepokretnim slojem; c- prokapni reaktor; d- reaktor s uronjenim nepokretnim slojem Heterogeno-katalitički reaktori (B) Reaktori

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

10. BENZINSKI MOTOR (2)

10. BENZINSKI MOTOR (2) 11.2012. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak 10. BENZINSKI MOTOR (2) 1 Sustav ubrizgavanja goriva Danas Otto motori za cestovna vozila uglavnom stvaraju gorivu smjesu pomoću sustava za ubrizgavanje

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa. Presentation 3.

Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa. Presentation 3. Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa Presentation 3. ACIKLIČNI UGLJOVODONICI Alkeni (nezasićeni ugljovodonici, olefini) Alkeni su aciklični nezasideni ugljovodonici u čijim molekulima je prisutna

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Kiselo bazni indikatori

Kiselo bazni indikatori Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik

Διαβάστε περισσότερα

EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje

EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje EuroCons Group Karika koja povezuje Filtracija vazduha Obrok vazduha 24kg DNEVNO Većina ljudi ima razvijenu svest šta jede i pije, ali jesmo li svesni šta udišemo? Obrok hrane 1kg DNEVNO Obrok tečnosti

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

A L D O L N A R E A K C I J A

A L D O L N A R E A K C I J A A L D L A E A K C I J A * U PTI^IM USLVIMA * Katalizovane bazama * Katalizovane kiselinama * U APTI^IM USLVIMA (eakcije preformiranih enolata ili dirigovane adicije) * U baznim uslovima * U kiselim uslovima

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

TEHNIČKO TEHNOLOŠKO RJEŠENJE

TEHNIČKO TEHNOLOŠKO RJEŠENJE ZA ZAŠTITU OKOLIŠA d.o.o. SR Njemačke 10, 10020 Zagreb Telefon: +385 1 66 00 559 Telefax: +385 1 66 00 561 E-mail: ecoina@zg.t-com.hr Web stranica: www.ecoina.com TEHNIČKO TEHNOLOŠKO RJEŠENJE postojećeg

Διαβάστε περισσότερα

GLAZBENA UMJETNOST. Rezultati državne mature 2010.

GLAZBENA UMJETNOST. Rezultati državne mature 2010. GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

DUALNOST. Primjer. 4x 1 + x 2 + 3x 3. max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 (P ) 1/9. Back FullScr

DUALNOST. Primjer. 4x 1 + x 2 + 3x 3. max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 (P ) 1/9. Back FullScr DUALNOST Primjer. (P ) 4x 1 + x 2 + 3x 3 max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 1/9 DUALNOST Primjer. (P ) 4x 1 + x 2 + 3x 3 max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 1/9 (D)

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU

AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif.   SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU AGREGAT Asistent: Josip Crnojevac, mag.ing.aeif. jcrnojevac@gmail.com SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU JOSIP JURAJ STROSSMAYER UNIVERSITY OF OSIJEK 1 Pojela agregata PODJELA AGREGATA - PREMA

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Molekulska Pregradjivanja

Molekulska Pregradjivanja Molekulska Pregradjivanja 1 1. Pregradjivanje na elektronom osiromasenom atomu 2. Slobodni radikali i anionska pregradjivanja 2 Pregradjivanje na elektronom osiromasenom atomu Migracija prema karbokationu

Διαβάστε περισσότερα

Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina

Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina Pun spremnik benzina sadrži 60 litara. Ako je napunjen pri temperaturi 5 C i ostavljen na suncu tako da se temperatura povisi

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

PRORAČUN GLAVNOG KROVNOG NOSAČA

PRORAČUN GLAVNOG KROVNOG NOSAČA PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA

Διαβάστε περισσότερα

STATISTIKA S M E I M N I AR R 7 : METODE UZORKA

STATISTIKA S M E I M N I AR R 7 : METODE UZORKA Fakultet za menadžment u turizmu i ugotiteljtvu, Opatija Sveučilišni preddiplomki tudij Polovna ekonomija u turizmu i ugotiteljtvu Noitelj kolegija: Prof. dr. c. Suzana Marković Aitentica: Jelena Komšić

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Voda za piće. Otpadne vode. Procesno ekoinženjerstvo voda. Ø otpadne vode iz domaćinstva. Ø industrijske otpadne vode. Ø kanalizacijske otpadne vode

Voda za piće. Otpadne vode. Procesno ekoinženjerstvo voda. Ø otpadne vode iz domaćinstva. Ø industrijske otpadne vode. Ø kanalizacijske otpadne vode Procesno ekoinženjerstvo voda Voda za piće Otpadne vode Ø otpadne vode iz domaćinstva Ø industrijske otpadne vode Ø kanalizacijske otpadne vode Ø slivne vode Shema tipičnog sustava za pripravu pitke vode

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα