Automobil je jedno brzo prijevozno sredstvo modernog društva

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Automobil je jedno brzo prijevozno sredstvo modernog društva"

Transcript

1 Automobil je jedno brzo prijevozno sredstvo modernog društva Rezultati ankete iz Švicarske na pitanje o automobilu: 58% ne mogu zamisliti da idu na posao bez automobila 56% smatra automobilpraktičnim, udobnim i štedljivim prijevoznim sredstvom 50% smatra automobil multifunkcionalnim sredstvom 45% smatra da donosi brojne prednosti obitelji 44% smatra da je on glavni zagađivač okoliša Promet i ekologija 1

2 U godini bilo u upotrebi u svijetu približno 700 milijuna registriranih cestovnih motornih vozila, a predviđa senjihov porast na 1,3 milijarde do 2030., a do preko 2 milijarde. U SAD je u prvih 35 godina poslije rata broj osobnih vozila povećan za 214 posto U Hrvatskoj udio osobnih vozila visokih 76% zbog čega i predstavljaju i glavni izvor zagađenja zraka Broj teretnih vozila, iako zastupljen samo sa 8% u ukupnom broju cestovnih motornih vozila, nisu zanemariv faktor zagađenja zraka (15% zagađenja od CO otpada na teška vozila) Promet i ekologija 2

3 GORIVO, ZRAK, IZGARANJE Izgaranje izgaranjem goriva u motoru nastaju produkti izgaranja uobičajeni naziv: ispušni plinovi a) potpuno izgaranje produkti potpunog izgaranja su ugljikov (idealan proces) dioksid (CO 2 ) i vodena para (H 2 O), kao i od zraka preostali dušik i kisik ako je zrak bio u pretičku b) nepotpuno izgaranje Nepotpunim izgaranjem nastaju produkti (realan proces) koji su i dalje sposobni izgarati (djelomično izgorjeli ugljikovodici) i kao takvi u ispušnim plinovima iz motora vozila odlaze u okolinu. Zbog toga se gubi dio energije (smanjen stupanj korisnog djelovanja motora). Osim toga u produktima nepotpunog izgaranja pojavljuju se sastojci koji su štetni za ljudsko zdravlje i okoliš Promet i ekologija 3

4 Za motorna goriva koja se danas upotrebljavaju za pogon motora s unutrašnjim izgaranjem ( MUI ) određenajepotrebnakoličina zraka od 14,7 kg za potpuno izgaranje 1 kg goriva, a to se može vidjeti iz grafikona 1 sa masenim udjelima pojedinih plinova. dušik N2; 11,1 kg kisik O2; 3,4 kg 14,7 kg zraka ostali plinovi 0,2 kg ugljik CO 2 ; 0,86 kg vodik H 2 ; 0,14 kg + 1 kg goriva = dušik N2; 11,1 kg ostali plinovi; 0,2 kg ugljik (IV) oksid CO 2 ; 3,1 kg 15,7 kg ispušnih plinova Grafikon 1.: Masena bilanca potpunog izgaranja voden para H 2 O ; 1,3 kg Promet i ekologija 4

5 Omjer goriva i zraka može se prikazati pomoću faktora zraka λ, pa je λ = Z / Z 0 Gdje je: Z (kg z /kg g ) stvarna količina zraka potrebna za izgaranje 1 kg goriva Z 0 (kg z /kg g ) stehiometrijska količina zraka potrebna za izgaranje 1 kg goriva, (količina zraka potrebna da u potpunosti izgori 1 kg goriva, ali tako da u produktima izgaranja nema slobodnog kisika) λ<1 bogata smjesa (višak goriva, a manjak zraka) λ =1 stehiometrijska smjesa (Z = Z 0 ) λ>1 - siromašna smjesa, (manjak goriva, a višak zraka) Promet i ekologija 5

6 Nepotpuno izgaranje najčešće uzrokovano pomanjkanjem kisika (bogata smjesa) ili lošom izmješanosti gorive smjese Osim kroz ispušni sustav cestovna motorna vozila zagađuju zrak i isparavanjem goriva i maziva iz spremnika goriva (HC do 5%), kučišta motora (HC 20 25%) i iz rasplinjača (ako ga vozilo posjeduje, HC do 15%). Zbog svoje velike brojčane zastupljenosti, nepovoljnih uvjeta rada motora, slabe cirkulacije zraka, nedovoljne kvalitete goriva, cestovna motorna vozila su primarni onečiščivaći zraka u gusto naseljenim mjestima Promet i ekologija 6

7 Sastav ispušnih plinova iz Ottovih (benzinskih) motora Neškodljivi sastojci: dušik (N 2 ) vodena para (H 2 O) kisik (O 2 ) ugljikov dioksid (CO 2 ) Škodljivi sastojci: ugljikov monoksid (CO) ugljikovodici (CH) dušikovi oksidi (No x ) sumporov dioksid (SO 2 ) iz nečistoća u gorivu, krute čestice (PM) Spojevi s olovom (Pb) dušik (IV) oksid (NO 2 ) amonijak (NH3) Promet i ekologija 7

8 Pomorski promet 2,5% Zračni promet 11,7% Željezički promet 2,9% Cestovni promet Pomorski promet Zračni promet Cestovni promet 82,9% Željezički promet Slika 1.: Učešće pojedinih vidova prometu u emisiji CO Promet i ekologija 8

9 Do godine treble bi emisije CO 2 biti 120 g po prijeđenom km tako niska vrijednost može se ostvariti tek s potrošnjom od 4,5 l / 100 km za dizel motore, odnosno 5,0 l / 100 km za benzinske motore Najvažniji staklenički plinovi su: vodena para (H2O), ugljik (IV) oksid (CO2), metan (CH4), dušik (II) oksid (N2O), klorofluorovodici, ozon (O3) u troposferi, sumpor (IV) oksid (SO2) itd. 60% efekta staklenika posljedica H2O, 25 % efekta staklenika posljedica CO2 i 5% metana (CH4). U god. doprinos sektora promet ukupnoj emisiji stakleničkih plinova iznosio je u RH 20,3 % Promet i ekologija 9

10 u tisućama tona Slika 4.: Razvoj i prognoza emisija NO X za Njemačku do god. u tisućama tona Slika 5.: Razvoj i prognoza emisija čestica za Njemačku do god Promet i ekologija 10

11 Ugljik (II) oksid (CO) vrlo otrovan, ima veliku sklonost vezivanja za hemoglobin (oko 250 puta više od kisika), a najveći izvor emisije CO je cestovni promet s oko 45% udjela u ukupnoj emisiji Ugljikovodici (HC) policiklički aromatski ugljikovodici (PAU) štetni jer djeluju kancerogeno, dovode do sekundarne kemijske reakcije i stvaranja smoga Dušični oksidi (NOx) indirektan staklenički plin koji u kombinaciji s drugim štetnim tvarima u gradskoj atmosferi (čestice i SO2) uzrokuje sumaglicu i smog, kisele kiše, ugrožavajući tlo, vodni i životinjski ekosistem, građevine i ljudsko zdravlje, najveći izvor cestovni promet sa oko 35% udjela u ukupnoj emisiji Čestice i čađa Čađa je tvrdi filtrat ispušnih plinova a sastoji se od čestica ugljika; ovisi o sastavu goriva, a goriva s visokim odnosom ugljika i vodika su sklonija stvaranju čađe; Čestice, naročito one promjera 10 mm i manje u kombinaciji sa SO2 i NOx uzrokuju gradski smog, naročito u zimskim mjesecima, one su problem ispušnih plinova diesel motora Promet i ekologija 11

12 UČINCI ZAGAĐENOG ZRAKA na čovjeka (bolesti respiratornih organa: rak, astma, bronhitis,) na biljke akutni i kronični na materijale (korozija, oštećenja pročelja zgrada) Promet i ekologija 12

13 Neke štetne tvari zraka i njihovo djelovanje na ljudsko zdravlje

14 UKUPNO ZAGAĐENJE ZRAKA SMETNJE PRI FOTOSINTEZI ISPUŠNI PLIN OŠTEĆENJE DEBLA SOL SOL TKIDANJE KORJENA UŠENJEM STALACIJA ISUŠIVANJE TLA ZBIJANJE TLA OŠTEĆENJA KORJENOVOG SUSTAVA Slika 3.: Razni uzroci oštećenja drveća uz prometnice / 12 / Promet i ekologija 14

15 Zaštita ekosustava razlikuje dva pristupa: 1. Faza sagledavaju se utjecaji prometa na okoliš (buka, štetne tvari itd.) i parcijalnim mjerama nastoje ublažiti 2. Faza sagledavaju se i ostali utjecaji prometa na okoliš i oblikuje cjelovita politika zaštite prirode ( new environmental ) Značenje homologacije cestovnih vozila za čistoću okoliša Ukupno dosada donijeto 109 ECE pravilnika koji se odnose na područja: Promet i ekologija 15

16 Aktivne sigurnosti Pasivne sigurnosti Zaštite okoliša (emisije ispušnih plinova, buka, radijske smetnje i dr.) Općih uvjeta sigurnosti (mjerenje snage motora i potrošnje goriva i dr.) POPISI ECE PRAVILNIKA KOJI SE ODNOSE NA EMISIJU ISPUŠNIH PLINOVA: ECE R 15 odnosi se na kontrolu emisije ispuha iz ottovih i dieselovih motora osobnih ( putničkih ) i lakih teretnih vozila ECE R 83 zamijenio ECE R 15 uveo složeniju i strožu kontrolu ECE R 24 dimnost ispušnih plinova dieselovih motora ECE R 49 odnosi se na kontrolu emisije ispuha srednjih i velikih dieselovih motora za motorna vozila ECE R 84 emisija ispušnih plinova motornih vozila s obzirom na mjerenje potrošnje goriva ECE R 101 emisija CO 2 i potrošnja goriva Promet i ekologija 16

17 ECE pravilnici = mijenjaju se amandmanima (dopunama) EEC smjernice = ne mijenjaju se amandmanima, već donošenjem novih smjernica Provjera homologacijske podobnosti vozila = zadatak da spriječi uvoz sigurnosno i ekološki nepodobnih vozila, koja u trenutku uvoza i prve registracije ne odgovaraju homologacijskim propisima u zemlji uvoza. U RH započela godine Promet i ekologija 17

18 Da neko vozilo koje se prvi put pojavljuje na tržištu (ili motor koji se prvi put ugrađuje u postojeće vozilo) dobio uporabnu dozvolu koja omogućuje prodaju na području Europske zajednice, s ekološkog motrišta mora zadovoljiti ove testove: Test I Provjera potrošnje i emisije štetnih plinova nakon hladnog starta Test II Provjera emisije ugljičnog monoksida ( CO ) pri praznom hodu motora Test III Provjera emisije štetnih plinova iz kućišta motora Test IV Provjera isparivanja para ugljikovodika Test V Provjera trajnosti dijelova uređaja za smanjenje emisije štetnih tvari Promet i ekologija 18

19 Za različite skupine vozila ne primjenjuju se svi navedeni testovi već njihov izbor ovisi o tipu motora i namjeni vozila. Izbor pojedinih testova vidi se u narednoj tablici. Prije svakog testa (ispitivanja) pokusno vozilo mora prijeći najmanje 3000 km i mora biti potpuno ispravno. Zbog povećanja jednostavnosti i usklađivanja zakona na području Europske unije, smjernica 70/220/Eec propisuje oblik zapisnika o svakom obavljenom ispitivanju. Redni broj Test Ottovi motori Vozila za prijevoz do 6 putnika i mase m<2,5 t Vozila za prijevoz više od 6 putnika i mase m>2,5 t Dieselski motori Vozila za prijevoz do 6 putnika i mase m<2,5 t Vozila za prijevoz više od 6 putnika i mase m>2,5 t 1. Prosječna emisija štetnih plinova u ispušnim plinovima Emisija CO pri praznom hodu + 3. Emisija plinova iz kućišta motora Emisija od isparavanja + 5. Trajnosti dijelova uređaja za smanjenje emisije štetnih tvari Promet i ekologija 19

20 Cestovna motorna vozila učestvuju sa skoro 60 % u ukupnoj emisiji CO, u emisiji NOx sa oko 40%, a u emisiji VOC sa oko 20%. Učešće u emisiji SO2 tek 3% zbog bolje kvalitete goriva. NAPOMENA: VOC hlapivi organski spojevi može ih se smatrati ugljikovodicima. Dijelimo ih: metan (HC4) nemetanske hlapljive organske spojeve (NMVOC) Promet i ekologija 20

21 30 % Redovita kontrola i podešavanje vozila 15 % Čišća, bolja goriva 2 % Smanjenje graničnih vrijednosti emisije za nova vozila Tablica 4.: Potencijal smanjenja emisija štetnih komponenata u SAD u / 21 / Quelle US - EPA TRENDOVI SMANJENJA EMISIJA : preventivne mjere (eko test i sl.) smanjenje potrošnje fosilnih goriva poboljšanjem kvalitete goriva primjenenom alternativnih goriva tehnološkim usavršavanjem motora ekonomskim poticajima Promet i ekologija 21

22 Dva osnovna načina redukcije : (Hrvatska) podešavanje rada postojećih motora i njihovo dovođenje u ispravno stanje Zamjena voznog parka s novijim ekološki prihvatljivijim voznim parkom s REG KAT ZAKONSKI PROPISI: Prve propise donio je kralj Eduard I godine, a ispitivanja su počela u ranim pedesetim godinama u SAD Stalno smanjenje štetnih tvari imperativ automobilske industrije Najstrože zakone propisuje Kalifornija Najniže granice dopuštenih emisija u Kaliforniji propisuje SULEV norma koja je stupila na snagu godine Promet i ekologija 22

23 U Kaliforniji postoji dugoročni program uvođenja novih vozila u promet koja će s vremenom imati sve niže emisije. Programski su ta vozila nazvana specifičnim nazivima: TLEV ( Transitional Low Emission Vehicles ) : Dopuštene granice emisije po ovoj kategoriji uvedene su Cilj je bio smanjiti emisiju komponenata koje doprinose stvaranju ozona ( razni ugljikovodici ). LEV ( Low Emission Vehicles ) : Treba zamijeniti TLEV od Propisane granice emisije tako su niske da zahtijevaju dodatne mjere tehničkih rješenja za smanjenje sirove emisije, povećanje učinkovitosti katalizatora i uvođenje alternativnih goriva. ULEV ( Ultra Low Emission Vehicles ) : Predviđalo se postupno uvođenje od godine. Previđene granice dopuštene emisije još su niže od granica LEV a i moguće ih je dostići samo s novom tehnikom smanjivanja emisije i alternativnim gorivima. ZEV ( Zero Emission Vehicles ) : Predviđalo se da bi se od počelo s 2% udjela novih vozila, čija bi emisija organskih plinova bez metana bila NMOG = 0,00 g/km ( NMOG = Non Methan Organic Gas ). Tehnički je vrlo teško postići te vrijednosti, aosobito dopuštenu emisiju neizgorjelih ugljikovodika. Približno zadovoljavjuću razinu emisije moguće je postići jedino ukupnim mjerama na motoru i izvan njega Promet i ekologija 23

24 Tablica 5.: LEV propisi u državi Kaliforniji /12/ Promet i ekologija 24

25 Tablica 6.: Kalifornijski standardi za ispušne plinove lakih vozila za god. FTP 75, g/mi /14/ Promet i ekologija 25

26 Tablica 5.: Standardi Eu za ispušne plinove osobnih vozila g/km Promet i ekologija 26

EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZVOR EMISIJE

EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZVOR EMISIJE Prof. dr. sc. Z. Prelec INŽENJERSTO ZAŠTITE OKOLIŠA Poglavlje: (Emisija u atmosferu) List: 1 EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZOR EMISIJE Izgaranje - najveći uzrok

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

ZAŠTITA OKOLIŠA U PRERADBI NAFTE

ZAŠTITA OKOLIŠA U PRERADBI NAFTE SVEUČILIŠTE U ZAGREBU Fakultet kemijskog inženjerstva i tehnologije Zavod za tehnologiju nafte i petrokemiju Zagreb, Savska cesta 16 / II ZAŠTITA OKOLIŠA U PRERADBI NAFTE Prof. Katica Sertić - Bionda ONEČIŠĆENJA

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Zašto hibridna vozila?

Zašto hibridna vozila? Zašto hibridna vozila? Ivan Mahalec, 2006.03. 1. Nafta CO2 Temperatura Zemlje Slika 1. Lijevo: Svjetska proizvodnja nafte i plina te prognoze o trajanju zaliha izračunate na osnovi potrošnje u 2005. godini

Διαβάστε περισσότερα

Utjecaj izgaranja biomase na okoliš

Utjecaj izgaranja biomase na okoliš 7. ZAGREBAČKI ENERGETSKI TJEDAN 2016 Utjecaj izgaranja biomase na okoliš Ivan Horvat, mag. ing. mech. prof. dr. sc. Damir Dović, dipl. ing. stroj. Sadržaj Uvod Karakteristike biomase Uporaba Prednosti

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

10. BENZINSKI MOTOR (2)

10. BENZINSKI MOTOR (2) 11.2012. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak 10. BENZINSKI MOTOR (2) 1 Sustav ubrizgavanja goriva Danas Otto motori za cestovna vozila uglavnom stvaraju gorivu smjesu pomoću sustava za ubrizgavanje

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD 10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

ENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović

ENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović Fakultet keijskog inženjerstva i tehnologije Zavod za terodinaiku, strojarstvo i energetiku ENERGETIKA Studij: Keijsko inženjerstvo (V seestar) prof. dr. sc. Igor Sutlović Goriva se dijele na: kruta, tekuća

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

CESTOVNI 1.) MJERE ZA SMANJENJE ŠTETNIH TVARI OTTO MOTORA

CESTOVNI 1.) MJERE ZA SMANJENJE ŠTETNIH TVARI OTTO MOTORA CESTOVNI 1.) MJERE ZA SMANJENJE ŠTETNIH TVARI OTTO MOTORA Čimbenici koji utječu na stvaranje emisije: - pri hladnom startu motor ima prebogatu smjesu (velik dio neizgorljivihtvari) - loše održavanje i

Διαβάστε περισσότερα

VJEŽBA 9: ODREĐIVANJE SASTAVA DIMNIH PLINOVA

VJEŽBA 9: ODREĐIVANJE SASTAVA DIMNIH PLINOVA VJEŽBA 9: ODREĐIVANJE SASTAVA DIMNIH PLINOVA 1. OSNOVNI POJMOVI Osnovni pojmovi koji se vežu uz zaštitu zraka, odnosno atmosfere navedeni su u nastavku i najbolje ih je prikazati kao na sljedećoj slici.

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

T E H N I Č K I N A L A Z I M I Š LJ E NJ E

T E H N I Č K I N A L A Z I M I Š LJ E NJ E Mr.sc. Krunoslav ORMUŽ, dipl. inž. str. Stalni sudski vještak za strojarstvo, promet i analizu cestovnih prometnih nezgoda Županijskog suda u Zagrebu Poljana Josipa Brunšmida 2, Zagreb AMITTO d.o.o. U

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

Vodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju

Vodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju Vodik Najzastupljeniji element u svemiru (maseni udio iznosi 90 %) i sastavni dio Zvijezda. Na Zemlji je po masenom udjelu deseti element po zastupljenosti. Zemljina gravitacija premalena je da zadrži

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Bosna i Hercegovina Federacija Bosne i Hercegovine TUZLANSKI KANTON Ministarstvo prostornog uređenja i zaštite okolice UPUTSTVO

Bosna i Hercegovina Federacija Bosne i Hercegovine TUZLANSKI KANTON Ministarstvo prostornog uređenja i zaštite okolice UPUTSTVO Bosna i Hercegovina Federacija Bosne i Hercegovine TUZLANSKI KANTON Ministarstvo prostornog uređenja i zaštite okolice UPUTSTVO O NAČINU OBRADE I INFORMISANJA JAVNOSTI O PODACIMA IZ SISTEMA ZA PRAĆENJE

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Termodinamika i energetika. Energetika

Termodinamika i energetika. Energetika Energetika Problematika kojom se energetika bavi obuhvaća: pretvorbu izvornih oblika energije u električnu i toplinsku energiju projektiranje energetskih postrojenja razvoj, konstrukciju i održavanje energetske

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE (Generatori are) List: TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE Generator are je energetski uređaj u kojemu se u sklou Clausius-Rankineova kružnog rocesa redaje tolina

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE **** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

VJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA

VJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA VJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA 14. VRSTE GORIVA I IZGARANJE 14.1 Definicija i podjela goriva Gorivo je materija koja ima mogućnost oslobađanja energije kao posljedice promjene kemijske

Διαβάστε περισσότερα

GLAZBENA UMJETNOST. Rezultati državne mature 2010.

GLAZBENA UMJETNOST. Rezultati državne mature 2010. GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Izbor statističkih testova Ana-Maria Šimundić

Izbor statističkih testova Ana-Maria Šimundić Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα