Automobil je jedno brzo prijevozno sredstvo modernog društva
|
|
- Ζένα Σαμαράς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Automobil je jedno brzo prijevozno sredstvo modernog društva Rezultati ankete iz Švicarske na pitanje o automobilu: 58% ne mogu zamisliti da idu na posao bez automobila 56% smatra automobilpraktičnim, udobnim i štedljivim prijevoznim sredstvom 50% smatra automobil multifunkcionalnim sredstvom 45% smatra da donosi brojne prednosti obitelji 44% smatra da je on glavni zagađivač okoliša Promet i ekologija 1
2 U godini bilo u upotrebi u svijetu približno 700 milijuna registriranih cestovnih motornih vozila, a predviđa senjihov porast na 1,3 milijarde do 2030., a do preko 2 milijarde. U SAD je u prvih 35 godina poslije rata broj osobnih vozila povećan za 214 posto U Hrvatskoj udio osobnih vozila visokih 76% zbog čega i predstavljaju i glavni izvor zagađenja zraka Broj teretnih vozila, iako zastupljen samo sa 8% u ukupnom broju cestovnih motornih vozila, nisu zanemariv faktor zagađenja zraka (15% zagađenja od CO otpada na teška vozila) Promet i ekologija 2
3 GORIVO, ZRAK, IZGARANJE Izgaranje izgaranjem goriva u motoru nastaju produkti izgaranja uobičajeni naziv: ispušni plinovi a) potpuno izgaranje produkti potpunog izgaranja su ugljikov (idealan proces) dioksid (CO 2 ) i vodena para (H 2 O), kao i od zraka preostali dušik i kisik ako je zrak bio u pretičku b) nepotpuno izgaranje Nepotpunim izgaranjem nastaju produkti (realan proces) koji su i dalje sposobni izgarati (djelomično izgorjeli ugljikovodici) i kao takvi u ispušnim plinovima iz motora vozila odlaze u okolinu. Zbog toga se gubi dio energije (smanjen stupanj korisnog djelovanja motora). Osim toga u produktima nepotpunog izgaranja pojavljuju se sastojci koji su štetni za ljudsko zdravlje i okoliš Promet i ekologija 3
4 Za motorna goriva koja se danas upotrebljavaju za pogon motora s unutrašnjim izgaranjem ( MUI ) određenajepotrebnakoličina zraka od 14,7 kg za potpuno izgaranje 1 kg goriva, a to se može vidjeti iz grafikona 1 sa masenim udjelima pojedinih plinova. dušik N2; 11,1 kg kisik O2; 3,4 kg 14,7 kg zraka ostali plinovi 0,2 kg ugljik CO 2 ; 0,86 kg vodik H 2 ; 0,14 kg + 1 kg goriva = dušik N2; 11,1 kg ostali plinovi; 0,2 kg ugljik (IV) oksid CO 2 ; 3,1 kg 15,7 kg ispušnih plinova Grafikon 1.: Masena bilanca potpunog izgaranja voden para H 2 O ; 1,3 kg Promet i ekologija 4
5 Omjer goriva i zraka može se prikazati pomoću faktora zraka λ, pa je λ = Z / Z 0 Gdje je: Z (kg z /kg g ) stvarna količina zraka potrebna za izgaranje 1 kg goriva Z 0 (kg z /kg g ) stehiometrijska količina zraka potrebna za izgaranje 1 kg goriva, (količina zraka potrebna da u potpunosti izgori 1 kg goriva, ali tako da u produktima izgaranja nema slobodnog kisika) λ<1 bogata smjesa (višak goriva, a manjak zraka) λ =1 stehiometrijska smjesa (Z = Z 0 ) λ>1 - siromašna smjesa, (manjak goriva, a višak zraka) Promet i ekologija 5
6 Nepotpuno izgaranje najčešće uzrokovano pomanjkanjem kisika (bogata smjesa) ili lošom izmješanosti gorive smjese Osim kroz ispušni sustav cestovna motorna vozila zagađuju zrak i isparavanjem goriva i maziva iz spremnika goriva (HC do 5%), kučišta motora (HC 20 25%) i iz rasplinjača (ako ga vozilo posjeduje, HC do 15%). Zbog svoje velike brojčane zastupljenosti, nepovoljnih uvjeta rada motora, slabe cirkulacije zraka, nedovoljne kvalitete goriva, cestovna motorna vozila su primarni onečiščivaći zraka u gusto naseljenim mjestima Promet i ekologija 6
7 Sastav ispušnih plinova iz Ottovih (benzinskih) motora Neškodljivi sastojci: dušik (N 2 ) vodena para (H 2 O) kisik (O 2 ) ugljikov dioksid (CO 2 ) Škodljivi sastojci: ugljikov monoksid (CO) ugljikovodici (CH) dušikovi oksidi (No x ) sumporov dioksid (SO 2 ) iz nečistoća u gorivu, krute čestice (PM) Spojevi s olovom (Pb) dušik (IV) oksid (NO 2 ) amonijak (NH3) Promet i ekologija 7
8 Pomorski promet 2,5% Zračni promet 11,7% Željezički promet 2,9% Cestovni promet Pomorski promet Zračni promet Cestovni promet 82,9% Željezički promet Slika 1.: Učešće pojedinih vidova prometu u emisiji CO Promet i ekologija 8
9 Do godine treble bi emisije CO 2 biti 120 g po prijeđenom km tako niska vrijednost može se ostvariti tek s potrošnjom od 4,5 l / 100 km za dizel motore, odnosno 5,0 l / 100 km za benzinske motore Najvažniji staklenički plinovi su: vodena para (H2O), ugljik (IV) oksid (CO2), metan (CH4), dušik (II) oksid (N2O), klorofluorovodici, ozon (O3) u troposferi, sumpor (IV) oksid (SO2) itd. 60% efekta staklenika posljedica H2O, 25 % efekta staklenika posljedica CO2 i 5% metana (CH4). U god. doprinos sektora promet ukupnoj emisiji stakleničkih plinova iznosio je u RH 20,3 % Promet i ekologija 9
10 u tisućama tona Slika 4.: Razvoj i prognoza emisija NO X za Njemačku do god. u tisućama tona Slika 5.: Razvoj i prognoza emisija čestica za Njemačku do god Promet i ekologija 10
11 Ugljik (II) oksid (CO) vrlo otrovan, ima veliku sklonost vezivanja za hemoglobin (oko 250 puta više od kisika), a najveći izvor emisije CO je cestovni promet s oko 45% udjela u ukupnoj emisiji Ugljikovodici (HC) policiklički aromatski ugljikovodici (PAU) štetni jer djeluju kancerogeno, dovode do sekundarne kemijske reakcije i stvaranja smoga Dušični oksidi (NOx) indirektan staklenički plin koji u kombinaciji s drugim štetnim tvarima u gradskoj atmosferi (čestice i SO2) uzrokuje sumaglicu i smog, kisele kiše, ugrožavajući tlo, vodni i životinjski ekosistem, građevine i ljudsko zdravlje, najveći izvor cestovni promet sa oko 35% udjela u ukupnoj emisiji Čestice i čađa Čađa je tvrdi filtrat ispušnih plinova a sastoji se od čestica ugljika; ovisi o sastavu goriva, a goriva s visokim odnosom ugljika i vodika su sklonija stvaranju čađe; Čestice, naročito one promjera 10 mm i manje u kombinaciji sa SO2 i NOx uzrokuju gradski smog, naročito u zimskim mjesecima, one su problem ispušnih plinova diesel motora Promet i ekologija 11
12 UČINCI ZAGAĐENOG ZRAKA na čovjeka (bolesti respiratornih organa: rak, astma, bronhitis,) na biljke akutni i kronični na materijale (korozija, oštećenja pročelja zgrada) Promet i ekologija 12
13 Neke štetne tvari zraka i njihovo djelovanje na ljudsko zdravlje
14 UKUPNO ZAGAĐENJE ZRAKA SMETNJE PRI FOTOSINTEZI ISPUŠNI PLIN OŠTEĆENJE DEBLA SOL SOL TKIDANJE KORJENA UŠENJEM STALACIJA ISUŠIVANJE TLA ZBIJANJE TLA OŠTEĆENJA KORJENOVOG SUSTAVA Slika 3.: Razni uzroci oštećenja drveća uz prometnice / 12 / Promet i ekologija 14
15 Zaštita ekosustava razlikuje dva pristupa: 1. Faza sagledavaju se utjecaji prometa na okoliš (buka, štetne tvari itd.) i parcijalnim mjerama nastoje ublažiti 2. Faza sagledavaju se i ostali utjecaji prometa na okoliš i oblikuje cjelovita politika zaštite prirode ( new environmental ) Značenje homologacije cestovnih vozila za čistoću okoliša Ukupno dosada donijeto 109 ECE pravilnika koji se odnose na područja: Promet i ekologija 15
16 Aktivne sigurnosti Pasivne sigurnosti Zaštite okoliša (emisije ispušnih plinova, buka, radijske smetnje i dr.) Općih uvjeta sigurnosti (mjerenje snage motora i potrošnje goriva i dr.) POPISI ECE PRAVILNIKA KOJI SE ODNOSE NA EMISIJU ISPUŠNIH PLINOVA: ECE R 15 odnosi se na kontrolu emisije ispuha iz ottovih i dieselovih motora osobnih ( putničkih ) i lakih teretnih vozila ECE R 83 zamijenio ECE R 15 uveo složeniju i strožu kontrolu ECE R 24 dimnost ispušnih plinova dieselovih motora ECE R 49 odnosi se na kontrolu emisije ispuha srednjih i velikih dieselovih motora za motorna vozila ECE R 84 emisija ispušnih plinova motornih vozila s obzirom na mjerenje potrošnje goriva ECE R 101 emisija CO 2 i potrošnja goriva Promet i ekologija 16
17 ECE pravilnici = mijenjaju se amandmanima (dopunama) EEC smjernice = ne mijenjaju se amandmanima, već donošenjem novih smjernica Provjera homologacijske podobnosti vozila = zadatak da spriječi uvoz sigurnosno i ekološki nepodobnih vozila, koja u trenutku uvoza i prve registracije ne odgovaraju homologacijskim propisima u zemlji uvoza. U RH započela godine Promet i ekologija 17
18 Da neko vozilo koje se prvi put pojavljuje na tržištu (ili motor koji se prvi put ugrađuje u postojeće vozilo) dobio uporabnu dozvolu koja omogućuje prodaju na području Europske zajednice, s ekološkog motrišta mora zadovoljiti ove testove: Test I Provjera potrošnje i emisije štetnih plinova nakon hladnog starta Test II Provjera emisije ugljičnog monoksida ( CO ) pri praznom hodu motora Test III Provjera emisije štetnih plinova iz kućišta motora Test IV Provjera isparivanja para ugljikovodika Test V Provjera trajnosti dijelova uređaja za smanjenje emisije štetnih tvari Promet i ekologija 18
19 Za različite skupine vozila ne primjenjuju se svi navedeni testovi već njihov izbor ovisi o tipu motora i namjeni vozila. Izbor pojedinih testova vidi se u narednoj tablici. Prije svakog testa (ispitivanja) pokusno vozilo mora prijeći najmanje 3000 km i mora biti potpuno ispravno. Zbog povećanja jednostavnosti i usklađivanja zakona na području Europske unije, smjernica 70/220/Eec propisuje oblik zapisnika o svakom obavljenom ispitivanju. Redni broj Test Ottovi motori Vozila za prijevoz do 6 putnika i mase m<2,5 t Vozila za prijevoz više od 6 putnika i mase m>2,5 t Dieselski motori Vozila za prijevoz do 6 putnika i mase m<2,5 t Vozila za prijevoz više od 6 putnika i mase m>2,5 t 1. Prosječna emisija štetnih plinova u ispušnim plinovima Emisija CO pri praznom hodu + 3. Emisija plinova iz kućišta motora Emisija od isparavanja + 5. Trajnosti dijelova uređaja za smanjenje emisije štetnih tvari Promet i ekologija 19
20 Cestovna motorna vozila učestvuju sa skoro 60 % u ukupnoj emisiji CO, u emisiji NOx sa oko 40%, a u emisiji VOC sa oko 20%. Učešće u emisiji SO2 tek 3% zbog bolje kvalitete goriva. NAPOMENA: VOC hlapivi organski spojevi može ih se smatrati ugljikovodicima. Dijelimo ih: metan (HC4) nemetanske hlapljive organske spojeve (NMVOC) Promet i ekologija 20
21 30 % Redovita kontrola i podešavanje vozila 15 % Čišća, bolja goriva 2 % Smanjenje graničnih vrijednosti emisije za nova vozila Tablica 4.: Potencijal smanjenja emisija štetnih komponenata u SAD u / 21 / Quelle US - EPA TRENDOVI SMANJENJA EMISIJA : preventivne mjere (eko test i sl.) smanjenje potrošnje fosilnih goriva poboljšanjem kvalitete goriva primjenenom alternativnih goriva tehnološkim usavršavanjem motora ekonomskim poticajima Promet i ekologija 21
22 Dva osnovna načina redukcije : (Hrvatska) podešavanje rada postojećih motora i njihovo dovođenje u ispravno stanje Zamjena voznog parka s novijim ekološki prihvatljivijim voznim parkom s REG KAT ZAKONSKI PROPISI: Prve propise donio je kralj Eduard I godine, a ispitivanja su počela u ranim pedesetim godinama u SAD Stalno smanjenje štetnih tvari imperativ automobilske industrije Najstrože zakone propisuje Kalifornija Najniže granice dopuštenih emisija u Kaliforniji propisuje SULEV norma koja je stupila na snagu godine Promet i ekologija 22
23 U Kaliforniji postoji dugoročni program uvođenja novih vozila u promet koja će s vremenom imati sve niže emisije. Programski su ta vozila nazvana specifičnim nazivima: TLEV ( Transitional Low Emission Vehicles ) : Dopuštene granice emisije po ovoj kategoriji uvedene su Cilj je bio smanjiti emisiju komponenata koje doprinose stvaranju ozona ( razni ugljikovodici ). LEV ( Low Emission Vehicles ) : Treba zamijeniti TLEV od Propisane granice emisije tako su niske da zahtijevaju dodatne mjere tehničkih rješenja za smanjenje sirove emisije, povećanje učinkovitosti katalizatora i uvođenje alternativnih goriva. ULEV ( Ultra Low Emission Vehicles ) : Predviđalo se postupno uvođenje od godine. Previđene granice dopuštene emisije još su niže od granica LEV a i moguće ih je dostići samo s novom tehnikom smanjivanja emisije i alternativnim gorivima. ZEV ( Zero Emission Vehicles ) : Predviđalo se da bi se od počelo s 2% udjela novih vozila, čija bi emisija organskih plinova bez metana bila NMOG = 0,00 g/km ( NMOG = Non Methan Organic Gas ). Tehnički je vrlo teško postići te vrijednosti, aosobito dopuštenu emisiju neizgorjelih ugljikovodika. Približno zadovoljavjuću razinu emisije moguće je postići jedino ukupnim mjerama na motoru i izvan njega Promet i ekologija 23
24 Tablica 5.: LEV propisi u državi Kaliforniji /12/ Promet i ekologija 24
25 Tablica 6.: Kalifornijski standardi za ispušne plinove lakih vozila za god. FTP 75, g/mi /14/ Promet i ekologija 25
26 Tablica 5.: Standardi Eu za ispušne plinove osobnih vozila g/km Promet i ekologija 26
EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZVOR EMISIJE
Prof. dr. sc. Z. Prelec INŽENJERSTO ZAŠTITE OKOLIŠA Poglavlje: (Emisija u atmosferu) List: 1 EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZOR EMISIJE Izgaranje - najveći uzrok
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραNOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
Διαβάστε περισσότεραNovi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότερα21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Διαβάστε περισσότεραKaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Διαβάστε περισσότεραZAŠTITA OKOLIŠA U PRERADBI NAFTE
SVEUČILIŠTE U ZAGREBU Fakultet kemijskog inženjerstva i tehnologije Zavod za tehnologiju nafte i petrokemiju Zagreb, Savska cesta 16 / II ZAŠTITA OKOLIŠA U PRERADBI NAFTE Prof. Katica Sertić - Bionda ONEČIŠĆENJA
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραZašto hibridna vozila?
Zašto hibridna vozila? Ivan Mahalec, 2006.03. 1. Nafta CO2 Temperatura Zemlje Slika 1. Lijevo: Svjetska proizvodnja nafte i plina te prognoze o trajanju zaliha izračunate na osnovi potrošnje u 2005. godini
Διαβάστε περισσότεραUtjecaj izgaranja biomase na okoliš
7. ZAGREBAČKI ENERGETSKI TJEDAN 2016 Utjecaj izgaranja biomase na okoliš Ivan Horvat, mag. ing. mech. prof. dr. sc. Damir Dović, dipl. ing. stroj. Sadržaj Uvod Karakteristike biomase Uporaba Prednosti
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότεραNumerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραPOTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότερα10. BENZINSKI MOTOR (2)
11.2012. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak 10. BENZINSKI MOTOR (2) 1 Sustav ubrizgavanja goriva Danas Otto motori za cestovna vozila uglavnom stvaraju gorivu smjesu pomoću sustava za ubrizgavanje
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότεραDISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Διαβάστε περισσότεραGrafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραPošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραS t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραVELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD
10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότεραStrukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότεραENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović
Fakultet keijskog inženjerstva i tehnologije Zavod za terodinaiku, strojarstvo i energetiku ENERGETIKA Studij: Keijsko inženjerstvo (V seestar) prof. dr. sc. Igor Sutlović Goriva se dijele na: kruta, tekuća
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραCESTOVNI 1.) MJERE ZA SMANJENJE ŠTETNIH TVARI OTTO MOTORA
CESTOVNI 1.) MJERE ZA SMANJENJE ŠTETNIH TVARI OTTO MOTORA Čimbenici koji utječu na stvaranje emisije: - pri hladnom startu motor ima prebogatu smjesu (velik dio neizgorljivihtvari) - loše održavanje i
Διαβάστε περισσότεραVJEŽBA 9: ODREĐIVANJE SASTAVA DIMNIH PLINOVA
VJEŽBA 9: ODREĐIVANJE SASTAVA DIMNIH PLINOVA 1. OSNOVNI POJMOVI Osnovni pojmovi koji se vežu uz zaštitu zraka, odnosno atmosfere navedeni su u nastavku i najbolje ih je prikazati kao na sljedećoj slici.
Διαβάστε περισσότεραPARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραCauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Διαβάστε περισσότεραPOVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Διαβάστε περισσότεραSISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραT E H N I Č K I N A L A Z I M I Š LJ E NJ E
Mr.sc. Krunoslav ORMUŽ, dipl. inž. str. Stalni sudski vještak za strojarstvo, promet i analizu cestovnih prometnih nezgoda Županijskog suda u Zagrebu Poljana Josipa Brunšmida 2, Zagreb AMITTO d.o.o. U
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότεραPREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
Διαβάστε περισσότεραVodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju
Vodik Najzastupljeniji element u svemiru (maseni udio iznosi 90 %) i sastavni dio Zvijezda. Na Zemlji je po masenom udjelu deseti element po zastupljenosti. Zemljina gravitacija premalena je da zadrži
Διαβάστε περισσότεραDijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Διαβάστε περισσότεραPeriodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότεραπ π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Διαβάστε περισσότεραMasa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότεραBosna i Hercegovina Federacija Bosne i Hercegovine TUZLANSKI KANTON Ministarstvo prostornog uređenja i zaštite okolice UPUTSTVO
Bosna i Hercegovina Federacija Bosne i Hercegovine TUZLANSKI KANTON Ministarstvo prostornog uređenja i zaštite okolice UPUTSTVO O NAČINU OBRADE I INFORMISANJA JAVNOSTI O PODACIMA IZ SISTEMA ZA PRAĆENJE
Διαβάστε περισσότεραXI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Διαβάστε περισσότεραTermodinamika i energetika. Energetika
Energetika Problematika kojom se energetika bavi obuhvaća: pretvorbu izvornih oblika energije u električnu i toplinsku energiju projektiranje energetskih postrojenja razvoj, konstrukciju i održavanje energetske
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότεραAkvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραSistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
Διαβάστε περισσότεραPRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Διαβάστε περισσότερα, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Διαβάστε περισσότεραVeleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Διαβάστε περισσότεραIZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Διαβάστε περισσότεραMoguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραPRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Διαβάστε περισσότεραZavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Διαβάστε περισσότεραMašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότεραVježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom
Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραTOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE
(Generatori are) List: TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE Generator are je energetski uređaj u kojemu se u sklou Clausius-Rankineova kružnog rocesa redaje tolina
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότεραEKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE
**** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga
Διαβάστε περισσότεραKONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Διαβάστε περισσότεραVJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA
VJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA 14. VRSTE GORIVA I IZGARANJE 14.1 Definicija i podjela goriva Gorivo je materija koja ima mogućnost oslobađanja energije kao posljedice promjene kemijske
Διαβάστε περισσότεραGLAZBENA UMJETNOST. Rezultati državne mature 2010.
GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότεραI.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Διαβάστε περισσότεραIzbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
Διαβάστε περισσότεραMATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
Διαβάστε περισσότεραPolarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Διαβάστε περισσότερα