DETERMINAREA CONSTANTEI PLANCK DIN STUDIUL EFECTULUI FOTOELECTRIC EXTERN

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "DETERMINAREA CONSTANTEI PLANCK DIN STUDIUL EFECTULUI FOTOELECTRIC EXTERN"

Transcript

1 UNIVERSITATEA "POLITEHNICA" BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ ATOMICĂ ŞI FIZICĂ NUCLEARĂ BN-031A DETERMINAREA CONSTANTEI PLANCK DIN STUDIUL EFECTULUI FOTOELECTRIC EXTERN

2 DETERMINAREA CONSTANTEI PLANCK DIN STUDIUL EFECTULUI FOTOELECTRIC EXTERN 1. Sopul lurarii In aasta lurar s a un studiu al tului otoltri xtrn, dtrminândus, din datl xprimntal obtinut, valoara onstanti lui Plank. 2. Toria lurarii Etul oltri xtrn onsta in soatra (xtragra) d ltroni dintr-un orp (mtali sau smiondutor), prin atiuna unui lux d lumina trimis p supraata lui. Eltronii misi s nums otoltroni. Etul otoltri st un nomn oart usor d pus in vidnta. Est suiint sa iluminam u o lampa d mrur (sursa d radiatii ultraviolt) o plaa d zin lgata la un ltrosop inarat. Daa ltrosopul st inarat pozitiv nu s intâmpla nimi, dar daa st inarat ngativ, l s dsara lnt; iradira u lumina prmit sarinilor ngativ in xs sa parasasa plaa mtalia (Halbwas, 1888). Plând d la aasta obsrvati, tul otoltri poat i privit a nomnul d misi d ltroni d atr o supraata mtalia, datorita iluminarii sal u un asiol luminos. In ralitat, insa, s intâlns patru tipuri d t otoltri: a) Etul otoltri xtrn, in ar absorbtia luminii ondu la misia d ltroni in aara mtalului iradiat, datorita intratii dintr radiatiil luminoas si ltronii libri din rtaua ristalina a mtalului. b) Etul otoltri al radiatiilor X, ar onsta in soatra in aara mtalului a ltronilor din paturil intrioar al atomului, a urmar a atiunii asiolului d radiatii X. ) Etul otoltri intrn, in ar absorbtia luminii du numai la marira numarului ltronilor d onduti din intriorul mtalului iradiat, ara a i sa parasasa mtalul. Ast nomn du la o misorar rapida a rzistnti ltri a matrialului iradiat. d) Etul otogalvani, ar onsta in nomnul d apariti a uni tnsiuni ltromotoar la ontatul dintr smiondutor si un mtal, sau dintr doi smiondutori, daa asupra rgiunii d ontat s trimit un asiul luminos. a) Etul otoltri xtrn Folosindu-s dirit surs d lumina monoromatia, având dirit rvnt, s poat pun in vidnta aptul a tul apar doar pntru undl ltromagnti u lungima d unda suiint d mia, rsptiv u rvnta suiint d mar. Un studiu mai sistmati prmit sa s dtrmin o rvnta d prag ν p, sub ar nu mai apar tul otoltri. Aasta rvnta d prag st aratristia pntru matrialul din ar st ontionata plaa. Pntru un studiu mai aproundat al astui t, plaa mtalia trbui aszata in vid, ast luru prmitând ulgra sarinilor ngativ librat. Tniil sptrograii d masa astl apliat au prmis masurara sarinii ltri spii a partiullor librat prin t otoltri, a a dus la idntiiara astora u ltronii. 1

3 S-a onstruit o lula otoltria inizând intr-un tub vidat o plaa mtalia snsibila la lumina, numita otoatod, prum si un ltrod iliorm, anodul, dstinat oltarii otoltronilor. Expliara tului p baza torii ondulatorii a luminii intâmpina diiultati d ntrut. Einstin a aratat a toat ast diiultati dispar daa onsidram lumina drpt un lux d partiul, numit otoni, d nrgi ν ( st onstanta lui Plank, iar ν rvnta luminii), di daa n vom situa p pozitii pur orpusular. Din ast punt d vdr, manismul tului otoltri st urmatorul: Un oton absorbit daza nrgia sa unui ltron. Daa aasta nrgi st suiinta pntru a libra ltronul d ortl ar il laga, l poat parasi supraata matrialului. Doar probabilitata a un ltron sa absoarba simultan doi otoni st oart mia, insamna a iar ltron smuls isi dobândst nrgia d la un singur oton. Enrgia ν a unui oton, ar produ tul otoltri, st primita intgral d ltron, astl: o part W ' pntru a soat ltronul din atom, o alta part W (numita lurul d xtrati ) pntru a dsprind ltronul d p supraata orpului, iar rstul pntru imprimara uni nrgii inti E ltronul xtras. Exprsia onsrvarii nrgii va ava di urmatoara orma: ν= W ' + W + E. (1) In mtal xista un numar mar d ltroni ar pot i onsidrati aproximativ libri (nlgati d atomi). D aa W ' poat i nglijat: W ' = 0. (2) P masura sad nrgia ν a otonilor inidnti, va sada si vitza ltronilor misi. Pntru o anumita rvnta (numita rvnta d prag), rsptiv pntru o lungim d unda d prag λ p = (und st vitza luminii in vid), vitza ltronilor misi s ν p anulaza, iar pntru ν <ν p, ltronii nu mai pot parasi orpul. Pntru rvnta d prag avm rlatia: ν p = = W. (3) λ p Dtrminara nrgii inti E a ltronilor misi s poat a prin mtoda âmpului intârzitor, ar onsta in a obliga ltronii misi sa travrsz un âmp ltri al arui sns st dirijat astl inât sa ii rânz. Pntru o anumita valoar U a dirnti d potntial orspunzatoar âmpului intârzitor, intnsitata urntului ltri ormat din ltronii misi prin t otoltri, s anulaza. Di: mv 2 U = E = (4) 2 19 und rprzinta sarina ltronului ( = 1,6 C). Introduând rlatiil (4), (3) si (2) in (1), obtinm: ν= ν p + U sau U = p ν ν. (5) Euatia (5) st uatia uni drpt intr-o rprzntar U = ( ν), ordonata la origin iind rvnta d prag ν p iar panta drpti st. 2

4 Dinind potntialul d xtrati V p prin rlatia: Vp = W = ν p (6) s poat dtrmina aasta marim aratristia iarui mtal, rzultatl iind przntat m ai jos in Tablul 1: Tablul 1 Mtalul Cs Pb K Na Ca Mg Zn Ni F Potntialul d xtrati 2,1 2,2 2,4 2,5 2,3 2,4 3,4 5,0 4,8 V p [ V] Trbui auta obsrvatia a dtrminara tnsiunii U s t in pratia dranjata d un t otoltri parazit d p anodul oltor. In urma unor masuratori d mar int s-a ajuns la onluzia a anodul oltor trbui sa i onstituit dintr-un alt matrial dât atodul, asa inât rvnta d prag a lui sa i u mult mai mar a a otoatodului. In ast l, otolula luraza normal u radiatii luminoas a aror rvnta st uprinsa intr l doua rvnt d prag. 3. Dsrira dispozitivului xprimntal Dispozitivul xprimntal s rra xlusiv la studiul tului otoltri xtrn ralizat u ajutorul uni lul otoltri d uz urnt, iluminara aându-s u lumina din domniul vizibil si ultraviolt, uprinzând urmatoarl: - lampa d darar u vapori d mrur B, alimntata la o sursa d urnt altrnativ d 220V, raza luxul d lumina; - iltrul F ar a a lumina ad p lula otoltria C sa aiba o anumita rvnta (vzi Tablul 2); - lula otoltria C p atodul aria st dpus matrialul otosnsibil studiat; - potntiomtrul P ralizaza âmpul intârzitor variabil intr atodul luli otoltri si anodul sau; - un galvanomtru G u spot luminos, pntru masurara intnsitatii otourntului; - un voltmtru V pntru masurara tnsiunii intârzitoar. Fig. 1 3

5 FILTRUL [ Hz] o ν A A B C D E Tablul 2 λ U [ V] In adrul lurarii przntat s va trasa p baza d masuratori drapta U = ( ν ) si s va dtrmina onstanta lui Plank,, din panta drpti rsptiv. 4. Modul d luru Pntru iar iltru s masoara variatia intnsitatii otourntului indiat d galvanomtrul G in unti d tnsiuna invrsa U ; valoara tnsiunii st modiiata u potntiomtrul P si masurata u voltmtrul V. Curntul rsptiv tind spr zro pntru valoara U a tnsiunii intârzitoar. 5. Indiatii pntru prlurara datlor xprimntal 5.1. S trasaza p ârti milim tria, pntru iar iltru, grail I = ( U ) Extrapolând urbl ( U ) I = s gasst tnsiuna intârzitoar pntru intnsitata urntului s anulaza, la iar din l ini iltr. U ar 5.3. S ompltaza tablul 2 u datl privind tnsiuna d rânar S trasaza graiul U ( ) = ν, ar onorm rlatii (5), trbui sa i o drapta S dtrmina panta drpti, ar onorm rlatii (5), trbui sa i gala u raportul m = alulându-s apoi onstanta lui Plank = m ( sarina ltronului 19 = 1,6 C ) Prin prlungira drpti pâna la intrstia u axa absislor, s dtrm ina rvnta d prag ν p si s alulaza λ p =. ν p 6. Intrbari 1. In onsta tul otoltri xtrn? 2. Cum poat i olosit tul otoltri pntru dtrminara onstanti lui Plank? 3. C st pragul tul otoltri? 4. D st nsara trasara drpti ν= ( U )? 4

Teorema Rezidurilor şi Bucuria Integralelor Reale

Teorema Rezidurilor şi Bucuria Integralelor Reale Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului

Διαβάστε περισσότερα

Eşantionarea semnalelor

Eşantionarea semnalelor Eşantionara smnallor Eşantionara = prlvara d prob dintr-un smnal la momnt d timp dcalat intr l cu cu frcvnta d şantionar, f =/. xˆ t x k t k k = ( = δ ( Smnalul şantionat idal:. Spctrul Xˆ = X ( k k =

Διαβάστε περισσότερα

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII 2.CARACTERIZAREA GEERALĂ A RADIOACTIVITǍŢII Radioactivitat -fnomnul d misi d radiaţii d cătr unl substanţ numit substanţ radioactiv. Procsul constă în misia a tri tipuri d radiaţii: α, β şi γ, priml două

Διαβάστε περισσότερα

6.4.Convecţia. unde T s -temperatura termodinamică a suprafeţei corpului solid, -temperatura termodinamică medie a fluidului, 6.

6.4.Convecţia. unde T s -temperatura termodinamică a suprafeţei corpului solid, -temperatura termodinamică medie a fluidului, 6. Trmothnică 77 6..Convcţia Convcţia căldurii st fnomnul lmntar d transfr trmic car s manifstă în mdii fluid şi la supafaţa d sparaţi a fazlor. Est caractristică mdiilor în mişcar, căldura fiind transportată

Διαβάστε περισσότερα

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII 2.CRCTERIZRE GEERLĂ RDIOCTIVITǍŢII Radioactivitat -fnomnul d misi d radiaţii d cătr unl substanţ numit substanţ radioactiv. Procsul constă în misia a tri tipuri d radiaţii: α, β şi γ, priml două fiind

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

În spectrul de rotaţie al moleculei HCl s-au identificat linii spectrale consecutive cu următoarele lungimi de undă: λ

În spectrul de rotaţie al moleculei HCl s-au identificat linii spectrale consecutive cu următoarele lungimi de undă: λ PROBLMA 5 În spctrul d rotaţi al molculi HCl s-au idntificat linii spctral conscutiv cu următoarl lungimi d undă: λ 6.4 m; λ 69. m ; λ 8. 4 m ; λ 96. 4 ; λ. 6 m ; 4 5 a Prsupunând molcula un rotator rigid

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

CURS 10 ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE

CURS 10 ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE CURS ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE Obictiv: însuşira concptului d cont d profit şi pirdr; însuşira concptului d rntabilitat; dtrminara soldurilor intrmdiar d gstiun; stabilira

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Lucrarea de laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASURARE

Lucrarea de laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASURARE Lucrara d laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASRARE 1. SCOPL LCRARII Scopul lucrarii îl rprzinta: cunoastra principallor mtod d vrificar mtrologica a unor mijloac d masurar, analogic

Διαβάστε περισσότερα

L4. Măsurarea rezistenţelor prin metoda de punte

L4. Măsurarea rezistenţelor prin metoda de punte L4. Măsurara rzistnţlor prin mtoda d punt. Obictul lucrării În prima part a lucrării s utilizază punta simplă (Whatston) ca mtodă d prcizi ridicată, pntru măsurara rzistnţlor cuprins într 0-0 0 Ω, ralizându-s

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

METODE DE DIAGNOSTICARE A PLASMEI

METODE DE DIAGNOSTICARE A PLASMEI S.D.Anghl Fizica lasmi şi alicaţii Caitolul VIII METODE DE DIAGNOSTICARE A PLASMEI Duă cum ris chiar din dfiniţia stării d lasmă, a st un mdiu foart comlx, cu mult grad d librtat ntru comonntl i şi cu

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Lucian Maticiuc. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 9.

Lucian Maticiuc. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 9. Capitolul V: Şiruri şi srii d fucţii. Lct. dr. Lucia Maticiuc Facultata d Hidrothică, Godzi şi Igiria Mdiului Matmatici Suprioar, Smstrul I, Lctor dr. Lucia MATICIUC SEMINAR 9. Cap. V Şiruri şi srii d

Διαβάστε περισσότερα

Fizica Plasmei şi Aplicaţii Probleme

Fizica Plasmei şi Aplicaţii Probleme Fizica Plasmi şi Aplicaţii Problm. Exprimaţi valoara prsiunii atmosfric în difrit unităţi d măsură (N/m, Torr, mm Hg, atm) şi stabiliţi rlaţiil dintr l?. Calculaţi dnsitata unui gaz idal (în m - ) în următoarl

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/

Διαβάστε περισσότερα

Capitolul I ECUAŢII DIFERENŢIALE. 1 Matematici speciale. Probleme. 1. Să de integreze ecuaţia diferenţială de ordinul întâi liniară

Capitolul I ECUAŢII DIFERENŢIALE. 1 Matematici speciale. Probleme. 1. Să de integreze ecuaţia diferenţială de ordinul întâi liniară Mamaici spcial Problm c solţia apioll I EUAŢII DIFERENŢIALE Să d ingrz caţia difrnţială d ordinl înâi liniară g cos d Solţi: Ecaţia omognă aaşaă s: - g sa g d ln - ln cos ln sa Pnr rzolvara caţii cos nomogn

Διαβάστε περισσότερα

TERMOSTAT ELECTRONIC DIODA SENZOR

TERMOSTAT ELECTRONIC DIODA SENZOR EPSCOM Rady Prototyping Colccţ ţia Hom Automation EP 0261... Cuprin Przntar Proict Fişa d Aamblar 1. Funcţionar 2 2. Schma 2 3. PCB 3 4. Lita d componnt 3 5. Tutorial dioda miconductoar 4 5 Rgimul trmic

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Olimpiada de Fizică Etapa naţională- ARAD 2011 TEORIE Barem. Subiect Parţial Punctaj 1. Barem subiect 1 10 A. Condiţiile de echilibru pentru pârghii:

Olimpiada de Fizică Etapa naţională- ARAD 2011 TEORIE Barem. Subiect Parţial Punctaj 1. Barem subiect 1 10 A. Condiţiile de echilibru pentru pârghii: Olipiaa e Fiziă Etapa naţională- ARAD Pagina in 6 Subiet Parţial Puntaj. subiet A. Coniţiile e ehilibru pentru pârghii: =( + 4), 4e=f, O ( + + 4)a=b a b e f + 4 = f 4= e 4,5 4 4 4 =, =8g f + e =4g a =

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Difractia de electroni

Difractia de electroni Difractia de electroni 1 Principiul lucrari Verificarea experimentala a difractiei electronilor rapizi pe straturi de grafit policristalin: observarea inelelor de interferenta ce apar pe ecranul fluorescent.

Διαβάστε περισσότερα

Complemente teoretice. Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; DefiniŃii ale limitei DefiniŃia 1.1.

Complemente teoretice. Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; DefiniŃii ale limitei DefiniŃia 1.1. Analiza matmatică clasa axi-a, problm rzolvat Complmnt tortic Limit d funcńii NotaŃii: f :D R, D R, α - punct d acumular a lui D; DfiniŃii al limiti DfiniŃia lim f = l, l R, dacă pntru oric vcinătat V

Διαβάστε περισσότερα

I 1 I 2 V I [Z] V 1 V 2. Z11 impedanta de intrare cu iesirea in gol 2 I 1 I 21 I

I 1 I 2 V I [Z] V 1 V 2. Z11 impedanta de intrare cu iesirea in gol 2 I 1 I 21 I urs 5 4/5 ar ca scop sparara unui circuit complx in blocuri individual acsta s analiaa sparat (dcuplat d rstul circuitului) si s caractriaa doar prin intrmdiul porturilor (cuti nagra) analia la nivl

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Modele matematice pentru îmbunătăţirea calităţii sistemelor electrice

Modele matematice pentru îmbunătăţirea calităţii sistemelor electrice Modl matmatic pntru îmbunătăţira calităţii sistmlor lctric Lct.univ.dr.ing. Ghorgh RAŢIU. Introducr Ţinând sama d tndinţl modrn al proictării sistmlor lctric (chipamntlor lctric) d înlocuir a uni proictări

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA

Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA Control confort Variatoare rotative electronice Variator rotativ / cap scar 40-400 W/VA Variatoare rotative 60-400W/VA MGU3.511.18 MGU3.559.18 Culoare 2 module 1 modul alb MGU3.511.18 MGU3.559.18 fi ldeş

Διαβάστε περισσότερα

FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE

FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE FIZICĂ Bazele fizice ale mecanicii cuantice ş.l. d. Maius COSTACHE 1 BAZELE FIZICII CUANTICE Mecanica cuantică (Fizica cuantică) studiază legile de mişcae ale micoaticulelo (e -, +,...) şi ale sistemelo

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

STUDIUL LEGILOR EFECTULUI FOTOELECTRIC. DETERMINAREA CONSTANTEI LUI PLANCK

STUDIUL LEGILOR EFECTULUI FOTOELECTRIC. DETERMINAREA CONSTANTEI LUI PLANCK Lucrarea 17. STUDIUL LEGILOR EFECTULUI FOTOELECTRIC. DETERMINAREA CONSTANTEI LUI PLANCK 1. Scopul lucrårii În aceastå lucrare se studiazå efectul fotoelectric extern cu ajutorul unei celule fotoelectrice

Διαβάστε περισσότερα

STUDIUL EFECTULUI FOTOELECTRIC ŞI DETERMINAREA CONSTANTEI LUI PLANCK

STUDIUL EFECTULUI FOTOELECTRIC ŞI DETERMINAREA CONSTANTEI LUI PLANCK STUDIUL EFECTULUI FOTOELECTRIC ŞI DETERMINAREA CONSTANTEI LUI PLANCK Obiectul lucrării În această lucrare se studiază unul din fenomenele fizice pentru explicarea căruia trebuie să admitem că lumina este

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Olimpiada de Fizică Etapa pe judeţ 19 februarie 2012 Barem Pagina 1 din 8

Olimpiada de Fizică Etapa pe judeţ 19 februarie 2012 Barem Pagina 1 din 8 Olimiada d Fiziă 9 fbruari Pagina din 8 Subit Parţial Puntaj subit a) E( t) E sin t E sin t ost E sin t E sin t E sin t Prin urmar, radiaţia inidntă st omusă din tri radiaţii monoromati, u ulsaţiil ω,

Διαβάστε περισσότερα

Beton de egalizare. Beton de egalizare. a) b) <1/3

Beton de egalizare. Beton de egalizare. a) b) <1/3 II.6.. Fundaţii ti taă de eton armat Fundaţiie ti taă de eton armat entru stâi şi ereţi de eton armat ot fi de formă rismatiă (Fig. II.4-a) sau formă de oeis (Fig. II.4-).

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Sistem analogic. Sisteme

Sistem analogic. Sisteme Sistm Smnall pot fi supus prlucrarii in scopul obtinrii unor alt smnal, sau al obtinrii unor paramtri ai acstora. Prlucraril s aplica unui smnal intrar x(t) si s obtin un alt smnal, isir, y(t). Moulara/moulara,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Capitolul III CIRCUITE DE MULTIPLEXARE ŞI EŞANTIONARE-MEMORARE

Capitolul III CIRCUITE DE MULTIPLEXARE ŞI EŞANTIONARE-MEMORARE II.4. CIRCUITE DE CALCUL ANALOGIC Capitolul III CIRCUITE DE MULTIPLEXARE ŞI EŞANTIONAREMEMORARE III.1. CIRCUITE DE MULTIPLEXARE III.1.1. GENERALITĂŢI Un multiplxor analogic (MUX) st un bloc funcţional

Διαβάστε περισσότερα

METODE DE REPARTIZARE A CONSUMULUI DE COMBUSTIBIL ÎNTRE CELE DOUÃ FORME DE ENERGIE PRODUSE

METODE DE REPARTIZARE A CONSUMULUI DE COMBUSTIBIL ÎNTRE CELE DOUÃ FORME DE ENERGIE PRODUSE MOD D RPARIZAR A CONSUMULUI D COMUSIIL ÎNR CL DOUÃ FORM D NRGI PRODUS 5.1. Gnraliăţi În azul l mai gnral al uni nral d ognrar hipaă u grupuri u ondnsaţi şi priză rglailă, onsumul d omusiil poa fi sris

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte. Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor

Διαβάστε περισσότερα

FIZICA CAPITOLUL: ELECTRICITATE CURENT CONTINUU. Soluţii, indicaţii, schiţe de rezolvare

FIZICA CAPITOLUL: ELECTRICITATE CURENT CONTINUU. Soluţii, indicaţii, schiţe de rezolvare FZCA CAPTOLL: LCTCTAT CNT CONTN Souţii, indicţii, schiţ d rzovr. răspuns corct c;. răspuns corct d; 3. răspuns corct b; 4. răspuns corct ; 5. răspuns corct c ( t nrgi ctrică) ; 6. răspuns corct ( putr

Διαβάστε περισσότερα

Seria Balmer. Determinarea constantei lui Rydberg

Seria Balmer. Determinarea constantei lui Rydberg Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei

Διαβάστε περισσότερα

5.7 Modulaţia cu diviziune în frecvenţă ortogonală

5.7 Modulaţia cu diviziune în frecvenţă ortogonală 5.7 Modulaţia cu diviziun în frcvnţă ortogonală Transmisiuna datlor cu dbit mar prin modulaţia multinivl a unui purtător, p un canal cu distorsiuni d amplitudin şi d fază, st afctată d intrfrnţa simbolurilor.

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Transformari de imagini - probleme rezolvate - I. Transformari sinusoidale transformata Fourier:

Transformari de imagini - probleme rezolvate - I. Transformari sinusoidale transformata Fourier: ransormari d imagini - problm rzolvat - I ransormari sinusoidal transormata ourir: i următorul bloc d pixli dintr-o imagin digitală: 7 7 7 7 a) Dducţi matrica transormati ourir, [ ], ncsară transormării

Διαβάστε περισσότερα

6.TRANSFERUL DE CALDURĂ

6.TRANSFERUL DE CALDURĂ rmothiă 63 6.RANSFERUL DE CALDURĂ rmoitia sau trasfrul d ăldură st apitolul ar s oupă d studiul modului î ar s propagă ăldura pritr-u orp, îtr parta lui aldă şi a r, sau îtr două orpuri u tmpraturi difrit.

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

10 Determinarea coeficientului de convecție termică la un fascicul de țevi

10 Determinarea coeficientului de convecție termică la un fascicul de țevi rmothnică Sintză lucrări d laborator 10 Dtrara coficintului d convcți trmică la un d țvi Lucrara d laborator rzintă modul în car s dtră coficintul d convcți trmică la un d țvi. Scoul lucrării st însuşira

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Fig. 1 A L. (1) U unde: - I S este curentul invers de saturaţie al joncţiunii 'p-n';

Fig. 1 A L. (1) U unde: - I S este curentul invers de saturaţie al joncţiunii 'p-n'; ELECTRONIC Lucrarea nr.3 DISPOZITIVE OPTOELECTRONICE 1. Scopurile lucrării: - ridicarea caracteristicilor statice ale unor dispozitive optoelectronice uzuale (dioda electroluminiscentă, fotodiodă, fototranzistorul);

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014

ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014 ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014 Άγιος Γερμανός, Φεβρουάριος 2015 Ομάδα συγγραφής Βαλεντίνη Μάλιακα

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Miliohmetru cu scală liniară şi citire analogică şi/sau digitală

Miliohmetru cu scală liniară şi citire analogică şi/sau digitală Miliohmtru cu scală liniară şi citir analogică şi/sau digitală YO7AQM Laurnţiu CODREANU C.S.M. - Pitşti În practica radioamatorilor constructori s impun adsori ncsitata utilizării şi dsori a ralizării

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α

TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α TIPURI D DZINTGRĂRI NUCLR Dzitgaa -mita d căt ul ucl adioactiv, stuctui compact d doi potoi şi doi utoi (ucl d hliu şi a ui catităţi apciabil d gi Q Z X 4 Z Y Q 38 9 4.47 ai U 9 34 9 Th Q (4.7 V s îtâlşt

Διαβάστε περισσότερα

Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune. Huţanu Radu, Axinte Constantin Irimescu Luminita

Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune. Huţanu Radu, Axinte Constantin Irimescu Luminita Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune Huţanu Radu, Axinte Constantin Irimescu Luminita 1. Generalităţi Există mai multe metode pentru a determina

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare:

Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare: Pobleme P Pentu cicuitul din fig P, ealizat cu amplificatoae opeaţionale ideale, alimentate cu ±5V, să se detemine: a) elaţia analitică a tensiunii de ieşie valoile tensiunii de ieşie dacă -V 0V +,8V -V

Διαβάστε περισσότερα