Fizica Plasmei şi Aplicaţii Probleme
|
|
- Φιλήμων Φιλιππίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Fizica Plasmi şi Aplicaţii Problm. Exprimaţi valoara prsiunii atmosfric în difrit unităţi d măsură (N/m, Torr, mm Hg, atm) şi stabiliţi rlaţiil dintr l?. Calculaţi dnsitata unui gaz idal (în m - ) în următoarl condiţii: (a) T = 7 K, p = 760 Torr; (b) T = 9 K, p = 0 - Torr.. Car st distanţa mdi dintr particull unui gaz idal în condiţiil: (a) T = 7 K, p = 760 Torr ; (b) T = 9K, p = 0 - Torr. 4. Cât d mar trbui să fi intnsitata unui câmp lctric pntru ca, în condiţiil problmi, într două ciocniri succsiv, un lctron să câştig o nrgi gală cu V? 5. O particulă cu masa m, aflată în mişcar, s ciocnşt frontal (unidimnsional) cu o particulă cu masa m aflată în rpaus. Cioncnira st nlastică. Să s stimz valoara maximă din nrgia cintică a particuli cu masa m car s poat transforma în nrgi intrnă a particuli cu masa m. Particularizaţi răspunsul pntru cazuril: m >> m (ciocnira lctron-atom nutru) şi m m (ciocnira ion-atom nutru). Ambl ciocniri pot conduc la procs d xcitar şi ionizar. Comparaţi rzultatl. Obs: S vor discuta cazuril m >> m și m m, făcându-s conxiuna cu ciocniril dintr particull din plasmă (lctron-atom, atom-atom, atom-ion). 6. Stabiliţi rlaţia d corspondnţă dintr nrgi (xprimată în V) şi tmpratură (xprimată în K). 7. C nrgi cintică ar o particulă a unui gaz idal aflat la tmpratura camri? Car sunt vitzl lctronilor şi particullor nutr (H, H, Ar) în acst condiţii, prsupunând xistnţa stării d chilibru trmodinamic? 6 8. Să s calculz drumul libr mdiu al lctronilor în argon ( i 50 cm, Vionizar 6V ) la prsiuna d Torr şi tmpratura d 00 K. Să s stimz valoara minimă a intnsităţii câmpului lctric car poat mnţin dscărcara în gaz în acst condiţii. 9. Să s stimz dnsitata lctronilor, a ionilor şi a nutrilor într-o plasma d hliu la prsiuna d Torr şi tmpratura d 00 K, în car în mdi un atom dintr-un milion st simplu ionizat. Obs: s va țin sama d lga prsiunilor parțial din trmodinamică. 0. Calculaţi tmpraturil lctronilor şi ionilor, prcum şi prsiuna xrcitată d cătr o plasmă trmonuclară asupra containrului, în următoarl condiţii: kt i = kt = 0 kv. Plasma st total ionizată şi n = 0 m -.. Să s calculz, în aproximaţia plasmi idal, prsiunil parţial al particullor componnt pntru următoarl cazuri: (a) plasma uni dscărcări luminiscnt (n = 0 0 cm -, n n = 0 6 cm -, kt = V, kt i = kt n = 0.0 V); (b) plasma trmonuclară (n = 0 5 cm -, kt = 0 kv); (c) plasma ionosfri trstr (n = 0 6 cm -, n n = 0 5 cm -, kt = 0. V, kt i kt n = 0.0 V). Să s calculz lungima by, λ, şi raportul dintr nrgia potnţială şi ca cintică, ξ, a particullor din plasml dscris în problma prcdntă.
2 Obs: după fctuara calcullor, s vor compara rzultatl obținut pntru cl tri tipuri d plasmă și s va stima dacă l îndplinsc condiția d idalitat.. Calculaţi frcvnţl proprii al lctronilor în plasml dscris în problma. 4. În tablul următor s dau dnsităţil d lctroni, n şi nrgiil kt pntru difrit stări ionizat. Rprzntaţi p un grafic prchil d punct log n = f (log kt) şi, compltând tablul, convingţi-vă că acsta sunt stări d plasmă. Nr. crt. Mdiu ionizat n [m - ] log n kt [V] Ractor fuziun Exprimnt fuziun toroidal Exprimnt fuziun pinch Ionosfra Glow discharg Flacără Plasmă d Cs Spaţiu intrplantar log kt λ N 5. Să s calculz concntraţia maximă a uni plasm simpl, nizotrm ( kt = V, kt i = = kt n = 0 ) pntru ca acasta să mai poată fi considrată idală, adică ξ max = 0, (ξ fiind raportul dintr nrgia potnţială d intracţiun lctrostatică şi nrgia cintică a lctronilor). Obs: s va folosi rzultatul din problma, în car ați ddus xprsia raportului dintr nrgia potnţială d intracţiun lctrostatică şi nrgia cintică a lctronilor. 6. Considrând o plasmă simplă, nizotrmă, d hliu ( m i m n = 4 uam ) ca un amstc d tri gaz idal, să s calculz pntru ficar sort d particul vitza mdi, vitza trmică şi nrgia cintică mdi. Funcţia d distribuţi după vitz pntru ficar sort d particul s considră Maxwlliană, corspunzătoar sortului rspctiv. ( kt = 0 V, kt i = 0.5 V, T n = 00 K ). 7. Calculaţi lungima by şi numărul lui by pntru următoarl cazuri: (a) dscărcar luminiscntă (Glow ischarg): n = 0 6 m - şi kt = V; (b) ionosfra Pământului: n = 0 m - şi kt = 0. V; (c) pinch-ul θ (thta): n = 0 m - şi kt = 800 V; n = 0 m - şi kt = 800 V. 8. P baza următorului xmplu s poat găsi şi o altă smnificaţi pntru lungima by. S considră două placi conductoar parall, infint (ca xtindr în plan) plasat la x = ± d şi având ficar potnţialul lctric 0 V (conxiun la masă). Spaţiul dintr l st umplut uniform cu un gaz d particul încărcat ficar cu sarcina +q, dnsitata lor fiind n. (a) Folosind cuaţia lui Poisson, arătaţi că distribuţia potnţialului într plăci st nq V ( x) d x d 0 (b) Arătaţi că pntru d > λ, nrgia ncsară pntru a transporta o particulă d la o placă până la planul mdian st mai mar dcât nrgia cintică mdi a particullor. 9. Un amstc omogn şi izotrop format din lctroni, ioni pozitivi şi atomi d hidrogn ocupă un volum d cm. El conţin 0 lctroni cu tmpratura d K. În amstc sunt d 9 ori mai mulţi atomi dcât ioni. Gazul st simplu ionizat. (a) să s calculz concntraţiil componntlor şi gradul d ionizar al gazului.
3 (b) să s aprciz dacă gazul ionizat poat fi considrat plasmă şi dacă compontl sal purtătoar d sarcină au un comportamnt colctiv. (c) să s calculz prmitivitata lctrică rlativă a gazului ionizat corspunzătoat uni frcvnţ d 0 GHz. 0. O plasmă d hidrogn cu un grad d ionizar d % ar lungima d cranar d 69 μm şi prmitivitata lctrică rlativă corspunzătoar uni frcvnţ d 9 GHz st d 0.5. Să s calculz (a) frcvnţa d plasmă (b) dnsitata lctronilor şi tmpratura lor cintică (c) dnsitata d atomi Să s aprciz dacă plasma ar un comportamnt colctiv.. Să s dtrmin concntraţia şi tmpratura cintică a lctronilor dintr-o plasmă obţinută dintr-un gaz simplu ionizat, caractrizată d o lungim by gală cu 0,69 μm şi o frcvnţă d tăir d 900 GHz. Să s dcidă dacă acastă plasmă ar sau nu comportamnt colctiv. Cunoscând gradul d ionizar al plasmi (α = 0 - ), să s dtrmin concntraţia particullor nutr şi concntraţia ionilor pozitivi din plasma.. S considră o plasmă d fuziun trmonuclară cu dnsitata lctronilor n = 0 m -. Să s compar lungima d undă d Brogli a undlor asociat mişcării trmic a lctronilor în plasmă cu distanţa mdi dintr acştia, dacă kt = 4 kv. Să s aprciz dacă plasma ar un comportamnt colctiv.. Să s calculz tnsiuna continuă minimă ncsară străpungrii arului la prsiuna p = atm şi să s dtrmin distanţa intrlctrod d corspunzătoar acstia. S cunoaşt forma dpndnţi tnsiunii d străpungr U d d produsul dintr prsiuna gazului si distanta dintr lctrozi, p şi d: B pd Us C ln pd und: B 4,6 0 6 V matm şi C,8. 4. Calculaţi şi comparaţi razl Larmor în următoarl cazuri d dplasar: (a) un lctron cu nrgia d 0 kv în câmpul magntic d T al Pământului. (b) un proton din vântul solar cu vitza d 00 km/sc, B = T. (c) un ion H + cu nrgia d kv în atmosfra solară, în apropir d o rază solară und B = T (d) un atom d hliu dublu ionizat, H ++, cu nrgia d.5 MV, într-un câmp magntic d 8 T, într-un ractor d fuziun. 5. Un motor cu propulsi ionică ar un câmp magntic d T. Plasma d hidrogn trbui propulsată cu o vitză d 000 km/sc. Cât d intns trbui să fi câmpul lctric? 6. Să s calculz valoara tnsiunii d mrs în gol a unui gnrator MH car folosşt un jt suprsonic d plasmă cu vitza v = v s (v s - vitza suntului în ar) într-un câmp magntic cu inducţia B = T, dacă distanţa dintr plăcil colctoar d particul st d = mm. 7. Car st valoara sarcinii lctric car trbui să tracă prin plasma unui motor ionic car folosşt o plasmă total ionizată d H într doi lctrozi situaţi la distanţa d = mm întrun câmp magntic cu inducţia B =.5 T, pntru a imprima vhicolului p car st fixat un impuls d 00 N. sc? 8. Un fascicol cilindric d lctroni (nnutralizat) car ar dnsitata n = 0 4 m - şi raza a = cm curg d-a lungul unui câmp magntic d T. acă B st orintat în snsul pozitiv al
4 axi z iar E st câmpul lctrostatic datorat sparării d sarcină în urma căria s-a format fascicolul d lctroni, calculaţi vitza d drift pntru r = a. Formul util în contxtul problmlor propus spr rzolvar: p = gh p = nkt n (s va dmonstra), d distanța mdi dintr particull unui gaz d L = U = E d m v o = m v +m v (particularizată la datl problmi) m vo E (ciocnir nlastică, particularizată la datl problmi) Funcţia d distribuţi după vitz (Maxwll) în cazul unidimnsional: k BT f ( v) A, m A n, kt - nrgi trmică kt Enrgia cintică mdi car rvin unui grad d librtat d mişcar: f ( v) dv E md kt f ( v) dv λ = σn E ioniz = V ioniz okt n E pot 4 o f p n m o N n 4 kt v T - vitza trmică m v 8kT - vitza mdi m 4
5 n i α = n i + n n ω p = n ε o m ω p = ω p ω λ = h p r c qb v E B F = Δp Δt B 5
Eşantionarea semnalelor
Eşantionara smnallor Eşantionara = prlvara d prob dintr-un smnal la momnt d timp dcalat intr l cu cu frcvnta d şantionar, f =/. xˆ t x k t k k = ( = δ ( Smnalul şantionat idal:. Spctrul Xˆ = X ( k k =
2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII
2.CARACTERIZAREA GEERALĂ A RADIOACTIVITǍŢII Radioactivitat -fnomnul d misi d radiaţii d cătr unl substanţ numit substanţ radioactiv. Procsul constă în misia a tri tipuri d radiaţii: α, β şi γ, priml două
Teorema Rezidurilor şi Bucuria Integralelor Reale
Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului
2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII
2.CRCTERIZRE GEERLĂ RDIOCTIVITǍŢII Radioactivitat -fnomnul d misi d radiaţii d cătr unl substanţ numit substanţ radioactiv. Procsul constă în misia a tri tipuri d radiaţii: α, β şi γ, priml două fiind
În spectrul de rotaţie al moleculei HCl s-au identificat linii spectrale consecutive cu următoarele lungimi de undă: λ
PROBLMA 5 În spctrul d rotaţi al molculi HCl s-au idntificat linii spctral conscutiv cu următoarl lungimi d undă: λ 6.4 m; λ 69. m ; λ 8. 4 m ; λ 96. 4 ; λ. 6 m ; 4 5 a Prsupunând molcula un rotator rigid
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
PLASMA ŞI PARAMETRII EI
S.D.Anghl Fizica plasmi şi aplicaţii Capitlul I PLASMA ŞI PARAMETRII EI 1.1 C st stara d plasmă? Pntru că dfiniţi a acsti nţiuni nu st tcmai uşr d frmulat, vm da la încput câtva xmpl d stări al matrii
6.4.Convecţia. unde T s -temperatura termodinamică a suprafeţei corpului solid, -temperatura termodinamică medie a fluidului, 6.
Trmothnică 77 6..Convcţia Convcţia căldurii st fnomnul lmntar d transfr trmic car s manifstă în mdii fluid şi la supafaţa d sparaţi a fazlor. Est caractristică mdiilor în mişcar, căldura fiind transportată
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
FIZICĂ. Oscilatorul amortizat si oscilatorul fortat. ş.l. dr. Marius COSTACHE
FIZICĂ Oscilarul amriza si scilarul fra ş.l. dr. Marius COSACHE 3.4 Mişcara scilari amrizaă Oscilarii rali frţ d frcar > amliudina scilaţiilr scad în im Oscilar rsr k, PM d masă m şi frţă d frcar F f rrţinală
Lucian Maticiuc. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 9.
Capitolul V: Şiruri şi srii d fucţii. Lct. dr. Lucia Maticiuc Facultata d Hidrothică, Godzi şi Igiria Mdiului Matmatici Suprioar, Smstrul I, Lctor dr. Lucia MATICIUC SEMINAR 9. Cap. V Şiruri şi srii d
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
I 1 I 2 V I [Z] V 1 V 2. Z11 impedanta de intrare cu iesirea in gol 2 I 1 I 21 I
urs 5 4/5 ar ca scop sparara unui circuit complx in blocuri individual acsta s analiaa sparat (dcuplat d rstul circuitului) si s caractriaa doar prin intrmdiul porturilor (cuti nagra) analia la nivl
METODE DE DIAGNOSTICARE A PLASMEI
S.D.Anghl Fizica lasmi şi alicaţii Caitolul VIII METODE DE DIAGNOSTICARE A PLASMEI Duă cum ris chiar din dfiniţia stării d lasmă, a st un mdiu foart comlx, cu mult grad d librtat ntru comonntl i şi cu
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Modele matematice pentru îmbunătăţirea calităţii sistemelor electrice
Modl matmatic pntru îmbunătăţira calităţii sistmlor lctric Lct.univ.dr.ing. Ghorgh RAŢIU. Introducr Ţinând sama d tndinţl modrn al proictării sistmlor lctric (chipamntlor lctric) d înlocuir a uni proictări
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Capitolul I ECUAŢII DIFERENŢIALE. 1 Matematici speciale. Probleme. 1. Să de integreze ecuaţia diferenţială de ordinul întâi liniară
Mamaici spcial Problm c solţia apioll I EUAŢII DIFERENŢIALE Să d ingrz caţia difrnţială d ordinl înâi liniară g cos d Solţi: Ecaţia omognă aaşaă s: - g sa g d ln - ln cos ln sa Pnr rzolvara caţii cos nomogn
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Senzorul Hall (1) m e (2) Astfel viteza de mişcare a unui electron este datorat forţei
Snorul all Snorul all Constructi, snorul all st o lăcuţă aralliiică foart subţir in matrial smiconuctor, urtător sarcini oiti şi ngati (lctroni şi goluri). Efctul all în lăcuţă in nu numai concntraţia
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
10 Determinarea coeficientului de convecție termică la un fascicul de țevi
rmothnică Sintză lucrări d laborator 10 Dtrara coficintului d convcți trmică la un d țvi Lucrara d laborator rzintă modul în car s dtră coficintul d convcți trmică la un d țvi. Scoul lucrării st însuşira
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Sistem analogic. Sisteme
Sistm Smnall pot fi supus prlucrarii in scopul obtinrii unor alt smnal, sau al obtinrii unor paramtri ai acstora. Prlucraril s aplica unui smnal intrar x(t) si s obtin un alt smnal, isir, y(t). Moulara/moulara,
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Mircea Radeş. Vibraţii mecanice. Editura Printech
Mirca Radş Vibraţii mcanic Editura Printch Prfaţă Lucrara s bazază p cursuril d Vibraţii mcanic prdat la Univrsitata Polithnica Bucurşti, la facultata I.M.S.T. (97-6), la cursul postunivrsitar d Vibraţii
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Lucrarea de laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASURARE
Lucrara d laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASRARE 1. SCOPL LCRARII Scopul lucrarii îl rprzinta: cunoastra principallor mtod d vrificar mtrologica a unor mijloac d masurar, analogic
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
ENUNŢURI ŞI REZOLVĂRI 2013
ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
VIII Subiectul 1:Fascinația apei
Olimpiada Națională d Fizică Timișoara 6 Proba tortică Pagina din V Subictul :Fascinația api A. La o fabrică d îmbutlir a api minral plat, apa cu dnsitata dpozitată în rzroar mtalic cu diamtru mar, prăzut
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Complemente teoretice. Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; DefiniŃii ale limitei DefiniŃia 1.1.
Analiza matmatică clasa axi-a, problm rzolvat Complmnt tortic Limit d funcńii NotaŃii: f :D R, D R, α - punct d acumular a lui D; DfiniŃii al limiti DfiniŃia lim f = l, l R, dacă pntru oric vcinătat V
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
5.7 Modulaţia cu diviziune în frecvenţă ortogonală
5.7 Modulaţia cu diviziun în frcvnţă ortogonală Transmisiuna datlor cu dbit mar prin modulaţia multinivl a unui purtător, p un canal cu distorsiuni d amplitudin şi d fază, st afctată d intrfrnţa simbolurilor.
FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE
FIZICĂ Bazele fizice ale mecanicii cuantice ş.l. d. Maius COSTACHE 1 BAZELE FIZICII CUANTICE Mecanica cuantică (Fizica cuantică) studiază legile de mişcae ale micoaticulelo (e -, +,...) şi ale sistemelo
Examen AG. Student:... Grupa:... ianuarie 2011
Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare:
Pobleme P Pentu cicuitul din fig P, ealizat cu amplificatoae opeaţionale ideale, alimentate cu ±5V, să se detemine: a) elaţia analitică a tensiunii de ieşie valoile tensiunii de ieşie dacă -V 0V +,8V -V
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
TERMOSTAT ELECTRONIC DIODA SENZOR
EPSCOM Rady Prototyping Colccţ ţia Hom Automation EP 0261... Cuprin Przntar Proict Fişa d Aamblar 1. Funcţionar 2 2. Schma 2 3. PCB 3 4. Lita d componnt 3 5. Tutorial dioda miconductoar 4 5 Rgimul trmic
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Examen AG. Student:... Grupa: ianuarie 2016
16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
L4. Măsurarea rezistenţelor prin metoda de punte
L4. Măsurara rzistnţlor prin mtoda d punt. Obictul lucrării În prima part a lucrării s utilizază punta simplă (Whatston) ca mtodă d prcizi ridicată, pntru măsurara rzistnţlor cuprins într 0-0 0 Ω, ralizându-s
DETERMINAREA CONSTANTEI PLANCK DIN STUDIUL EFECTULUI FOTOELECTRIC EXTERN
UNIVERSITATEA "POLITEHNICA" BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ ATOMICĂ ŞI FIZICĂ NUCLEARĂ BN-031A DETERMINAREA CONSTANTEI PLANCK DIN STUDIUL EFECTULUI FOTOELECTRIC EXTERN DETERMINAREA
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Seminar electricitate. Seminar electricitate (AP)
Seminar electricitate Structura atomului Particulele elementare sarcini elementare Protonii sarcini elementare pozitive Electronii sarcini elementare negative Atomii neutri dpdv electric nr. protoni =
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE)
EAŢII DE ADIŢIE NULEFILĂ (AN-EAŢII) (ALDEIDE ŞI ETNE) ompușii organici care conțin grupa carbonil se numesc compuși carbonilici și se clasifică în: Aldehide etone ALDEIDE: Formula generală: 3 Metanal(formaldehida
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Capitolul III CIRCUITE DE MULTIPLEXARE ŞI EŞANTIONARE-MEMORARE
II.4. CIRCUITE DE CALCUL ANALOGIC Capitolul III CIRCUITE DE MULTIPLEXARE ŞI EŞANTIONAREMEMORARE III.1. CIRCUITE DE MULTIPLEXARE III.1.1. GENERALITĂŢI Un multiplxor analogic (MUX) st un bloc funcţional
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
7. INTEGRALA IMPROPRIE. arcsin x. cos xdx
7 INTEGRALA IMPROPRIE 7 Erciţii rzolv Erciţiul 7 Să s sudiz nur urăorlor ingrl irorii şi să s drin vloril csor în cz d convrgnţă: d c sin d 3 / rcsin d cos d d sin d > R Soluţii Funcţi f : - R f s ingrilă
= Să se determine densitatea la 5 o C în S.I. cunoscând coeficientul
Cap PROPRIETĂŢILE FLUIDELOR Prblea Denitatea benzinei ete b 0,7 Să e calculeze c denitatea şi reutatea pecifică în iteul internaţinal SI Date iniţiale şi unităţi de ăură: b 0,7 ; 9,8066 c [ ] 0 SI 0,7
ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ
Sesiunea august 07 A ln x. Fie funcţia f : 0, R, f ( x). Aria suprafeţei plane delimitate de graficul funcţiei, x x axa Ox şi dreptele de ecuaţie x e şi x e este egală cu: a) e e b) e e c) d) e e e 5 e.
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Exerciţii şi probleme E.P.2.4. 1. Scrie formulele de structură ale următoarele hidrocarburi şi precizează care dintre ele sunt izomeri: Rezolvare: a) 1,2-butadiena;
Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA
Control confort Variatoare rotative electronice Variator rotativ / cap scar 40-400 W/VA Variatoare rotative 60-400W/VA MGU3.511.18 MGU3.559.18 Culoare 2 module 1 modul alb MGU3.511.18 MGU3.559.18 fi ldeş
f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +
Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,
Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).
Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
LEGI CLASICE DE PROBABILITATE
7. LEGI CLASICE DE PROBABILITATE Fi (Ω, K, P u câmp d probabilitat şi f : Ω R, o variabilă alatoar. Am văzut că varibili f i s poat asocia o fucţi d rpartiţi F, cotiuă la stâga şi o fucţi caractristică
FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Geometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
2. JONCŢIUNEA pn. Fig. 2.1 Joncţiunea pn
JOCŢUE pn ntroducr Joncţiuna pn st rgiuna din vcinătata suprafţi d contact dintr două smiconductoar cu tip d conducţi difrit, una d tip p şi ata d tip n Linia d dmarcaţi dintr c două rgiuni s numşt joncţiun
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Metode şi tehnici de studiu a suprafeţelor. curs opţional
Metode şi tehnici de studiu a suprafeţelor curs opţional C7 Spectroscopia Low Energy Ion Scattering - LEISS Analiza cualitativa sau semi-cantitativa a compoyitiei suprafetei. Probleme cu cuantificarea;
Difractia de electroni
Difractia de electroni 1 Principiul lucrari Verificarea experimentala a difractiei electronilor rapizi pe straturi de grafit policristalin: observarea inelelor de interferenta ce apar pe ecranul fluorescent.
( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)
Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul