ELEKTROMAGNETSKE POJAVE
|
|
- Ευτροπια Ράγκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ELEKTROMAGETSKE POJAVE ELEKTROMAGETSKA IDUKCIJA IDUKCIJA SJEČEJEM MAGETSKIH SILICA Pojava da se u vodiču pobuđuje ii inducia eektomotona sia ako ga siječemo magnetskim sinicama, zove se eektomagnetska indukcija. Ovisnost induciane EMS o magnetskoj indukciji, dujini vodiča i bzini sječenja magnetskih sinica S Smije mag. poja Smije stuje Smije gibanja vodiča Odeđivanje smjea induciane stuje Ako desnu uku postavimo tako da nam magnetske sinice udaaju u dan, a paac je okenut u smjeu gibanja vodiča, onda nam ispuženi psti pokazuju smje induciane stuje. IDUKCIJA PROMJEOM MAGETSKOG TOKA Ako desnu uku postavimo tako da nam magnetske sinice udaaju u dan, a paac pi pibižavanju magneta okenemo od zavoja svitka pema vani, a pi udajavanju magneta pema unuta, onda nam ispuženi psti pokazuju smje induciane stuje. 3 4
2 Ako desnu uku postavimo tako da nam magnetske sinice udaaju u dan, a paac pi povećanju magnetskog toka okenemo od zavoja svitka pema vani, a pi smanjenju toka, od zavoja svitka pema unuta, onda nam ispuženi psti pokazuju smje induciane stuje. OPĆI ZAKO IDUKCIJE φ E t E induciana EMS u zavojima svitka(v) Φ..pomjena magnetskog toka (Wb) t vijeme tajanja pomjene (s) boj zavoja svitka Induciana EMS je azmjena s veičinom pomjene magnetskog toka i bojem zavoja, a obnuto azmjena s vemenom tajanja pomjene. 5 6 VELIČIA IDUCIRAE EMS Gibanjem petje,mijenja se veičina magnetskog toka koji poazi koz petju. E B v E.. Induciana EMS (V) B..mag. indukcija (T) dujina vodiča koji siječe mag. sinice (m) v..bzina gibanja vodiča m/s 7 Pimje: Pstenasti svitak bez jezge sa zavoja ima dujinu 5 cm i pomje 4 cm. a njega je namotan dugi svitak sa 3 zavoja. Koika se EMS inducia u dugom svitku, ako stuju u pvom svitku pojačamo sa A na 6A, jednoiko koz,5 sekundi? 3 d,4 m t,5 s I A I 6 A E? 8
3 d π S,5m 4 I A H 4 m I A H 4 m B µ B µ H H 3 B µ H 5,64 T B µ H 3,58 [ ] [ T ] Φ Φ Φ Φ B S 6,83 B S 3, Φ 3,4 Φ E, 88 t [ Wb] 5[ Wb] [ Wb] [] s 9 Pimje: Koika moa biti magnetska indukcija između poova geneatoa da se u 5 cm dugačkoj žici otoa, inducia EMS od,6 V, ako ta žica siječe magnetske sinice okomito, bzinom od 8 m/s? 5 cm,5 m E,6 V v 8 m/s B? E E B v B, 3T v SAMOIDUKCIJA Postupni poast stuje nakon ukapčanja Postupni pad stuje nakon iskopčanja Pojava da se usijed pomjene jakosti stuje koz svitak javja induciana EMS u istom svitku, zove se samoindukcija.
4 Ukupna vijednost svih svojstava svitka, o kojima ovisi veičina napona samoindukcije, zove se koeficijent samoindukcije ii induktivitet svitka. Jedinica za mjeenje induktiviteta je heni (H). Svitak ima induktivitet H, ako u njemu, jednoika pomjena stuje od A, u jednoj sekundi, pobudi eektomotonu siu od V. Joseph Heny (7. posinac svibanj 878.) Ameički znanstvenik adio na eektomagnetizmu te izumu teegafa. Joseph Heny 3 4 L induktivitet svitka (H) µ..pemeabinost vakuuma (,566 * -6 Vs/Am) µ..eativna pemeabinost jezge S..povšina pesjeka svitka (m )..boj zavoja svitka... dujina magnetskog kuga (m) MEĐUSOBA IDUKCIJA Pojava da se u nekom svitku, inducia EMS, ako koz njega poazi pomjenjiv magnetski tok stvoen u dugom svitku, zove se međusobna indukcija. L µ µ S E I L t 5 6
5 µ µ S M M L L Pimje: 3. a zatvoenoj jezgi sednje dujine 4 cm i pesjeka cm, namotan je4 pimani svitak koji pi eativnoj pemeabinosti 5 ima induktivitet od,34 H. Koiki je boj zavoja tog svitka? Koiki je induktivitet sekundanog svitka sa 5 zavoja i koiki je međuinduktivitet? E M I I,4 m S, m µ 5 L,34 H 5, L, M? 7 8 µ µ S L µ µ S L L L L L µ µ S µ µ S L L,965H MEĐUSOBO DJELOVAJE MAGETSKIH POLJA RAVI VODIČ U MAGETSKOM POLJU Kada koz vodič koji se naazi u magnetskom poju, poteče stuja,(u ovom sučaju, pema nama), javiti će se sia koja će izbaciti vodič iz magnetskog poja 9
6 Smje sie izbacivanja odeđuje se paviom ijeve uke: F B I Ako ijevu uku postavimo tako da nam sinice okomito udaaju u dan, a psti pokazuju smje stuje, onda nam ispuženi paac pokazuje smje izbacivanja vodiča.
MAGNETIZAM II. Elektromagnetska indukcija
MAGNETIZAM II Elektomagnetska indukcija Elektomagnetska indukcija 0ested stuje koz vodič stvaaju magnetsko polje Faaday stvaanje inducianih napona u vodičima u magnetskom polju Elektomagnetska indukcija
5 MAGNETIZAM I ELEKTROMAGNETIZAM
MAGETIZAM I ELEKTROMAGETIZAM.1 Uvod u magnetizam.2 Magnetsko poje stanih magneta.3 Magnetsko poje eektrične struje.4 Magnetska indukcija. Magnetski tok i magnetska indukcija.6 Primjeri magnetske indukcije.7
MAGNETIZAM I. Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju
MAGNETIZAM I Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju Teći osnovni učinak elektične stuje stvaanje magnetskog polja u okolišu vodiča i samom vodiču koji je potjecan
Magnetizam. Magnetizam
TEHČK FAKULTET VEUČL LŠTA U RJEC Zavod za eektoenegetiku tudij: Peddipomski stučni studij eektotehnike Koegij: Osnove eektotehnike ositej koegija: v. ped. m.sc. Banka Dobaš Magnetizam Osnove eektotehnike
III. ELEKTROMAGNETIZAM Magnetsko polje
eučiište J. J. tossmayea u Osijeku Miica Puža, an Manć, Mainko ožić Osnoe eektotehnike. Magnetsko poje Magnetsko poje Magnetsko poje Manifestacije magnetskog poja ojsta pemanentnih magneta Tijeo magneta
OSNOVE ELEKTROTEHNIKE 1
-. - OOVE ELEKTROTEKE Materijai za studente - (ak.god../.) TEMA -4 ELEKTROMAGETKA POLJA Tema. - OOVE VELČE OP MAGETK POLJA - uvodna razmatranja - tok Φ, gustoća toka i jakost magnetskog poja - homogeno
Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I
Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
α (alfa) α = K -1 toplinski koeficijent α (alfa) koeficijent linearnog rastezanja Ω (om)- jedinica za električni otpor Ω = V / A
Oguin 998. god e-mai ivan@infostudio.h Abecedni popis fomua, fizikanih veičina, oznaka i mjenih jedinica u fizici za sednje škoe - pazno mjesto za upis fizikane veičine np.: A, V, s, m, T, g, Ω, W, J,
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
Magnetsko polje ravnog vodiča, strujne petlje i zavojnice
Magnetske i elektromagnetske pojave_intro Svojstva magneta, Zemljin magnetizam, Oerstedov pokus, magnetsko polje ravnog vodiča, strujne petlje i zavojnice, magnetska sila na vodič, Lorentzova sila, gibanje
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Elektrodinamika
Elektrodinamika.. Gibanje električnog naboja u električnom polju.2. Električna struja.3. Električni otpor.4. Magnetska sila.5. Magnetsko polje električne struje.6. Magnetski tok.7. Elektromagnetska indukcija
Elektricitet i magnetizam. 2. Magnetizam
2. Magnetizam Od Oersteda do Einsteina Zimi 1819/1820 Oersted je održao predavanja iz kolegija Elektricitet, galvanizam i magnetizam U to vrijeme izgledalo je kao da elektricitet i magnetizam nemaju ništa
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Materija u magnetskom polju
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Materija u magnetskom polju Vrste magnetskih materijala snove elektrotehnike I Elektroni pri svojoj vrtnji oko jezgre
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
ELEKTRIČNO I MAGNETNO POLJE
ELEKTRIČNO I MAGNETNO POLJE Elektroni u mirovanju elektrostatika elektrostatska polja/sile dielektričnost ε 0 Elektroni u gibanju elektrodinamika magnetska polja/sile permeabilnost µ 0 Elektromagnetski
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.
Fakule elekoehnike, sojasva i bodogadnje Računasvo Fiika Audione vježbe - 7 lekomagneski valovi 15. avnja 9. Ivica Soić (Ivica.Soic@fesb.h) Mawellove jednadžbe inegalni i difeencijalni oblik 1.. 3. 4.
ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika
TEHNIČKI FKULTET SVEUČILI ILIŠT U RIJECI Zavod za elektoenegetiku Studij: Peddiplomski stučni studij elektotehnike Kolegij: Osnove elektotehnike I Pedavač: v. ped. m.sc. anka Dobaš Elektostatika Elektični
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Vježba 081. ako zavojnicom teče struja jakosti 5 A? A. Rezultat: m
Zadatak 8 (Marija, medicinska škola) Kolika je jakost magnetskog polja u unutrašnjosti zavojnice od 5 zavoja, dugačke 5 cm, ako zavojnicom teče struja jakosti A? ješenje 8 N = 5, l = 5 cm =.5 m, = A, H
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Popis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t.
Popis oznaka A el A meh A a a 1 a 2 a a a x a y - rad u električnom dijelu sustaa [Ws] - mehanički rad; rad u mehaničkom dijelu sustaa [Nm], [J], [Ws] - mehanički rad [Nm], [J], [Ws] - polumjer kugle;
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
gdje je Q naboj što ga primi kondenzator, C kapacitet kondenzatora.
Zadatak 06 (Mimi, gimnazija) Elektična enegija pločastog kondenzatoa, kapaciteta 5 µf, iznosi J Kolika je količina naboja pohanjena na kondenzatou? Rješenje 06 = 5 µf = 5 0-5 F, W = J, =? Enegija nabijenog
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Elektromagnetska indukcija
Elektromagnetska indukcija Povijesni pregled -1831. Michael Faraday (Engleska) i Joseph Henry (SAD) promjena magnetskog polja može inducirati ems. Faradayev zakon indukcije: promjena magnetskog toka inducira
ZADATCI S NATJECANJA
ZADATCI S NATJECANJA MAGNETIZAM 41. Na masenom spektrometru proučavamo radioaktivni materijal za kojeg znamo da se sastoji od mješavine 9U 35 9U. Atome materijala ioniziramo tako da im je naboj Q +e, ubrzavamo
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
0.01 T 1. = 4 π. Rezultat: C.
Zadatak 4 (ntonija, ginazija) Zavojnica poizvodi agnetsko polje od T. Ona ia naotaja po etu duljine. Koliko jaka stuja polazi zavojnico?....99 C. 3.979 D. 7.96 (peeabilnost paznine µ = 4 π -7 (T ) / )
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I
. Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne
ELEKTROMAGNETIKA. Magnetsko polje magneta. Magnetska sila i magnetsko polje. Magnetsko polje pravolinijskog provodnika
agnetska sa magnetsko poje ELEKTROAGETKA agnet pojam magneta postojanje dva poa koja se ne mogu azdvojt magnet je dpo kompas agnetsko poje stanog magneta agnetsko poje magneta agnetsko poje pavonjskog
Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:
tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene
mr. sc. Boris Ožanić, dipl. ing. SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE Veleučilište u Karlovcu
mr. sc. Boris Ožanić, dipl. ing. SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE Veleučilište u Karlovcu Copyright Veleučilište u Karlovcu 016. ISBN: 978-953-7343-90-3 Izdavač: Veleučilište u Karlovcu Za izdavača:
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem.
4. Magnetski fluks i Faradejev zakon magnetske indukcije a) Magnetski fluks Ako je magnetsko polje kroz neku konturu površine θ homogeno (kao na lici 5), tada je fluks kroz tu konturu jednak Φ = = cosθ
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a
Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
II. ANALITIČKA GEOMETRIJA PROSTORA
II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim
2 / U t U t R m c t m c ( t t 2 1) 2. J 1 kg 4186 ( ) kg K
Zadatak 04 (edrana, gimnazija) Koiki mora biti otpor žice eektričnog kuhaa kojim itra vode temperature 0 C može za 8 minuta zavreti? Kuhao je prikjučeno na 0, a topinski kapacitet vode iznosi 486 kj/kgk
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Elektron u magnetskom polju
Quantum mechanics 1 - Lecture 13 UJJS, Dept. of Physics, Osijek 4. lipnja 2013. Sadržaj 1 Bohrov magneton Stern-Gerlachov pokus Vrtnja elektrona u magnetskom polju 2 Nuklearna magnetska rezonancija (NMR)
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
Magnetske veličine Magnetski krug Djelovanje magnetskog polja Elektromagnetska indukcija Realna zavojnica Transformator
1 ELEKTROMAGNETIZ AM Magnetske veličine Magnetski krug Djelovanje magnetskog polja Elektromagnetska indukcija Realna zavojnica Transformator Elektromagnetizam Magneti su objekti oko kojih se primjećuju
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
namotanih samo u jednom sloju. Krajevi zavojnice spojeni su s kondenzatorom kapaciteta 10 µf. Odredite naboj na kondenzatoru.
Zadatak (Mira, ginazija) Dvaa ravni, paralelni vodičia eđusobno udaljeni 5 c teku struje.5 A i.5 A u isto sjeru. Na kojoj udaljenosti od prvog vodiča je agnetska indukcija jednaka nuli? ješenje r 5 c.5,.5
ELEKTROMAGNETNA INDUKCIJA U NASTAVI FIZIKE
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK SMJER: PROF. FIZIKE I POLITEHNIKE Leo Franić Diplomski rad ELEKTROMAGNETNA INDUKCIJA U NASTAVI FIZIKE Voditelj diplomskog rada: doc.dr.sc.
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
5. predavanje. Vladimir Dananić. 27. ožujka Vladimir Dananić () 5. predavanje 27. ožujka / 16
5. predavanje Vladimir Dananić 27. ožujka 2012. Vladimir Dananić () 5. predavanje 27. ožujka 2012. 1 / 16 Sadržaj 1 Magnetske pojave O magnetizmu Gaussov zakon za magnetsko polje Nabijena čestica u magnetskom
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Magnetizam. Magnetostatika
Magnetizam Magnetostatika Povijesni pregled Kako je magnet dobio ime? grad Magnesia u Maloj Aziji - nalazište magnetita legenda: pastira Magnusa s Krete - okovana obuća i pastirski štap privučeni magnetskom
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA
5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,
1. ELEKTROSTATIKA. 1.1 Međusobno djelovanje naelektrisanja Kulonov zakon
. LKTROSTTIK lektostatika je oblast elektotehnike u kojoj se izučava elekticitet u miovanju makoskopski posmatano u odnosu na posmatačev efeentni sistem, što znači da naelektisanja smatamo statičkim (u
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.
Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =
TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
Elektromagnetizam. Elektromagnetizam. Elektromagnetizam. Elektromagnetizam
(AP301-302) Magnetno polje dva pravolinijska provodnika (AP312-314) Magnetna indukcija (AP329-331) i samoindukcija (AP331-337) Prvi zapisi o magentizmu se nalaze još u starom veku: pronalazak rude gvožđa
1. Odrediti silu koja deluje na naelektrisanje od C i naelekteisanje C, ako se nalaze u vazduhu i međusobno su udaljeni 4 cm.
. Odedii siu koja deuje na naeekisanje od 5 6 i naeekeisanje 6, ako se naaze u vazduhu i eđusobno su udajeni 4 c. Sia je jednaka: F E Poje koje poiče od naeekisanja : E 4 o Sia koja deuje na naeekisanje
POGON SA ASINHRONIM MOTOROM
OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO