5 MAGNETIZAM I ELEKTROMAGNETIZAM

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5 MAGNETIZAM I ELEKTROMAGNETIZAM"

Transcript

1 MAGETIZAM I ELEKTROMAGETIZAM.1 Uvod u magnetizam.2 Magnetsko poje stanih magneta.3 Magnetsko poje eektrične struje.4 Magnetska indukcija. Magnetski tok i magnetska indukcija.6 Primjeri magnetske indukcije.7 Jakost magnetskog poja.8 Djeovanje magnetskog poja na vodič protjecan strujom.9 Međusobno djeovanje dvaju vodiča.10 ia magnetskog poja na naboj u gibanju - Lorentzova sia.11 ia magnetskog poja na strujnu petju.12 Magnetsko poje u materijau.13 Magnetski krug.14 Eektromagnet 81

2 Kratki ispit poznavanja osnovnih pojmova 1 1. Magneti su ona... koja imaju svojstvo..., pa privače avedite najčešće obike magneta Magnetsko poje je... u kojem se osjeća djeovanje Homogeno magnetsko poje je.... Upišite naziv magnetskog poa u prazno poje i nacrtajte magnetske sinice. 6. Magnetski tok apišite matematički izraz koji povezuje magnetsku indukciju, magnetski tok i poštinu presjeka te za svaku veičinu navedite mjernu jedinicu. 8. Magnetska permeabinost ii magnetska propustjivost je Za vakuum iznosi Magnetomotorna sia je Tvari u magnetskom poju opiru se proazu... svojim magnetskim otporom. 11. Ako se površina poprečnog presjeka kroz koju proazi magnetski tok tri puta smanji magnetski otpor će: a) ostati isti, b) se povećat tri puta, c) se smanjiti tri puta. 12. apišite izraz koji povezuje jakost magnetskog poja i magnetske indukcije te navedite mjernu jedinicu 1. tijea, magnetičnosti, žejezne predmete 2. Magneti u obiku ige, potkove, štapa 3. prostor oko magneta, magnetskih sia 4. poje čije su sinice paraene i jednako razmaknute. Jakost poja jednaka je u svakoj točki.. sinice 82

3 6. predstavja ukupan broj sinica koje proaze kroz neku površinu 7. Φ = B, Φ - magnetski tok u Wb, - površina u m 2, B - magnetska indukcija u T 8. sposobnost materijaa da se sabije ii jače magnetizira. µ 0 = 4ϖ 10 7 H/m 9. sia koja održava magnetski tok u magnetskom krugu 10. magnetskog toka 11. b) 12. B = µ H, B - magnetska indukcija u T, µ - propustjivost u As/Am, H - jakost magnetskog toka u A/m 1. Magneti mogu biti Kako se nazivaju krajevi magneta? Magnetske sinice su ehomogeno magnetsko poje.... acrtajte potkovičasti magnet i sinice magnetskog poja. 6. Magnetski krug je Gustoća magnetskog toka Ako se uz isti poprečni presjek magnetski tok smanji tri puta magnetska indukcija će: a) ostati ista, b) se povećati tri puta, c) se smanjiti tri puta. 9. Reativna magnetska permeabinost apišite izraz za magnetomotrnu siu zavojnice od zavoja kojim teče struja I: 11. Magnetski otpor ovisi o kroz koji proazi magnetski tok. apišite izraz za proračun magnetskog otpora. 12. Jakost magnetskog poja stani i promjenjivi. 2. Krajevi magneta nazivaju se poovi, sjeverni i južni. 3. inije kojima predstavjamo magnetsko poje. 4. nema paraene i jednako razmaknute sinice, a u razičitim točkama poja ima razičitu jakost.. 83

4 6. zatvoreni put kojim sinice proaze. 7. naziva se magnetska indukcija 8. c) 9. broj koji pokazuje koiko je puta magnetska permeabinost određene tvari veća od permeabinosti vakuuma. 10. Θ = I 11. srednjoj dujini magnetskog kruga, magnetskoj permeabinost tvari i površini presjeka, R = m µ 12. predstavja dio magnetomotorne sie koja se troši po jedinici magnetskog kruga Kratki ispit poznavanja osnovnih pojmova 2 1. Označite smjer magnetskog poja na sici. Paac pokazuje smjer..., a savijeni... smjer... poja. 2. acrtajte sinice magnetskog poja ravnog vodiča ako struja teče iz papira. 3. Odredite i ucrtajte smjer sie na vodič. acrtajte drugu siku i smjer sie na vodič ako se promijeni smjer struje. 4. Pravio ijeve ruke za siu na vodič u magnetskom poju gasi: Dan postavimo tako da sinice... u dan,... prsti pokazuju smjer... na vodič... acrtajte sinice magnetskog poja dvaju ravnih vodiča protjecanih strujom - struje teku u suprotnom smjeru. 84

5 6. O čemu ovisi sia magnetskog poja na naboj koji se giba u magnetskom poju? apišite matematički izraz Kako se računa magnetsko poje zavojnice? apišite matematički izraz. 8. Dijamagnetici su materijai kod kojih je reativna permeabinost... abrojite neke dijamagnetske materijae acrtajte krivuju petje histereze feromagnetskih materijaa. 10. Eektromagnet je struje, prsti, magnetskog, smjer smjer struje magnetskog poja udaraju, savijeni, sie. 8

6 6. ia ovisi o magnetskoj indukciji, koičini naboja i brzini. F = B Q v 7. H = I 8. µ r < 1; bakar, srebro, cink, auminij i zato 9. B B maks 1 B r 2 H m H C H C H m H B r 4 B maks 10. zavojnica kojom teče struja, sa zatvorenom ii djeomično zatvorenom jezgrom. Kratka provjera znanja 2 1. acrtajte sinice magnetskog poja ravnog vodiča ako struja teče u papir. 2. Odredite smjer sie na vodič kojim struja teče u naznačenom smjeru. acrtajte smjer magnetskog poja. 3. ia na vodič protjecan strujom, kad se nađe u magnetskom poju, ovisi o:... ia se računa prema izrazu: O čemu ovisi sia između dva vodiča protjecana strujom? apišite matematički izraz..... acrtajte sinice magnetskog poja dvaju ravnih vodiča protjecanih strujom - struje teku u istom smjeru. 86

7 6. apišite matematički izraz za računanje magnetskog poja ravnog vodiča apišite matematički izraz za računanje magnetskog poja u torusu Feromagnetici su materijai kod kojih je permeabinost... abrojite neke feromagnetske materijae acrtajte krivuju prvog magnetiziranja feromagnetika. 10. osivost eektromagneta je magnetskoj indukciji, dujini vodiča u magnetskom poju i jakosti struje; F = B I I I 4. ia ovisi o jakosti struja kroz vodiče i njihovoj međusobnoj udajenosti.; F = 2. µ H I = 2 r π 7. H = I 8. µ r > 1; žejezo, nika, kobat i njihove sitine 87

8 9. B B maks B C III B r II A I 0 H A H B H m H 10. sia kojom magnet privači feromagnetske materijae. Kratka provjera znanja 3 1. Koiki tok proazi površinom = 3 cm 2 ako je magnetska indukcija B = 2 T? 2. Magnetski tok Φ = 0,02 µwb proazi kroz jezgru presjeka = 2 mm 2. Ako je reativna permeabinost µ r = 1000, koika je jakost magnetskog poja? 3. Koiko jaka struja teče kroz zavojnicu s = 10 zavoja ako je magnetomotorna sia Θ = 6 A? 4. Kroz zavojnicu s = 200 zavoja dujine = 10 cm teče struja jakosti I = 20 ma. Izračunajte magnetomotornu siu i jakost poja kroz zavojnicu. 1. Φ = 600 µwb 2. H = 79,77 A/m 3. I = 4 ma 4. Θ = 0 A, H = 00 A/m 1. Koika je magnetska indukcija ako tok Φ = Wb proazi površinom = 6 cm 2? 2. Magnetski tok Φ = 0 µwb proazi kroz jezgru presjeka = 0 mm 2. Koika je reativna permeabinost ako je jakost poja H = 79 A/m? 3. Kroz zavojnicu s = 0 zavoja teče struja jakosti I = A. Izračunajte magnetomotornu siu i dujinu zavojnice ako je jakost poja H = 1000 A/m. 4. Koika je jakost magnetskog poja u točki koja je r = cm udajena od osi ravnog vodiča kojim teče struja jakosti I =10 A? 1. B = 2T 2. µ r = Θ = 20 A, = 2 cm 4. H = 31,83 A/m Kratka provjera znanja 4 1. U magnetskom poju indukcije B = 2 T vodič je postavjen okomito na sinice poja. Kad vodičem teče 88

9 struja jakosti I = 0 A, na njega djeuje sia F = 10. Koika je dujina vodiča obuhvaćena magnetskim pojem? 2. Kroz dva ravna vodiča obješena u zraku, dujine = km, na udajenosti r = 1 m teku struje jakosti I 1 = 1 ka i I 2 = 00 A suprotnih smjerova. Koika sia djeuje među vodičima i kakva je ta sia? 1. = 10 cm 2. F = 100, odbojna 1. Vodič dujine = 1 cm kojim teče struja jakosti I = 20 A postavjen je između poova magneta okomito na sinice magnetskog poja. Ako na vodič djeuje sia od F =3, izračunajte koika je magnetska indukcija. 2. Kroz dva ravna vodiča obješena u zraku, dujine = km, na udajenosti r =1 m teku struje istih jakosti I 1 = I 2 = I = 600 A, a suprotnih smjerova. Koika sia djeuje među vodičima i kakva je ta sia? 1. B = 1 T 2. F = 20, odbojna Kratka provjera znanja 1. a torusnu jezgru namotano je = 00 zavoja žice kojima teče struja jakosti I = 1, A. Reativna propustjivost je µ r =10, presjek torusa = 12, cm 2, a srednja dujina sinica = 3 cm. Koika je jakost poja u torusu i koiki je magnetski tok? 2. Kroz prstenastu zavojnicu bez jezgre s = 300 zavoja, srednje dujine = 0,8 m, teče struja jakosti I = 2 A. Površina presjeka zavojnice je = cm 2. Koiki je magnetski otpor? 1. H = 2142,86 A/m, Φ = 1,72 mwb 2. R m = 127, A/Wb 1. U torusu poprečnog presjeka = 2,8 cm 2 jakost poja iznosi H = 3000 Am. Koiki je magnetski tok u torusu ako je reativna propustjivost jezgre µ r = 411? Koiko jaka struja teče kroz = 40 zavoja namotanih na torusnu jezgru ako je srednja dujina sinica = 0 cm? 2. Feromagnetska jezgra ima presjek = 60 cm 2. rednja dujina sinica je = 1 m. a jezgru je namotano = 0 zavoja žice kojima teče struja jakosti I = 10 A. Reativna permeabinost magnetskog materijaa je µ r = 696. Koiki je magnetski otpor u magnetskom krugu? 1. Φ = 433,84 µwb, I = 3,33 A 2. R m = ,7 A/Wb 89

10 Kratka provjera znanja 6 1. Za magnetski krug kao na sici zadano je: srednja dujina sinice = 60 cm, uz zračni raspor širine 0 = 0,mm, magnetska indukcija B = 1 T, jakost magnetskog poja u zračnom rasporu H 0 = A/m, za čeik µ r = 260, µ 0 = 1, Wb/Am. Izračunajte magnetomotornu siu Θ Θ 1 = 630 A 1. Za magnetski krug kao na sici zadano je: = 1300 zavoja, srednja dujina sinice = 80 cm uz zračni raspor širine 0 = 1mm, jakost magnetskog poja u zračnom rasporu iznosi H 0 = A/m, a u čeiku H Fe =70 A/m, µ 0 = 1, Wb/Am. Izračunajte magnetomotornu siu Θ i struju I. I U 0 1. Θ = 2600 A, I = 2 A 90

ELEKTROMAGNETSKE POJAVE

ELEKTROMAGNETSKE POJAVE ELEKTROMAGETSKE POJAVE ELEKTROMAGETSKA IDUKCIJA IDUKCIJA SJEČEJEM MAGETSKIH SILICA Pojava da se u vodiču pobuđuje ii inducia eektomotona sia ako ga siječemo magnetskim sinicama, zove se eektomagnetska

Διαβάστε περισσότερα

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE 1

OSNOVE ELEKTROTEHNIKE 1 -. - OOVE ELEKTROTEKE Materijai za studente - (ak.god../.) TEMA -4 ELEKTROMAGETKA POLJA Tema. - OOVE VELČE OP MAGETK POLJA - uvodna razmatranja - tok Φ, gustoća toka i jakost magnetskog poja - homogeno

Διαβάστε περισσότερα

Elektrodinamika

Elektrodinamika Elektrodinamika.. Gibanje električnog naboja u električnom polju.2. Električna struja.3. Električni otpor.4. Magnetska sila.5. Magnetsko polje električne struje.6. Magnetski tok.7. Elektromagnetska indukcija

Διαβάστε περισσότερα

Elektricitet i magnetizam. 2. Magnetizam

Elektricitet i magnetizam. 2. Magnetizam 2. Magnetizam Od Oersteda do Einsteina Zimi 1819/1820 Oersted je održao predavanja iz kolegija Elektricitet, galvanizam i magnetizam U to vrijeme izgledalo je kao da elektricitet i magnetizam nemaju ništa

Διαβάστε περισσότερα

Magnetsko polje ravnog vodiča, strujne petlje i zavojnice

Magnetsko polje ravnog vodiča, strujne petlje i zavojnice Magnetske i elektromagnetske pojave_intro Svojstva magneta, Zemljin magnetizam, Oerstedov pokus, magnetsko polje ravnog vodiča, strujne petlje i zavojnice, magnetska sila na vodič, Lorentzova sila, gibanje

Διαβάστε περισσότερα

Materija u magnetskom polju

Materija u magnetskom polju Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Materija u magnetskom polju Vrste magnetskih materijala snove elektrotehnike I Elektroni pri svojoj vrtnji oko jezgre

Διαβάστε περισσότερα

MAGNETIZAM III. Magnetizam u tvarima Magnetski krug Prijelazne pojave

MAGNETIZAM III. Magnetizam u tvarima Magnetski krug Prijelazne pojave MAGNETIZAM III Magnetizam u tvarima Magnetski krug Prijelazne pojave Magnetizam u tvarima Magnetizam u tvarima Magnetizacija: odziv materijala na vanjsko magnetsko polje magnetska indukcija se mijenja

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

namotanih samo u jednom sloju. Krajevi zavojnice spojeni su s kondenzatorom kapaciteta 10 µf. Odredite naboj na kondenzatoru.

namotanih samo u jednom sloju. Krajevi zavojnice spojeni su s kondenzatorom kapaciteta 10 µf. Odredite naboj na kondenzatoru. Zadatak (Mira, ginazija) Dvaa ravni, paralelni vodičia eđusobno udaljeni 5 c teku struje.5 A i.5 A u isto sjeru. Na kojoj udaljenosti od prvog vodiča je agnetska indukcija jednaka nuli? ješenje r 5 c.5,.5

Διαβάστε περισσότερα

2 / U t U t R m c t m c ( t t 2 1) 2. J 1 kg 4186 ( ) kg K

2 / U t U t R m c t m c ( t t 2 1) 2. J 1 kg 4186 ( ) kg K Zadatak 04 (edrana, gimnazija) Koiki mora biti otpor žice eektričnog kuhaa kojim itra vode temperature 0 C može za 8 minuta zavreti? Kuhao je prikjučeno na 0, a topinski kapacitet vode iznosi 486 kj/kgk

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

MAGNETIZAM I. Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju

MAGNETIZAM I. Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju MAGNETIZAM I Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju Teći osnovni učinak elektične stuje stvaanje magnetskog polja u okolišu vodiča i samom vodiču koji je potjecan

Διαβάστε περισσότερα

ZADATCI S NATJECANJA

ZADATCI S NATJECANJA ZADATCI S NATJECANJA MAGNETIZAM 41. Na masenom spektrometru proučavamo radioaktivni materijal za kojeg znamo da se sastoji od mješavine 9U 35 9U. Atome materijala ioniziramo tako da im je naboj Q +e, ubrzavamo

Διαβάστε περισσότερα

Magnetske veličine Magnetski krug Djelovanje magnetskog polja Elektromagnetska indukcija Realna zavojnica Transformator

Magnetske veličine Magnetski krug Djelovanje magnetskog polja Elektromagnetska indukcija Realna zavojnica Transformator 1 ELEKTROMAGNETIZ AM Magnetske veličine Magnetski krug Djelovanje magnetskog polja Elektromagnetska indukcija Realna zavojnica Transformator Elektromagnetizam Magneti su objekti oko kojih se primjećuju

Διαβάστε περισσότερα

Vježba 081. ako zavojnicom teče struja jakosti 5 A? A. Rezultat: m

Vježba 081. ako zavojnicom teče struja jakosti 5 A? A. Rezultat: m Zadatak 8 (Marija, medicinska škola) Kolika je jakost magnetskog polja u unutrašnjosti zavojnice od 5 zavoja, dugačke 5 cm, ako zavojnicom teče struja jakosti A? ješenje 8 N = 5, l = 5 cm =.5 m, = A, H

Διαβάστε περισσότερα

Magnetizam. Magnetostatika

Magnetizam. Magnetostatika Magnetizam Magnetostatika Povijesni pregled Kako je magnet dobio ime? grad Magnesia u Maloj Aziji - nalazište magnetita legenda: pastira Magnusa s Krete - okovana obuća i pastirski štap privučeni magnetskom

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Popis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t.

Popis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t. Popis oznaka A el A meh A a a 1 a 2 a a a x a y - rad u električnom dijelu sustaa [Ws] - mehanički rad; rad u mehaničkom dijelu sustaa [Nm], [J], [Ws] - mehanički rad [Nm], [J], [Ws] - polumjer kugle;

Διαβάστε περισσότερα

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1.

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1. . U zračnom rasporu d magnetnog kruga prema slici akumulirana je energija od,8 mj. Odrediti: a. Struju I; b. Magnetnu energiju akumuliranu u zračnom rasporu d ; Poznato je: l = l =, m; l =, m; d = d =

Διαβάστε περισσότερα

Ampèreova i Lorentzova sila zadatci za vježbu

Ampèreova i Lorentzova sila zadatci za vježbu Ampèreova i Lorentzova sila zadatci za vježbu Sila na vodič kojim prolazi električna struja 1. Kroz horizontalno položen štap duljine 0,2 m prolazi električna struja jakosti 15 A. Štap se nalazi u horizontalnom

Διαβάστε περισσότερα

Podsjetnik za državnu maturu iz fizike značenje formula

Podsjetnik za državnu maturu iz fizike značenje formula Podsjetnik za državnu maturu iz fizike značenje formula ukratko je objašnjeno značenje svih slova u formulama koje se dobiju uz ispit [u uglatim zagradama su SI mjerne jedinice] Kinetika v = brzina ( =

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

5. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm?

5. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm? Coulombov zakon 1. Metalna kugla polumjera R = 10 cm nabijena je plošnom gustoćom naboja σ = 7, 95 nc/m 2. Kolika je razlika izmedu broja protona i broja elektrona u kugli? 2. Koliki je omjer gravitacijske

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Izvori magnetskog polja

Izvori magnetskog polja Izvori magnetskog polja Biot-Savartov zakon - Hans Christian Oersted 1820. g. veza elektriciteta i magnetizma: električna struja u vodiču otklanja magnetsku iglu - Jean-Baptiste Biot (1774.-1862.) i Felix

Διαβάστε περισσότερα

Magnetizam. Magnetizam

Magnetizam. Magnetizam TEHČK FAKULTET VEUČL LŠTA U RJEC Zavod za eektoenegetiku tudij: Peddipomski stučni studij eektotehnike Koegij: Osnove eektotehnike ositej koegija: v. ped. m.sc. Banka Dobaš Magnetizam Osnove eektotehnike

Διαβάστε περισσότερα

ELEKTRIČNO I MAGNETNO POLJE

ELEKTRIČNO I MAGNETNO POLJE ELEKTRIČNO I MAGNETNO POLJE Elektroni u mirovanju elektrostatika elektrostatska polja/sile dielektričnost ε 0 Elektroni u gibanju elektrodinamika magnetska polja/sile permeabilnost µ 0 Elektromagnetski

Διαβάστε περισσότερα

5. Ako žica ima otpor 10,94 Ω, duljine je l=750 m i presjeka 1,2 mm²:

5. Ako žica ima otpor 10,94 Ω, duljine je l=750 m i presjeka 1,2 mm²: PRIMJERI PITANJA IZ STRUČNE TEORIJE 1. Kako glasi II. Kirchhoffov zakon? 2. Kako glasi Faradeyev zakon? 3. Kako glasi Coulombov zakon? 4. Izračunajte otpor žice od aluminija otpornosti ρ=0,028 10 6 i presjeka

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

5. predavanje. Vladimir Dananić. 27. ožujka Vladimir Dananić () 5. predavanje 27. ožujka / 16

5. predavanje. Vladimir Dananić. 27. ožujka Vladimir Dananić () 5. predavanje 27. ožujka / 16 5. predavanje Vladimir Dananić 27. ožujka 2012. Vladimir Dananić () 5. predavanje 27. ožujka 2012. 1 / 16 Sadržaj 1 Magnetske pojave O magnetizmu Gaussov zakon za magnetsko polje Nabijena čestica u magnetskom

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

4. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm?

4. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm? 1 Coulombov zakon 1. Koliki je omjer gravitacijske i elektrostatske sile izmedu dva elektrona? m e = 9, 11 10 31 kg 2. Na kojoj će udaljenosti u zraku odbojna sila izmedu dvaju jednakih naboja q 1 = q

Διαβάστε περισσότερα

5. Transformator. Indukcija, samoindukcija, međuvodička indukcija, magnetski tok, zavojnica, opterećeni i neopterećeni transformator

5. Transformator. Indukcija, samoindukcija, međuvodička indukcija, magnetski tok, zavojnica, opterećeni i neopterećeni transformator 5. Transformator. Ključni pojmovi Indukcija, samoindukcija, međuvodička indukcija, magnetski tok, zavojnica, opterećeni i neopterećeni transformator. Teorijski uvod Transformator se sastoji od dviju zavojnica

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Elektromagnetska indukcija

Elektromagnetska indukcija Elektromagnetska indukcija Povijesni pregled -1831. Michael Faraday (Engleska) i Joseph Henry (SAD) promjena magnetskog polja može inducirati ems. Faradayev zakon indukcije: promjena magnetskog toka inducira

Διαβάστε περισσότερα

Osnove elektrotehnike II parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.

Osnove elektrotehnike II parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. Osnove eektrotehnike II parcijani ispit 8... VRIJNT Prezime i ime: roj indeksa: Profesorov prvi postuat: Što se ne može pročitati, ne može se ni ocijeniti... irektno, primjenom Kirchhoff ovih zakona, potrebno

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem.

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem. 4. Magnetski fluks i Faradejev zakon magnetske indukcije a) Magnetski fluks Ako je magnetsko polje kroz neku konturu površine θ homogeno (kao na lici 5), tada je fluks kroz tu konturu jednak Φ = = cosθ

Διαβάστε περισσότερα

kondenzatori električna struja i otpor Istosmjerni strujni krugovi

kondenzatori električna struja i otpor Istosmjerni strujni krugovi kondenzatori električna struja i otpor Istosmjerni strujni krugovi - Dva vodiča, nose jednaki naboj suprotnog predznaka - kondenzator - Vodiče nazivamo ploče kondenzatora - Između ploča kondenzatora postoji

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Univerzitet u Banjoj Luci Elektrotehnički fakultet Katedra za opštu elektrotehniku

Univerzitet u Banjoj Luci Elektrotehnički fakultet Katedra za opštu elektrotehniku Univerzitet u Banjoj Luci Elektrotehnički fakultet Katedra za opštu elektrotehniku Laboratorijske vježbe iz predmeta: Osnovi elektrotehnike 2 Druga vježba Mjerenje intenziteta vektora magnetske indukcije

Διαβάστε περισσότερα

ZI. NEODREðENI INTEGRALI

ZI. NEODREðENI INTEGRALI ZI. Nodrđni intgrali 7 ZI. NEODREðENI INTEGRALI. Antidrvacij. Pronañi tri antidrivacij funkcij.. Odrdi sv antidrivacij funkcij.. Pronañi dvij antidrivacij funkcij.. Pronañi antidrivaciju funkcij za koju

Διαβάστε περισσότερα

Vježba 14 ŠKOLSKI TRANSFORMATOR ISPITAJTE SVOJSTVA MAGNETSKOG POLJA 1/16. Praktikum iz eksperimentalne nastave fizike 2. Fizika informatika

Vježba 14 ŠKOLSKI TRANSFORMATOR ISPITAJTE SVOJSTVA MAGNETSKOG POLJA 1/16. Praktikum iz eksperimentalne nastave fizike 2. Fizika informatika 1/16 Praktikum iz eksperimentalne nastave fizike 2 Fizika informatika Vježba 14 ŠKOLSKI TRANSFORMATOR 14.1. DEMONSTRIRAJTE POJAVU ELEKTROMAGNETSKE INDUKCIJE 14.2. ODREDITE SMJER INDUCIRANOG NAPONA U ZAVOJNICI

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n

Διαβάστε περισσότερα

ELEKTRODINAMIKA ELEMENTI STRUJNOG KRUGA IZVOR ELEKTRIČNE ENERGIJE

ELEKTRODINAMIKA ELEMENTI STRUJNOG KRUGA IZVOR ELEKTRIČNE ENERGIJE ELEKTRODINAMIKA ELEKTRIČNA STRUJA I PRIPADNE POJAVE ELEMENTI STRUJNOG KRUGA Strujni krug je sastavljen od: izvora u kojemu se neki oblik energije pretvara u električnu energiju, spojnih vodiča i trošila

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

ELEKTROMAGNETNA INDUKCIJA U NASTAVI FIZIKE

ELEKTROMAGNETNA INDUKCIJA U NASTAVI FIZIKE SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK SMJER: PROF. FIZIKE I POLITEHNIKE Leo Franić Diplomski rad ELEKTROMAGNETNA INDUKCIJA U NASTAVI FIZIKE Voditelj diplomskog rada: doc.dr.sc.

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Zadatak 161 (Igor, gimnazija) Koliki je promjer manganinske žice duge 31.4 m, kroz koju teče struja 0.8 A, ako je napon

Zadatak 161 (Igor, gimnazija) Koliki je promjer manganinske žice duge 31.4 m, kroz koju teče struja 0.8 A, ako je napon Zadatak 6 (gor, gimnazija) Koliki je promjer manganinske žice duge. m, kroz koju teče struja 0.8, ako je napon između krajeva 80 V? (električna otpornost manganina ρ = 0. 0-6 Ω m) ješenje 6 l =. m, = 0.8,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

mr. sc. Boris Ožanić, dipl. ing. SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE Veleučilište u Karlovcu

mr. sc. Boris Ožanić, dipl. ing. SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE Veleučilište u Karlovcu mr. sc. Boris Ožanić, dipl. ing. SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE Veleučilište u Karlovcu Copyright Veleučilište u Karlovcu 016. ISBN: 978-953-7343-90-3 Izdavač: Veleučilište u Karlovcu Za izdavača:

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα