Seminarski rad. Propozicije:
|
|
- Πολύκαρπος Παπαφιλίππου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Propozicije: Student izrađuje zadatak samostalno, na osnovu znanja stečenih na predavanjima, vežbama i konsultacijama, u skladu sa definisanim rokovima. Predaja rada vrši se, uz usmenu odbranu, u unapred određenim terminima Rad se predaje u štampanoj formi. Prilikom predaje neophodno je doneti na uvid i elektronsku verziju (CD, USB)! Predat i odbranjen rad predstavlja uslov za mogućnost izlaska na ispit. Predaja i odbrana rada vrši se isključivo u definisanim terminima. Izvan ovih termina, predaju i odbranu moguće je izvršiti isključivo uz zvaničnu potvrdu sprečenosti za predaju u regularnom terminu.
2 Postupak izrade: Za izradu vučnog proračuna preporučuje se korišćenje programa MS Excel ili sličnog programa za tabelarne kalkulacije. Dopušteni su i drugačiji postupci. Dijagrami se crtaju u programu MS Excel ili drugom odgovarajućem softverskom okruženju. Dodatno, dijagrami otpora kretanja i vučni dijagram se takođe crtaju olovkom, na milimetarskom papiru, prema priloženom primeru / uputstvu.
3 Ocenjivanje: Za predat i odbranjen seminarski rad može se osvojiti do 20 poena. U slučaju nedovoljnog nivoa znanja studenta prilikom odbrane, broj bodova za seminarski rad određuje se pri polaganju ispita, proporcionalno uspehu na pismenom delu ispita.
4 Predviđeni termini (školska 2015/16): 15. IV izdavanje zadataka; uputstvo za izradu; Termini za konsultacije i predaju radova biće utvrđeni naknadno.
5 Materijali na stranici DMK Propozicije Termini Uputstvo za izradu Primer izgleda vučnog proračuna urađenog u Excel-u (pdf) Katalozi pneumatika Podsetnik za rad u Excel-u
6 1. Ulazni podaci IZVOR:
7 1. Ulazni podaci Masa / težina vozila Koncepcija transmisije ( stepen korisnosti) Osovinske reakcije / položaj težišta Raspodela težine napred / nazad Dimenzije pneumatika ( dinamički radijus) Čeona površina Koeficijent otpora vazduha Stepen korisnosti transmisije Prenosni odnosi menjačkog i glavnog prenosnika Brzinska karakteristika motora
8 1. Ulazni podaci Marka i tip vozila: Suzuki Grand Vitara 2.0i Parametri vozila Veličina Oznaka Vrednost Fiz. dimenzija Parametri transmisije Prenosni odnos glavnog prenosnika: Proračunska težina G = N i GP = 4.1 Procenat težine: napred 49.6 (%) Prenosni odnosi menjača: nazad 50.4 (%) Osovinska opter. i I = 4.55 napred G P = 8680 N i II = 2.36 nazad G Z = 8820 N i III = 1.7 Koef. otp. vazduha c W = 0.41 (-) i IV = 1.24 Čeona površina A = 2.5 m 2 i V = 1 Dinamički radijus r D = 0.35 m Stepen korisnosti transmisije: Pneumatik: 225/65 R 17 TR = 0.87 Napomena: r D - iz kataloga; G P, G Z - izračunavaju se; stepen korisnosti - prema preporuci za datu konfiguraciju transmisije
9 1. Ulazni podaci Težina vozila i osovinske reakcije G (N) težina vozila h T T G G P l P l Z G Z Primer: raspodela težine prednja osovina / zadnja osovina = 54,6 % / 45,4 % G P = 0,546 G G Z = 0,454 G G = G P + G Z
10 1. Ulazni podaci Dinamički radijus Vrednost dinamičkog radijusa se očitava iz kataloga pneumatika, na osnovu dimenzija pneumatika. Označavanje pneumatika - podsetnik RIM DIAMETER SERIES
11 1. Ulazni podaci Dinamički radijus Primer: 225/55 R 16 Dinamički radijus: r D = 0,318m IZ KATALOGA PNEUMATIKA r D O 2 π OBIM KOTRLJANJA SLUČAJ: OBIM KOTRLJANJA ZADAT KAO REVS PER MILE O 1602 REVS_PER_MILE OBIM KOTRLJANJA [m]
12 1. Ulazni podaci Katalog pneumatika primer IZVOR:
13 1. Ulazni podaci Čeona površina A= (m 2 ) Koeficijent otpora vazduha c W = (-)
14 1. Ulazni podaci Stepen korisnosti transmisije - TR M m+gp POGON NAPRED M m POGON NAZAD KP M m GP R KP 4X4 GP GP 1. TR = m GP 2. TR = m GP 3. TR = m 2 GP R KP KP ~ 0,93 ~ 0,9 ~ 0,87
15 1. Ulazni podaci Prenosni odnosi u transmisiji i m, i GP M,n M - motor i m M m,n m m - menjač i GP M GP,n GP GP glavni prenosnik - 1. stepen prenosa: i m = i I - 2. stepen prenosa: i m = i II - 3. stepen prenosa: i m = i III LOW GEAR i GP =... FINAL DRIVE - 4. stepen prenosa: i m = i IV - 5. stepen prenosa: i m = i V TOP GEAR PRIMER: MENJAČ SA 5 STEPENI PRENOSA
16 1. Ulazni podaci
17 1. Ulazni podaci Brzinska karakteristika motora P MAX M MAX n MIN n Mmax n Pmax n MAX
18 1. Ulazni podaci Brzinska karakteristika motora Očitavanje brzinske karakteristike motora SUS sa dijagrama KARAKTERISTIČNE TAČKE: n MIN minimalni broj obrtaja motora n MIN broj obrtaja motora pri maks. obrtnom momentu n Mmax maksimalni obrtni moment M MAX broj obrtaja motora pri maksimalnoj snazi n Pmax maksimalna snaga P MAX maksimalni broj obrtaja motora n MAX DIMENZIJE: n (o/min) M (Nm) P (kw)
19 1. Ulazni podaci Brzinska karakteristika motora Očitavanje brzinske karakteristike motora SUS sa dijagrama n (o/min) M (Nm) P (kw) Tabela mora da sadrži tačke P MAX i M MAX! P(n) = M(n) n / 9554 (kw) Tip: za P MAX izračunati M Pmax = 9554 P MAX MAX /n Pmax
20 1. Ulazni podaci Brzinska karakteristika motora Grafički prikaz i poređenje sa izvorom (provera tačnosti) M (Nm) M (Nm) 30 P (kw) P (kw) n (o/min)
21 1. Ulazni podaci
22 2. Otpori kretanja Konstantna brzina F IN = 0 F f = f G cos Za uobičajene uglove uzdužnog nagiba je: cos 1 F f = f G Otpor kotrljanja f (v) = f 0 +C 1 v+c 2 v 4, v (km/h) f 0 = 0,01 C 1 = 5, C 2 = 1, F W = 0,0473 C W A v 2, v (km/h) SNAGE OTPORA: P f = F f v / 3600 P W = F W v / 3600 P = F v / 3600 Otpor vazduha F = G sin Otpor uspona
23 2. Otpori kretanja
24 2. Otpori kretanja
25 2. Otpori kretanja
26 2. Otpori kretanja
27 2. Otpori kretanja
28 2. Otpori kretanja
29 3. Vučno-brzinska karakteristika Idealna hiperbola vuče F Oid 3600 P v MAX TR F Oid (v) v Stvarne krive vuče u pojedinim stepenima prenosa: F O M i m i r GP D TR M M(n) F O F O (v) v 0,377 r i i m GP D n n i m = const v
30 3. Vučno-brzinska karakteristika
31 3. Vučno-brzinska karakteristika
32 3. Vučno-brzinska karakteristika
33 3. Vučno-brzinska karakteristika
34 4. Ubrzanje i parametri ubrzanja Izračunavanje dinamičke karakteristike i ubrzanja D FO F G W dinamička karakteristika F W = 0,0473 c W A v 2 f = 0,01+5, v v 4 a D f g ubrzanje (m/s 2 ) δ = i 2 TR I = (i GP i I ) 2 II = (i GP i II ) 2... itd.
35 4. Ubrzanje i parametri ubrzanja ITD.
36 Izračunavanje ubrzanja vozila Ubrzanje a(m/s^2) ai aii aiii aiv av v (km/h)
37 Vreme zaleta a dv dt dt dv a v 1 t dv a 0 1/a 2 (s /m) IV V 1/a 2 (s /m) V III III IV II II I v(km/h) I 4 A5 A6 A7 A A A A A A 3 v v v v v v 2 v 4 6 v v 8 v v v 12 A A A 13 v 14 A A v13 v v(km/h) 15
38 Grafička integracija 1/a (s 2 /m) t Z A - vreme zaleta od v 1 do v 2 3,6 v 1 v 2 A v (km/h) Pošto je brzina izražena u km/h, veličina površine se mora podeliti sa 3,6 da bi se dobilo vreme zaleta!
39 Praktično određivanje vremena zaleta 1/a (s 2 /m) 1/ai 1/a i-1 A i v (km/h) v i-1 v i t i Ai Δv a 3.6 SR (v i v i 1 1 ) a i 1 a i 1 POVRŠINA TRAPEZA Korekcija zbog v u [km/h] VREME ZALETA OD v i-1 DO v i
40 Praktično određivanje vremena zaleta t Z = t i UKUPNO VREME ZALETA 1/a (s 2 /m) 1 v1 a1 Δt1 3.6 v 1 v (km/h) 1. FAZA: ubrzavanje sa klizanjem spojnice pri M MAX PROMENA STEPENA PRENOSA (nije uzet u obzir prekid toka snage)
41 Praktično određivanje vremena zaleta 1/a (s 2 /m) v (km/h)
42 Proračun vremena i puta zaleta Napomena: prva vrednost brzine za koju se računa t Z je v 1 brzina pri maksimalnom momentu u prvom stepenu prenosa (završetak klizanja spojnice)!
43 Određivanje puta zaleta t (s) v ds dt ds v dt s t v dt 0 t i t i-1 s i (t i t i 1 1 ) (vi v i 1 ) v (km/h) v i v i-1 s Z = s i UKUPAN PUT ZALETA
44 Vreme i put zaleta 40, ,0 30, ,0 (s) t 20, s (m) vreme zaleta put zaleta 15,0 10, ,0 0, v (km/h)
45 Zavisnost između vremena i puta zaleta 40,0 35,0 30,0 25,0 (s) t 20,0 15,0 10,0 5,0 0, s (m)
46 Postupak pri određivanju parametara ubrzanja - rezime a) Odrediti faze ubrzanja: 1. Faza ubrzavanja sa klizanjem spojnice od v=0 do v=v 1 2. Faza ubrzavanja u prvom stepenu prenosa (odrediti odgovarajući interval brzina) 3. Faza ubrzavanja u drugom stepenu prenosa (odrediti odgovarajući interval brzina) Itd. (Ograničiti najveću brzinu koja se uzima u obzir! npr. 160 km/h) b) Proračun parcijalnih vremena zaleta između dve susedne vrednosti brzine c) Sumiranje parcijalnih vremena zaleta d) Proračun parcijalnih puteva zaleta između dve susedne vrednosti brzine e) Sumiranje parcijalnih puteva zaleta f) Crtanje dijagrama: 1. t Z, s Z = f(v) 2. t Z = f(s Z )
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
VUČNI PRORAČUN MOTORNOG VOZILA
FTN Novi Sad Departman za mehanizaciju i konstrukciono mašinstvo Katedra za motore i vozila DRUMSKA VOZILA VUČNI PRORAČUN MOTORNOG VOZILA UPUTSTVO ZA IZRADU SEMESTRALNOG ZADATKA Novi Sad, 2009. Sadržaj
Stepen korisnosti transmisije
Stepen korisnosti transmisije Otpori transmisije unutrašnji otpori kretanja Šeme transmisije POGON NAPRED POGON NAZAD 4X4 M m+gp M m M m GP R Transmisija = sistem mehaničkih prenosnika KP KP GP GP M motor,
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Prenos snage / momenta na pogonski točak
Preos sage / mometa a pogoski točak TRANSISIJA P OT, OT, OT parametri sage i TR, η TR P T, T, T parametri sage Trasmisija trasformacija i pri preosu od motora do točka (i TR ) eergetski gubici (η TR
Izbor prenosnih odnosa teretnog vozila - primer
FTN No Sad Katedra za motore ozla Teorja kretanja drumskh ozla Izbor prenosnh odnosa Izbor prenosnh odnosa teretnog ozla - prmer ata je karakterstka dzel motora MG OM 906 LA (Izor: http://www.dmg-dusburg.de/html/d_c_om906la.html)
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila. Potrošnja goriva. Potrošnja goriva
Ključni faktori: 1. ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Povećanje E K pri ubrzavanju, pri penjanju, kompenzacija energetskih gubitaka usled dejstva F f i F W Zavisi od parametara
Potrošnja goriva. Ključni faktori: ENERGIJA potrebna za kretanje vozila na određenoj deonici puta. ENERGETSKA EFIKASNOST pogonskog motora
Ključni faktori: ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Zavisi od parametara vozila i njegove interakcije sa okolinom (c W, A, G, f) Zavisi od parametara voznog ciklusa (profil
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
IV. PRORAČUN VUČE (VUČNI BILANS)
IV. PRORAČUN VUČE (VUČNI BILANS) IV.1 Bilans sila Pod vučnim bilansom sila podrazumeva se zbir svih sila otpore koje dejstvuju na vozilo u kretanju, odnosno zbir: sile otpora kotrljanju R f,, otpora vetra
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Zadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)
Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD
Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
III. OSNOVNI VIDOVI KRETANJA U PRIRODI
III. OSNOVNI VIDOVI KRETANJA U PRIRODI U prirodi su sva kretanja životinja prilagođena kretanju po besputnim terenima i savlađivanju prepreka različitih vrsta, te otuda toliko različitih načina kretanja
Slika III. 1 Utrošak snage za razne vidove kretanja, pri brzini od 32 km/h
III. OSNOVNI VIDOVI KRETANJA U PRIRODI U prirodi su sva kretanja zivotinja prilagođena kretanju po besputnim terenima i savlađivanju prepreka različitih vrsta, te otuda toliko različitih načina kretanja
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER
L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,
INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50
INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
LOGO ISPITIVANJE MATERIJALA ZATEZANJEM
LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul
Ubrzanje. Parametri ubrzanja: vreme zaleta put zaleta Koliko sekundi / metara je potrebno da bi se dostigla određena brzina?
Paamet ubzanja: veme zaleta put zaleta Kolko sekund / metaa je potebno da b se dostgla odeđena bzna? Važnost: gadska vožnja petcanje bezbednost Utcaj: dnamčke kaaktestke pogonskog motoa vozla boj penosnh
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Geometrijske karakteristike poprenih presjeka nosaa. 9. dio
Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA
Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656
TehniËki podaci Tip ureappeaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 66 Nazivna topotna snaga (na /),122,,28, 7,436,,47,6 1,16,7 Nazivna topotna snaga (na 60/) 4,21,,621, 7,23,,246,4 14,663,2
Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd
Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
TEORIJA BETONSKIH KONSTRUKCIJA 79
TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )
ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Opšte KROVNI POKRIVAČI I
1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
PRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
Algoritmi zadaci za kontrolni
Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Srednjenaponski izolatori
Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125
TEORIJA KRETANJA DRUMSKIH VOZILA
Departman za mehanizaciju i konstrukciono mašinstvo Katedra za motore i vozila EORIJA KREANJA DRUMSKIH VOZILA Skripta Mr Boris Stojić, dipl. inž. maš. Novi Sad, februar 2012. radna verzija Ova strana je
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
TEORIJA KRETANJA DRUMSKIH VOZILA
Departman za mehanizaciju i konstrukciono mašinstvo Katedra za motore i vozila EORIJA KREANJA DRUMSKIH VOZILA Skripta Mr Boris Stojić, dipl. inž. maš. Novi Sad, maj 2012. radna verzija REŠKE I NEDOSACI
OSNOVI AERODINAMIKE DRUMSKIH VOZILA
OSNOVI AERODINAMIKE DRUMSKIH VOZILA OSNOVI AERODINAMIKE DRUMSKIH VOZILA Pretpostavke Bernulijeve jednačine: Nestišljiv fluid Konzervacija energije p DIN + p ST = p TOT = const Prema: T.D. Gillespie ρ v
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet
Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri
Vektorska analiza doc. dr. Edin Berberović.
Vektorska analiza doc. dr. Edin Berberović eberberovic@mf.unze.ba Vektorska analiza Vektorska algebra (ponavljanje) Vektorske funkcije (funkcije sa vektorima) Jednostavna analiza (diferenciranje) Učenje
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Proračunski model - pravougaoni presek
Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
MEHANIKA FLUIDA. Složeni cevovodi
MEHANIKA FLUIDA Složeni cevovoi.zaata. Iz va velia otvorena rezervoara sa istim nivoima H=0 m ističe voa roz cevi I i II istih prečnia i užina: =00mm, l=5m i magisalni cevovo užine L=00m, prečnia D=50mm.
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Formiranje optimalne konfiguracije teretnog vozila u skladu sa potrebama i mogućnostima naručioca, ponudom proizvođača i nadgraditelja.
Formiranje optimalne konfiguracije teretnog vozila u skladu sa potrebama i mogućnostima naručioca, ponudom proizvođača i nadgraditelja. Mora postojati interakcija sve tri uključene strane: -poznavanje
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD
10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta
Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom
Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove