Mühazirə 4. HİDROGENƏBƏNZƏR ATOMLAR ÜÇÜN ŞREDİNGER TƏNLİYİNİN HƏLLİ. Nüvədən və bir elektrondan ibarət sistemlərə hidrogenəbənzər sistemlər deyilir.
|
|
- ῬαΧάβ Νικολάκος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Mühazirə. HİDROGENƏBƏNZƏR ATOMLAR ÜÇÜN ŞREDİNGER TƏNLİYİNİN HƏLLİ H He Nüvədə və bir eektroda ibarət sistemərə hidrogeəbəzər sistemər deyiir. + Li + Be + və s. Burada z - üvəi sıra ömrəsi r - üvədə eektroa qədər məsafə yükdür. e 6 9 k e - eemetar Görüdüyü kimi hidrogeəbəzər atomarda eektro üvəi yaratdığı mərkəzi sahədə hərəkət edir. Sahəi potesiaı aşağıdakı kimi ifadə ouur: Ze U ( r) r (5) (5)-i əzərə amaqa hidrogeəbəzər atomarı dağa fuksiyasıı radia hissəsi üçü Şrediger təiyii aşağıdakı kimi yazarıq: h r m r dr + dr h ( + ) Ze mr r R( r) ER( r) Təik ikicitərtibi diferesia təikdir. Müəyyə şərtər daxiidə ou həi mümküdür. Məum oub ki eerjii məfi diskret qiymətəri üçü (6) Şrediger təiyii kəsiməz və birqiyməti həəri aşağıdakı kimi ifadə ouur: ( )! { ( + )!} z ( ) ρ + R r e L ( ρ) + (7) ao ρ (6) ρ h 8 r; ao 59 o me z a sm d L L e dx (8) x d x L e ( x e ) (9) dx Bu ifadəərdə ao - H atomuda I Bor orbitii radiusudur. - ormaaşmış Laqer L
2 poiomudur. Məumdur ki kəsr ədədəri və məfi ədədəri faktoriaarı təyi oumayıb. Oa görə də (7) ifadəsidə şərtidə -i aacağı ə böyük qiymət our. Aydıdır ki ədədi... tam qiymətər aır. isə... qiyməti aır. (6) Şrediger təiyii həidə həm də hidrogeəbəzər atomarı eerjisi üçü ifadə tapıır: E mz e... h Hidrogeəbəzər atomarı dağa fuksiyası isə (7) düsturu iə müəyyə oua () R radia fuksiyaara Y m kompeks fuksiyaarı hasii şəkidə axtarıa biər: ( rθϕ) R ( r) Y ( θϕ) m m () ()-da görüdüyü kimi hidrogeəbəzər atomarı eerjisi diskret qiymətər aır. Məs: me z oduqda E 6eV h E E ev E E 5eV 9 E E 8eV 6 ev 6 Eerjii qiymətəridə istifadə etməkə H atomuu eerji səviyyəərii qurmaq oar. Bor postuatarıda istifadə etməkə iki səviyyə arasıdakı keçidi teziyii hesabamaq oar. hν E E ( > k) ν k k E E h k k 9 c
3 II III və s. səviyyəərdə I səviyyəyə keçidər Layma seriyasıı verir. Yuxarı səviyyəərdə II eerji səviyyəsiə keçidər Bamer seriyasıı III-ə keçidər Paşe seriyasıı və s. verir. İdi də iki qoşu eerji səviyyəsi arasıdakı fərqi hesabayaq: Δ E E+ h im ΔE E Görüdüyü kimi E + ( + ) ( + ) h ( + ) h + h ( + ) oduqda eerji səviyyəəri bir-biriə yaxıaşır və soda üst-üstə düşürər. Başqa sözə eerjii diskretiyi kəsiməzikə əvəz ouur. Bu da kvat mexaikasıda kassik fizikaya keçiddir. ()-də məum our ki hidrogeəbəzər atomarı dağa fuksiyası kvat ədədi iə müəyyə ouur. - baş - orbita m - maqit kvat ədədidir. Bu kvat ədədərii hər biri mərkəzi sahədə müəyyə saxama qauuu ödəməsi iə əaqədar yaraır. Baş kvat ədədi mərkəzi sahədə hərəkət edə zərrəciyi eerjisii saxaması iə əaqədar yaraır.... kimi tam qiymətər aır. ()-a əsasə zərrəciyi eerjisii müəyyə edir. Baş kvat ədədi həm də atom orbitaıa uyğu eektro buuduu öçüsüü müəyyə edir. Beə ki radiusu s orbitaıa uyğu sferaı radiusuda böyükdür. s orbitaıa uyğu sferaı orbita kvat ədədi mərkəzi sahədə hərəkət edə zərrəciyi impus mometii saxaması iə əaqədar yaraır. -i verimiş qiymətidə edir:... M h ( +) m kimi tam qiymətər aır. zərrəciyi impus mometii müəyyə maqit kvat ədədi mərkəzi sahədə hərəkt edə zərrəciyi impus mometii üstü istiqamət üzrə (xarici maqit sahəsi üzrə) proyeksiyasıı saxaması iə əaqədar yaraır.
4 veridikdə m qədər + sayda tam qiymətər aır. z kəmiyyətii müəyyə edir. M z hm () və ()-də görüdüyü kimi hidrogeəbəzər atomarda eektrou eerjisi yaız baş kvat ədədidə dağa fuksiyası isə hər kvat ədədidə asııdır. Oda eerjii iə veriə hər bir qiymətiə bir-biridə və m kvat ədədəri iə fərqəə dağa fuksiyaarı uyğu gəir. Başqa sözə hidrogeəbəzər atomarı eerji səviyyəəri cıraşmış our. Cıraşmaı tərtibii müəyyə edək: f + ( + ) m M Beəikə əsas hada başqa hidrogeəbəzər atomarı bütü eerji səviyyəəri tərtibdə cıraşmış our. Xüsusi haa baxaq: E h m m 9 m Hidrogeəbəzər atomarı () düsturu iə müəyyə oua dağa fuksiyasıa bəzə atom orbitaarı da deyiir. ()-də Y m fuksiyaarı kompeks fuksiyaar oduğuda oa kompeks atom orbitaarı deyiir. Laki bəzi məsəəəri həi zamaı həqiqi atom orbitaarıda istifadə etmək azım gəir. Məs: atom orbitaarıa uyğu eektro buudarıı formasıı qurarkə həqiqi atom orbitaarıda istifadə ouur. Bu orbitaarı amaq üçü superpozisiya prisipidə istifadə ediir. Kompeks Y m m( θϕ ) fuksiyaarıı eə xətti kombiasiyaarı quruur ki aımış yei fuksiyaar həqiqi osuar. Həqiqi sferik fuksiyaarı oar aşağıdakı kimi təyi ouurar: S kimi işarə edirər və
5 S m ( θϕ) ( + δ ) mo Ρ π m ( cosθ ) cos mϕ si mϕ m m < () ()-də istifadə etməkə hidrogeəbəzər atomarı həqiqi atom orbitaarı üçü aşağıdakı ifadəi yaza biərik: ( rθϕ ) R ( r) S ( θϕ) m m () Lejadr fuksiyasıı ifadəsidə istifadə etməkə həqiqi sferik fuksiyaarı bəziəri üçü aşağıdakı ifadəi aarıq: S S ( θϕ) ; S ( θϕ) siθ cosϕ ( θϕ) siθ siϕ; S ( θϕ) cosθ () və () iə müəyyə oua atom orbitaarı eəcə də ou ayrı-ayrı hissəəri aşağıdakı ortoormaıq şərtərii ödəyirər: ( rθϕ) ( rθϕ) m m dv δ R ( r) R ( r) r dr δ π π () (5) ( θϕ ) S ( θϕ) S m m siθ dθ dϕ δ (6) π π ( θϕ) Y ( θϕ) Y m m siθ dθ dϕ δ (7)
x = l divarları ilə hüdudlanmış oblastda baş verir:
Müazirə 3. BİRÖLÇÜLÜ POTNSİAL ÇUXURDA HİSSƏCİYİN HƏRƏKƏTİNİN ŞRDİNGR TƏNLİYİ Tutaq ki, zərrəcik sosuz üür və keçiəz ivarara üuaış fəza obastıa ərəkət eir. Beə obasta potesia çuur eyiir. Divarar keçiəz
Mərkəzi sahə yaxınlaşmasına əsasən atomda elektronun halı nlmlm s
Mühaiə 8. ATOMDA ELEKTRONN HALLARI. ATOM ORBİTALLARININ İŞARƏLƏNMƏİ Məkəi ahə aıaşmaıa əaə atomda eektou haı mm kimi kvat ədədi iə təvi edii. Atom obitaaıı işaə etmək üçü də bu kvat ədədəidə itifadə ouu.
Azərbaycan Dövlət Aqrar Universiteti. mühəndislik ixtisasları. Aqrar fizika və riyaziyyat. f.-r.e.n., dosent Ağayev Q.Ü.
Azərbayca Dövlət Aqrar Uivrsitti. Fakültə: müədislik ixtisasları Kafdra: Aqrar fizika və riyaziyyat Fə: Fizika Müazirəçi: f.-r..., dost Ağayv Q.Ü. Ədəbiyyat:. Савельев И.В. Общий курс физики. I, II, III
E.Q. Orucov TƏTBİQİ FUNKSİONAL ANALİZİN ELEMENTLƏRİ
E.Q. Orucov TƏTBİQİ FUNKSİONL NLİZİN ELEMENTLƏRİ Baı 8 3 Elmi redator: BDU-u Tətbiqi riyaziyyat afedrasıı müdiri, ME-ı aademii Qasımov M.G. Rəyçilər: fizia-riyaziyyat elmləri dotoru, rofessor İsgədərov
KURS LAYİHƏSİ AZƏRBAYCAN RESPUBLİKASI TƏHSİL NAZİRLİYİ AZƏRBAYCAN DÖVLƏT NEFT AKADEMİYASI. Fakültə: QNM
AZƏRBAYCAN RESPUBLİKASI TƏHSİL NAZİRLİYİ AZƏRBAYCAN DÖVLƏT NEFT AKADEMİYASI Fakültə QNM Kafedra Qaz və q/k yataqlarının işlənməsi və istismarı Qrup 2378 İxtisas T020500 KURS LAYİHƏSİ Fənn Neft və qaz yataqlarının
AZƏRBAYCAN DÖVLƏT NEFT VƏ SƏNAYE UNİVERSİTETİ MÜHƏNDİS GEOLOJİ QRAFİKA
AZƏRBAYCAN DÖVLƏT NEFT VƏ SƏNAYE UNİVERSİTETİ MÜHƏNDİS GEOLOJİ QRAFİKA Laboratoriya işlərinin yerinə yetirilməsinə dair METODİKİ GÖSTƏRİŞLƏR AZƏRBAYCAN DÖVLƏT NEFT VƏ SƏNAYE UNİVERSİTETİ HƏBİBOV İ.Ə.,
Е. S. C Ə F Ə R O V F İ Z İ K A
Е. S. C Ə F Ə R O V F İ Z İ K A Abituriyentlər, orta məktəbin yuxarı sinif şagirdləri, orta məktəb müəllimləri, fizikanı sərbəst öyrənənlər üçün vəsait B A K I - 2013 Elmi redaktor: AMEA-nın Radiasiya
3. Sərbəst işlərin mövzuları və hazırlanma qaydaları
3. Sərbəst işlərin mövzuları və hazırlanma qaydaları Təhvil verilmə tarixi (həftə) Mövzunun adı və ədəbiyyatın şifri 1. 3 Koordinatları ilə verilmiş nöqtələrin hər üç proyeksiyasını və əyani təsvirini
Respublikanın ümumtəhsil məktəblərinin 9-cu sinifləri üçün Cəbr 9 dərsliyi
Respublikanın ümumtəhsil məktəblərinin 9-cu sinifləri üçün Cəbr 9 dərsliyi Müəlliflər: Misir Mərdanov Məmməd Yaqubov Sabir Mirzəyev Ağababa İbrahimov İlham Hüseynov Məhəmməd Kərimov Bakı: Çaşıoğlu, 0.
12. Elektrostatika. Elektrostatika sükunətdə olan elektrik yüklərinin qarşılıqlı təsirini və sabit elektrik cərəyanının xüsusiyyətlərini öyrənir.
. Elektrostatika Elektrostatika sükunətdə olan elektrik yüklərinin qarşılıqlı təsirini və sabit elektrik cərəyanının xüsusiyyətlərini öyrənir. - Elektrik yükləri Elektrik yükü cismin və ya zərrəciyin daxili
Riyaziyyat. 2. f(x) = (2x 3 4x 2 )e x funksiyasının törəməsini tapın. e) Heç biri
Riyaziyyat 1. Beş müxtəlif rəngdə bayraq verilmişdir. Hər bir siqnal iki fərqli bayraq vasitəsilə yaradılır. Belə olan halda bayraqlardan biri yuxarı, digəri isə aşağı istiqamətdə olur. Neçə belə müxtəlif
TƏQRIBI HESABLAMA ÜSULLARI
YƏƏDOV Də əı ə SS E-ı e və İ əəşı: - eə əə Vəəəov və ƏŞəev ə veşə E eo: İıov - eə ə oe TƏQIBI HESB ÜSUI 5 əəov Y Tə e üı əəə üçü ə Bı: «Bı Uvee» əşı 8 88 ə şə əəə üçü ə Tə o ə üç əə ə B əə ə üı əə ə ə
Azərbaycan Respublikası Təhsil Nazirliyi Azərbaycan Dövlət Neft Akademiyası. АDNА-nın 90 illik yubilеyinə həsr еdilir
M Ktabaa Aərbaca espubası Təhs Nar Aərbaca Dövət Neft Aadeası АDNА-ı 9 ubеə həsr еdr NЕFTQАZ MƏDƏN MАŞIN VƏ АVАDАNLIQLАININ АVTОMАTLАŞDIILMIŞ LАYIHƏLƏNDIMƏ SISTЕMI VƏ MÜHƏNDIS HЕSАBLАMА MЕTОDLАI (А tех
18x 3x. x + 4 = 1 tənliyinin kökləri hasilini
1. Mərəzləri düzucqlı üçucğın iti ucq təpələrində oln ii çevrənin əsişmə nöqtələrindən iri düzucq təpəsindədir. Üçucğın tetləri sm və sm olrs, çevrələrin əsişmə nöqtələri rsındı məsfəni ) 5, sm ) 8 sm
Bakı Dövlət Universiteti. Mühazirəçi: dosent Lalə İslam qızı Vəliyeva
Bakı Dövlət Universiteti Nanomaterialların n kimyəvi ə ifizikası ikas kafedrası Mühazirəçi: dosent Lalə İslam qızı Vəliyeva MÜHAZİRƏ-4 (ardı) NANOMATERİALLARIN TƏDQİQİNDƏ İSTİFADƏ OLUNAN ÜSULLAR SKANEDICI
ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2
Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A
POLİMERLƏRİN FİZİKİ KİMYASI
E.Ə.MƏSİMOV E.Ə.MƏSİMOV POLİMERLƏRİN FİZİKİ KİMYASI POLİMERLƏRİN FİZİKİ KİMYASI H N R C H O C N H H C R C O H N R C H O C Ali məktəblər üçün dərslik Azərbaycan Respublikası Təhsil Nazirliyinin may 8-ci
AZƏRBAYCAN RESPUBLİKASI TƏHSİL NAZİRLİYİ AZƏRBAYCAN TEXNİKİ UNİVERSİTETİ «AVTOMOBİL TEXNİKASI» KAFEDRASI
AZƏRBAYCAN RESPUBLİKASI TƏHSİL NAZİRLİYİ AZƏRBAYCAN TEXNİKİ UNİVERSİTETİ «AVTOMOBİL TEXNİKASI» KAFEDRASI "AVTOMOBİLLƏRİN NƏZƏRİYYƏSİ, KONSTRUKSİYA EDİLMƏSİ VƏ HESABI 2" FƏNNİNDƏN MÜHAZİRƏLƏR KONSPEKTİ
Mühazirə 1: YMB - kimyasi haqqında ümumi məlumat və əsas anlayişlar
Fənn: Yüksək molekullu birləşmələr kimyası Müəllim: Yavər əfər qızı Qasımova Fakültə: Kimya İxtisas: Kimya müəllimliyi Kafedra: Üzvi kimya və kimya texnologiyası Təhsil pilləsi: Bakalavr Mühazirə 1: YMB
Giriş. 1. Revstal emiqramları (x = T; y = - Rlnp); 2. Şou teftoqramları (x= T; y = ); 3. Revstal aeroqramları (x = InT; y = - RTInp);
Giriş Meteoroloji bölmələrdə müxtəlif hava xəritələri ilə bərabər, aeroloji müşahidələrin nəticələrinə görə də xüsusi qrafiklər, blanklar tərtib olunur ki, bunlara da aeroloji diaqramlar deyilir. Bu diaqramlar
Bakı Dövlət Universiteti. Mühazirəçi: dosent Lalə İslam qızı Vəliyeva
Bakı Dövlət Universiteti Nanomaterialların n kimyəvi ə ifizikası ikas kafedrası Mühazirəçi: dosent Lalə İslam qızı Vəliyeva 1 NANOTEXNOLOGİYALARIN TƏDBİQ Ə QSAHƏLƏRİ. Ə Ə BİO- VƏ TİBBİ NANOTEXNOLOGİYALAR
FƏSİL IX ELEKROMAQNİT İNDUKSİYASI ÜÇÜN FARADEY QANUNU
FƏSİL IX ELEKROMAQNİT İNDUKSİYASI ÜÇÜN FARADEY QANUNU İŞARƏLƏMƏLƏR İştirakçılar: M - müəllim T 1, T2 - tələbələr və Ş - şagird 9-1 Faradeyin induksiya anunu 9-2 Hərəkət e. h. -si 9-3 Lens anunu 9-4 İnduksiya
NMR-SPEKTROSKOPIYA Nüvənin spini + + Protonun maqnit sahəsində presessiyası Zeeman effekti Zeeman effekti H0 maqnit sahəsi təsirindən protonun istiqamətlənməsi Spin kvant ədədi I = ½ olan çox sayda
M Ü H A Z İ R Ə NANOTEXNOLOGİYALARIN TƏDBİQ SAHƏLƏRİ. NANOELEKTRONİKA: nanoobyektlər əsasında işləyən elektron qurğuları.
85 M Ü H A Z İ R Ə - 12-13 NANOTEXNOLOGİYALARIN TƏDBİQ SAHƏLƏRİ. NANOELEKTRONİKA: nanoobyektlər əsasında işləyən elektron qurğuları. Hazirki dövrdə nanotexnologiyalarin tədbiq sahələri dedikdə, fikrimizə
Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)
8 Κανόνας της αλυσίδας Από τον Απειροστικό Λογισμό για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι: Αν g : I R R και f : J R R είναι συναρτήσεις ( όπου I, J ανοικτά διαστήματα ώστε, g( τότε η : I g I J
Azərbaycan Dövlət Aqrar Universiteti. mühəndislik ixtisasları. Aqrar fizika və riyaziyyat. f.-r.e.n., dosent Ağayev Q.Ü.
Azərbyc Dövlət Aqrr ivrsitti. Fkültə: mühədislik ixtisslrı Kfdr: Aqrr fizik və riyziyyt Fə: Fizik Mühzirəçi: f.-r..., dost Ağyv Q.Ü. Ədəbiyyt:. Савельев И.В. Общий курс физики. I, II, III т.т. М. 989..
Fizikadan imtahan suallarının cavabları. (AZ)
Fzkada mtaha suallaıı cavablaı. (AZ). Механики щярякят. Мадди нюгтя. Йол. Йердяйишмя. Madd csmlədə baş veə hə cü dəyşklk hadsə adlaı. Buzu əməs, ldıım çaxması, aqldə cəəya keçəkə stlk ayılması və s. hadsələ
Sabit cərəyan dövrələri
Fəsil VI Sabit cərəyan dövrələri ƏLVƏ İŞƏLƏMƏLƏ İştirakçılar: M - müəllim T, T - tələbələr və Ş - şagird Ɛ elektrik hərəkət qüvvəsi, sadə olaraq e. h. q r daxili müqavimət ekv ekvivalent müqavimət dövrənin
1. nisbəti nəyi ifаdə еdir.
##book_id=79//book_e= FIZII - OLLOID IMY// ##fk=03//ks=03//f=79// sulltest= 696 // ##Fkültə: iy və biologiy ##fedr: litik və fiziki kiy ##İtiss: iy, iy və biologiy ##Bölə: zərbyc ##Qrup - si: 30, 30, 303,
Bakı Dövlət Universiteti. Mühazirəçi: dosent Lalə İslam qızı Vəliyeva
Bakı Dövlət Universiteti Nanomaterialların n kimyəvi ə ifizikası ikas kafedrası Mühazirəçi: dosent Lalə İslam qızı Vəliyeva MÜHAZİRƏ-4 NANOMATERİALLARIN TƏDQİQİNDƏ İSTİFADƏ OLUNAN ÜSULLAR İnsan gözünün
Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος
Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί το ολοκλήρωμα I = x e + z dv όπου = [, ] [,] [,] Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω
Azərbaycan Dövlət Aqrar Universiteti. mühəndislik ixtisasları. Aqrar fizika və riyaziyyat. f.-r.e.n., dosent Ağayev Q.Ü.
Aərbaan Dövlə Aqrar niversiei. Fakülə: üəndislik iisasları Kafedra: Aqrar fiika və riaia Fənn: Fiika Müairəçi: f.-r.e.n., dosen Ağaev Q.Ü. Ədəbia: 1. Савельев И.В. Общий курс физики. I, II, III т.т. М.
II. KINEMATIKA Kinematikaya giriş
II. KINEMTIK.1. Kinematikaya giriş Kinematika nəəri mexanikanın elə bir bölməsidir ki, burada cisimlərin hərəkəti həndəsi nöqteyi-nəərdən, yəni onların kütlələri və təsir edən qüvvələr nəərə alınmadan
MÜHAZİRƏ - 3. Karbon klasterləri: füllerenlər, nanoborular, nanoalmazlar və qrafen
21 MÜHAZİRƏ - 3 Karbon klasterləri: füllerenlər, nanoborular, nanoalmazlar və qrafen Nano aləmdə hal-hazırda mövcud olan klasterlər içərisində karbon atomundan yarananları həm sadəliyi, həm dayanıqlılığı
Elektrik dövrələri nəzəriyyəsi fənnindən kollokvium suallarının cavabları
lektk dövələ əzəyyəs fədə kollokv sallaıı cavablaı. KTRİK DÖVRƏSİ ƏRƏYAN VƏ GƏRGİNİYİN MÜSBƏT İSTİQAMƏTƏRİ lektk dövəs dedkdə cəəyaı keçəs tə edə lektk dövəs üç hssədə baətd.. ej əbəy (gəglk və cəəya əbələ)..
ÜMUMİ FİZİKA KURSU MOLEKULYAR FİZİKA. Niftalı QOCAYEV. II Cild. Universitetlər üçün dərslik
Niftalı QOCAYEV ÜMUMİ FİZİKA KURSU II Cild MOLEKULYAR FİZİKA Universitetlər üçün dərslik Dərslik Azərbaycan Respublikası Təhsil Nazirliyinin 01 aprel 2008-ci il tarixli 397 saylı əmri ilə tövsiyə olunmuşdur.
A.M.QAFAROV, P.H.SÜLEYMANOV, F.İ.MƏMMƏDOV
A.M.QAFAROV, P.H.SÜLEYMANOV, F.İ.MƏMMƏDOV METROLOGİYA STANDARTLAŞDIRMA VƏ SERTİFİKATLAŞDIRMA (Metrologiya, standartlaşdırma və sertifikatlaşdırma fənnindən kurs işlərinin yerinə yetirilməsi üçün metodiki
Astronomiya. Onun bölmələri,öyrəndiyi əsas mənbələr Astrometriya a)sferik astronomiyada b)fundamental astrometriyada c)praktik astronomiyada
Astronomiya. Onun bölmələri,öyrəndiyi əsas mənbələr Astronomiya ən qədim təbiət elmidir.o,göy cisimlərini öyrənir.yunanca astron -göy cismi,ulduz, nomos -qanun,elm deməkdir.bir neçə elmi istiqamətlərdən
MEXANIKA VƏ MOLEKULYAR FIZIKA
F.A.ƏHMƏDOV MEXANIKA VƏ MOLEKULYAR FIZIKA 0 F.A.ƏHMƏDOV MEXANIKA VƏ MOLEKULYAR FIZIKA Ali məktəb tələbələri üçün dərs vəsaiti Azərbaycan Resпublikası əhsil Nazirliyinin 08.07.004- cü il tarixli 64 saylı
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Laboratoriya işi 6. SZM şəkillərinin işlənməsi və kəmiyyətcə təhlili
Laboratoriya işi 6. SZM şəkillərinin işlənməsi və kəmiyyətcə təhlili 6.1. İşin məqsədi...........136 6.2. İşin məzmunu........136 6.3. Tapşırıq.........140 6.4. Metodik göstərişlər..........141 6.5. Yoxlama
Nayma Qəhrəmanova Məhəmməd Kərimov İlham Hüseynov RİYAZİYYAT 10
Nama Qəhrəmanova Məhəmməd Kərimov İlham Hüsenov RİYAZİYYAT 0 Ümumtəhsil məktəblərinin 0-cu sinfi üçün Riaziat fənni üzrə dərsliin METODİK VƏSAİTİ Bu nəşrlə bağlı irad və təkliflərinizi radius_n@hotmail.com
Müəlliflər (əlifba sırası ilə)
1 Müəlliflər (əlifba sırası ilə) A B C Ç D E Ə Əzimə Nəsibova F G H X Xanım İsmayılova İ J K Könül İsmayılzadə Q L M Magistr OL N O Ö P R Reşad Əbilzadə S Ş Şəbnəm Nuruyeva T Təhmasib Quluzadə Turqut İsmayılov
Verbal hissə. Analogiyalar
Verbal hissə Analogiyalar Bu cür tapşırıqlarda tünd şriftlə göstərilmiş iki söz (başlanğıc cütlük) verilmişdir. Onların mənaları arasında müəyyən əlaqə vardır. Onların boyunca verilmiş sözü ehtimal olunan
ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες
ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α. Τριγωνομετρικές Ταυτότητες Β. Αναπτύγματα σε σειρές Για
Xələfli A.A. Redaktor: Əməkdar elm xadimi professor M.İ.İsayeva. Ali məktəb tələbələri üçün dərslik s., 53 şəkil, 7 cədvəl.
Xələfli A.A. BAKI- 2009 Redaktor: Əməkdar elm xadimi professor M.İ.İsayeva Ali məktəb tələbələri üçün dərslik. 2009. 181 s., 53 şəkil, 7 cədvəl. Xələfli A.A. Paleomaqnetizm. Rəyçilər: AMEA müxbir üzvü
"Proqramlaşdırma dilləri və İnformatika" fənnindən imtahan cavabları. 1. İnformasiya anlayışı, onun mövcudolma və təsvir formaları.
"Proqramlaşdırma dilləri və İnformatika" fənnindən imtahan cavabları. 1. İnformasiya anlayışı, onun mövcudolma və təsvir formaları. İnformasiya ifadə olunma formasından asılı olmayaraq insanlar, canlılar,
1.Kompleks ədədlərin ustlü şəkli və onlar üzərində əməllər. 2.Qeyri müəyyən inteqral. Dəyişənin əvəz edilmə üsulu
1 Sərəst mövzulr: 1.Kompleks ədədlərin ustlü şəkli və onlr üzərində əməllər 2.Qeyri müəyyən inteqrl. Dəyişənin əvəz edilmə üsulu 3.Hissə-hissə inteqrllm üsulu 4.Müəyyən inteqrl,onun əzi tətiqləri 5.Tənliyin
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 3: Πολυπολική ανάπτυξη Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει την πολυπολική ανάπτυξη του δυναμικού
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Bakı Dövlət Universiteti. Mühazirəçi: dosent Lalə İslam qızı Vəliyeva
Bakı Dövlət Universiteti Nanomaterialların n kimyəvi ə ifizikası ikas kafedrası Mühazirəçi: dosent Lalə İslam qızı Vəliyeva 1 NANOTEXNOLOGİYAYA GİRİŞ. Ş NANOTEXNOLOGİYANIN İNKİŞAF MƏRHƏLƏLƏRİ. 2 Nanoquruluşlar
Ə.A.Quliyev HƏNDƏSƏ MƏSƏLƏLƏRİ
Ə.A.Quliyev HƏNDƏSƏ MƏSƏLƏLƏRİ Azərbaycan Respublikası Təhsil Nazirinin 7.7.-cu il tarixli 9 -li əmri ilə dərs vəsaiti kimi təsdiq edilmişdir. BAKI- ELM - Elmi redaktor: Musayev V.M. Fizika-riyaziyyat
Üç Eksenli Gerilme Hali
Üç Ekseli Gerilme Hali Bir cismi herhagi bir P oktasıdaki asal gerilmeleri üçü de sıfırda farklı ise o oktadaki gerilme hali "üç ekseli gerilme hali"dir. 0 0 0 0 0 0 0 0 0 P Üç Ekseli Gerilme Hali Gerilme
Antony van Leeuwenhoek
Nanobiotexnologiya XXI əsrin texnologiyası Mühazirə :7 Atom Qüvvət Mikroskopu Dr. İsmәt Әhmәdov Bakı Dövlәt Universiteti Nanoaraşdırmalar Mәrkәzinin aparıcı elmi işçisi Tel: 4189067 iş 3350923 mobil E-mail:
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διπλά Ολοκληρώματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Ορθογώνια Χωρία Ορισμός n f( x, y) da lim f( x, y ) = Α Α 0 k
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
C.S. ƏSGƏROV. ELEKTROMAQNIT SAHƏ NƏZƏRİYYƏSİNİN XÜSUSİ MƏSƏLƏLƏRİ monoqrafiya
CS ƏSGƏROV ELEKTROMQNIT SHƏ NƏZƏRİYYƏSİNİN XÜSUSİ MƏSƏLƏLƏRİ monoqafia ZƏRNƏŞR BKI-07 CS ƏSGƏROV ELEKTROMQNIT SHƏ NƏZƏRİYYƏSİNİN XÜSUSİ MƏSƏLƏLƏRİ monoqafia ZƏRNƏŞR BKI-07 BBK 45 C-4 Rəçilə: əbacan Elmi-Tədqiqat
και A = 1 Το πρόβλημα των μη ομογενών συνοριακών συνθηκών.
Στις δύο διαστάσεις αφετηρία είναι η σχέση r + r r r A r + q r q Grr (, = ln ln L L (6 από την οποία μπορούμε να προσδιορίσουμε ότι και επομένως R R q = r, L r = L και A = r (7 r + r r r Grr (, = ln rr
Σύντομη μαθηματική εισαγωγή
Σύντομη μαθηματική εισαγωγή (ή πώς να γίνουν ομοιογενείς 250 φοιτητές από 130 διαφορετικά Σχολεία δύο διαφορετικούς δασκάλους ο καθένας) με δύο http://www.cc.uoa.gr/~ctrikali http://eclass.uoa.gr Α. Καραμπαρμπούνης,
Cbp' e.ehkfh fhpekfmshsu!
2015 N'kbvfn Wvwvb uf,bkbmm'n ntcnb Ntcn brb ]bcc'l'y _ dth,fk d' hbmfpb ]bcc'k'hl'y b,fh'nlbh& }'h ]bcc' 40 nfgishs.s ']fn' tlbh& }'h nfgishs.sy t]nbvfk jkeyfy lqhl mf[el,ti zfdf,s dfhlsh d' jykfhlfy
RОspublikanın ümumtəhsil məktəblərinin 6-cı siniпləri üçün Riyaziyyat dərslik komplekti
RОspublikanın ümumtəhsil məktəblərinin 6-cı siniпləri üçün Riyaziyyat dərslik komplekti Müəlliflər: Sevda İsmayılova Arzu Hüseynova Bakı: Şərq-Qərb, 2015. Dərslik komplekti ilə bağlı TQDK-ya daxil olmuş
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή 1. Κίνηση σε τρεις διαστάσεις Αποδεικνύεται (με τον ίδιο τρόπο όπως και
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
ELEKTROMAQNETİZMİN İNKİŞAFI
1 M Ü H A Z I R Ə 5 ELEKTROMAQNETİZMİN İNKİŞAFI Elektrik və maqnit hadisələri haqqında məlumatlar insanlara çox qədim zamanlardan məlum idi; ildırım, kəhrəbanın xassəsi 1 və s. qeyd etmək olar. Bundan
Son illər ərzində aparılan tədqiqatlar nəticəsində məlum olub ki, Sən demə, qədim insanlar da nanotexnologiyalar ilə məşğul olurmuş.
1 P L A N 1. Fənnə giriş 2. Nanohissəcik və ya nanoquruluş terminləri nədir və onların hər biri haqqında qısa məlumat. 3. Nanoquruluşlarda ölçü effektləri. 4. Nanoquruluşarın alınma üsulları. 5. Nanoquruluşların
Hazırladı: Geologiya mühəndisliyi tələbələri Bakı Design by Ali Agakishiyev
Hazırladı: Geologiya mühəndisliyi tələbələri Bakı 2015 1 Giriş, kursun məqsədi və vəzifəsi Struktur geologiya geotektonika elminin əsas tərkib hissələrindən biridir və Yer qabığının quruluşu,onda baş verən
T.M.Pənahov V.İ.Əhmədov ÜMUMİ FİZİKA KURSU FİZİKA -1
T.M.Pənahov V.İ.Əhmədov ÜMUMİ FİZİKA KURSU FİZİKA -1 Qısa mühazirə kursu Азярбайжан Республикасы Тящсил Назирлийинин 18 aprel 013-жü ил тарихли, 587 сайлы ямри иля дярс vəsaiti кими тясдиг олунмушдур.
Verbal hiss ə
Verbal hissə Məntiq Bu cür tapşırıqlar ilkin göstəricilər və çıxarılmalı nəticələr baxımından bir-birindən fərqlənir. Buna görə də hər tapşırıqda olan suala xüsusi diqqət yetirin və verilən variantlardan
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Microscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
Mühazirə 10: Heterozəncirli polimerlər
Fənn: Yüksək molekullu birləşmələr kimyası Müəllim: Yavər Cəfər qızı Qasımova Fakültə: Kimya İxtisas: Kimya müəllimliyi Kafedra: Üzvi kimya və kimya texnologiyası Təhsil pilləsi: Bakalavr Mühazirə 10:
ÜZVI KIMYADA FIZIKI TƏDQIQAT ÜSULLARI
Məhərrəmov A.M., Nəsibov Ş.S., Allahverdiyev M.Ə. REDAKTOR AMEA-nın müxbir üzvü Ə.Ə.MƏCİDOV RƏYÇİ kimya elmləri doktoru, professor M.N.MƏƏRRƏMOV ÜZVI KIMYADA FIZIKI TƏDQIQAT ÜSULLARI Ali məktəblər üçün
fysikoblog.blogspot.com
fysikobog.bogspot.co Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙΙΙ: Σφαιρικές Αρμονικές Στις σημειώσεις αυτές δίνομε την αναπαράσταση των ιδιοανυσμάτων της
Milli Kitabxana A.S.İSAYEV NEFT VƏ QAZ SƏNAYESİNİN İQTİSADİYYATI ÜZRƏ PRAKTİK MƏŞĞƏLƏLƏR
A.S.İSAYEV NEFT VƏ QAZ SƏNAYESİNİN İQTİSADİYYATI ÜZRƏ PRAKTİK MƏŞĞƏLƏLƏR BAKI-2008 Azərbaycan Respublikası Təhsil Nazirliyi Azərbaycan Dövlət Neft Akademiyası Neft və qaz sənayesinin iqtisadiyyatı üzrə
Skanedici zond litoqrafiyası.
Laborrattorri iya işşi i i 5. Skanedici zond litoqrafiyası. 5.1. İşin məqsədi......117 5.2. İşin məzmunu......117 5.3. Metodik göstərişlər.............130 5.4. Tapşırıq...130 5.5. Yoxlama sualları......134
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Fizika-2 Fənni Üzrə İmtahan. Suallarının Cavabları
Fizika- Fənni Üzrə İmtahan Suallarının Cavabları. Optikanınəsasqanunları: işığın düz xətli yayılması qanunu. İşıq dəstələrinin qeyri-asılılıq qanunu. Optik hadisələrin ilk qanunları işıq şüalarının düz
Qeyri-üzvi kimya. (Кimya-1) 1.Kimya elmi, predmeti və əsas məsələləri.
Qeyri-üzvi kimya. (Кimya-1) 1.Kimya elmi, predmei və əsas məsələləri. Kimya digər əbiə elmləri fizika, biologiya, geologiya ilə yanaşı əbiədə baş verən prosesləri öyrənən bir elmdir. Təbiə müxəlif cisimlər
HEYDƏR ƏLİYEV AZƏRBAYCAN XALQININ ÜMUMMİLLİ LİDERİ
l i n ü ç ü HEYDƏR ƏLİYEV p a e d AZƏRBAYCAN XALQININ ÜMUMMİLLİ LİDERİ Ç ali Çap üçün deil. Nama Qəhrəmanova Məhəmməd Kərimov İlham Hüsenov RİYAZİYYAT0 Öìóìòÿùñèë ìÿêòÿáëÿðèíèí 0-úó ñèíôè ö öí Ðèéàçèééàò
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Kurs işi. I A qrup elementləri:- alınması, xassələri, birləşmələri, tətbiq sahələri. Plan:
1 Azərbaycan Respublikası Təhsil Nazirliyi Sumqayıt Dövlət Universiteti Kafedra: Ümumi və qeyri üzvi kimya Fakültə: Kimya və biologiya Ixtisas: Kimya müəllimliyi Qrup: 361 Kurs: I Tələbə: Nağıyeva İradə
RADİOFİZİKA. Elmi redaktoru: fizika-riyaziyyat elmləri namizədi, dosent N.Ə.Məmmədov AZƏRBAYCAN RESPUBLİKASI TƏHSİL NAZİRLİYİ BAKI DÖVLƏT UNİVERSİTETİ
AZƏRBAYCAN RESPBLİKASI TƏHSİL NAZİRLİYİ BAKI DÖVLƏT NİVERSİTETİ Elmi redaktoru: fizika-riyaziyyat elmləri namizədi, dosent NƏMəmmədov Rəyçilər: fizika-riyaziyyat elmləri doktoru, professor VMSalmanov fizika-riyaziyyat
Εισαγωγή στο Πεδίο Βαρύτητας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 9: Προσδιορισμός Γεωειδούς με Ολοκληρωματικές, Στοχαστικές και Φασματικές Μεθόδους Η.Ν. Τζιαβός -
Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
C.M.QULUZADƏ R.Q.SƏRTİPZADƏ. Təqvimlərin riyazi və astronomik əsasları. Təqvimlərin riyazi və astronomik əsasları. Bakı 2013.
C.M.QULUZADƏ R.Q.SƏRTİPZADƏ C.M.QULUZADƏ R.Q.SƏRTİPZADƏ Təqvimlərin riyazi və astronomik əsasları Təqvimlərin riyazi və astronomik əsasları Bakı 203 2 Bakı 203 Ön söz Elmi redaktor: Ə.S. Quliyev AMEA-
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)
ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός
Azərbaycan Respublikası Təhsil Nazirliyi Azərbaycan Dövlət Neft Akademiyası Kompüter şəbəkələri
Azərbaycan Respublikası Təhsil Nazirliyi Azərbaycan Dövlət Neft Akademiyası İstehsalat proseslərinin avtomatlaşdırılması fakultəsinin İnformasiya emalının və idarəetmənin avtomatlaşdırılmiş sistemləri
Το πρόβληµα της σκέδασης
Το πρόβληµα της σκέδασης ΦΥΣ 11 - Διαλ.18 1 q Θεωρήστε μή φραγμένη κίνηση σε κεντρικό δυναμικό Ø Σωματίδιο έρχεται από το άπειρο και πηγαίνει στο άπειρο q Υποθέστε ότι F( r) 0 καθώς r Ø H τροχιά προσεγγίζει
Καθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Κελύη Εκ Περιστροής Μεµβρανική Θεωρία Τυχαία Φόρτιση Ανάπτυξη όρτισης σε σειρές Fourier: ( )
Tutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Προσεγγίστε τo ολοκλήρωμα ( + ) I d d με αθροίσματα iemann χωρίζοντας το πεδίο ολοκλήρωσης σε ίσα ορθογώνια.
M.H.Yaqubov, M.A.Nəcəfov Ekstremum məsələləri. Bakı:
Eli redtoru:professor K.Q.Həsəov Rəçilər:fii-riit elləri dotoru,professor H.F.Quliev ı Dövlət Uiversiteti Fii-riit elləri iədi,doset Ş.Ş.Yusubov ı Dövlət Uiversiteti M.H.Yqubov, M.A.Nəcəfov Estreu əsələləri.
Λύσεις στο επαναληπτικό διαγώνισμα 3
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy
ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το
Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2
Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent
ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ
ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική
3. Qədimdə sənətkarlar lehimləmə işlərində metal səthindən oksid təbəqəsini təmizləmək üçün hansı reaksiyadan istifadə etmişlər?
##book_id=659//book_name= Kompleks birləşmələr kimyası // ##fk=124//ks=02//fn=659// sumalltest= 299 // ##Ali təhsil pilləsi: Bakalavr ##Fakültənin adı: Kimya və biologiya ##Kafedra: Ümumi kimya və KTM