Pozicija elektrod: ena elektroda zunaj celice in druga elektroda znotraj celice.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Pozicija elektrod: ena elektroda zunaj celice in druga elektroda znotraj celice."

Transcript

1 Strnad Petra 1 ŽIVEC IN MIŠICA MEMBRANSKI POTENCIAL 1. Kaj je membranski potencial? Napetostna razlika med notranjostjo in zunanjostjo membrane, ki jo omogočata različna razporeditev ionov med celično notranjostjo in zunanjostjo in selektivno prepustna membrana. Kako ga izmerimo? Merilnik: potrebujemo občutljiv merilni aparat, ojačevalec zaradi majhnih vrednosti, dve elektrodi in ozemljitev, ker bi bila sicer motnja večja kot signal. Pozicija elektrod: ena elektroda zunaj celice in druga elektroda znotraj celice. Pri živem človeku membranskega potenciala ne moremo izmeriti, ker ne moremo ene elektrode zapičiti v celico merimo spremembe membranske napetosti (npr. akcijski potencial). Kako ga izračunamo? Membranski potencial za nek ion X izračunamo po naslednji enačbi: Nernstova enačba: velja, ko so ioni v elektrokemičnem ravnotežju membranski potencial µ = 0. Obstaja tudi bolj priročna oblika Nernstove enačbe: Cord conduction enačba: opisuje prispevek permeabilnih ionov k mirovnemu membranskemu potencialu (E m ) porazdelitev K +, Na + in Cl preko celične membrane. Cord conduction enačba pravi, da je membranski potencial uteženo povprečje ravnotežnega potenciala vseh ionov, ki so za neko membrano permeabilni. 2. Opredeli pogoje, ki morajo biti izpolnjeni za nastanek membranskega potenciala. Za nastanek membranskega potenciala je ključnega pomena selektivno prepustna membrana, preko katere nekateri ioni ne morejo prehajati, nekateri pa lahko. Pomemben je vpliv tistih ionov, ki lahko prehajajo preko membrane (so permeabilni). Ioni, ki ga določajo: v živčni celici Na +, K +, Cl ; Ca 2+ v srčni mišici, nikoli v skeletni. ICT več K +, manj Na +. ECT manj K +, več Na +.

2 Strnad Petra 2 3. Razloži delovanje Na-K črpalke. Na-K črpalka je odgovorna za visoko intracelularno koncentracijo kalija in nizko intracelularno koncentracijo kalija. Ker črpalka prenaša preko membrane več natrijevih ionov ven kot kalijevih ionov noter, s tem povzroča, da je več pozitivno nabitih ionov zunaj celice in tako prispeva k mirovnemu membranskemu potencialu. Na-K črpalka ohranja ionski gradient natrija in kalija. SPREMEMBE MEMBRANSKEGA POTENCIALA 4. Naštej vrste sprememb membranskega potenciala. akcijski potencial (depolarizacija do praga vzdražnosti odprejo se natrijevi kanali vdor natrija dokler se ne doseže mirovni membranski potencial za natrij repolarizacija) lokalizirane spremembe membranskega potenciala: elektrotoničen potencial (z lokalnimi električnimi tokovi se širi v okolico, vendar zaradi upornosti in kapacitete celične membrane časovno in krajevno hitro izzveni), receptorski in posinaptični potenciali 5. Razloži nastanek akcijskega potenciala. Akcijski potencial nastane, ko se membrana živčne celice na hitro depolarizira do določene vrednosti membranskega potenciala, ki jo imenujemo prag vzdražnosti. Depolarizacija: ko primerna stimulacija povzroči tok pozitivnih ionov v celico, se krivulja odkloni navzgor (razlika potencialov med dvema merilnima elektrodama se zmanjša). Repolarizacija: povrnitev membranskega potenciala v mirovni membranski potencial. Hiperpolarizacija: če stimulacija povzroči, da notranjost celice postane bolj negativna od mirovnega membranskega potenciala, se krivulja odkloni navzdol.

3 Strnad Petra 3 6. Naštej njegove lastnosti. Akcijski potencial je hitra sprememba membranskega potenciala, ki ji sledi vrnitev v elektrokemični ravnotežni potencial: pri akcijskem potencialu so pomembni elektronsko-odvisni ionski kanali v plazemski membrani, velikost in oblika akcijskega potenciala ostaja enaka medtem, ko potencial potuje vzdolž celice akcijski potencial se širi brez upadanja, amplituda akcijskega potenciala deluje po načelu vse ali nič ko je depolarizacija pod pražno vrednostjo, so napetostno uravnavani ionski kanali zaprti; ko depolarizacija doseže pražno vrednost, se ustvari akcijski potencial, avtomatska inaktivacija napetostno uravnavanih ionskih kanalov povzroči, da je trajanje vseh akcijskih potencialov približno enako, močnejši dražljaj ne zmore ustvariti večje amplitude zaradi načela vse ali nič. 7. Razloži nastanek absolutne in relativne refraktarne dobe. Interval med zaporednima akcijskima potencialoma ne more nikoli postati tako kratek, da bi se nov akcijski potencial začel še preden bi se prejšnji zaključil. Absolutna refraktarna doba: medtem ko se na membrani ustvarja akcijski potencial, je membrana nezmožna odgovoriti na nadaljnje dražljaje membrana se ne more odzvati na naslednji dražljaj. Relativna refraktarna doba: če se naslednji dražljaj pojavi medtem, ko so odprti K + kanali, in je membrana v fazi repolarizacije, je potrebna zelo velika depolarizacija, da se lahko ustvari naslednji akcijski potencial. 8. Razloži razliko med prevajanjem akcijskega potenciala po mieliniziranih in nemieliniziranih živčnih vlaknih. Prevajanje akcijskega potenciala vzdolž celice je odvisno od prevodnosti. Mielin spremeni električne lastnosti živčnih vlaken, iz česar sledi povečanje prevodnosti živčnih vlaken. Nemielinizirana vlakna: večja električna kapaciteta lokalni tok počasneje depolarizira membrano; akcijski potencial se ustvarja vzdolž celotnega živčnega vlakna. Mielinizirana vlakna: manjša električna kapaciteta lokalni tok hitreje depolarizira membrano; akcijski potencial se ustvari samo v Ranvierjevih zažemkih saltatorno prevajanje. 9. Opiši razlike med graduiranimi potenciali (lokalizirane spremembe membranskega potenciala) in akcijskim potencialom. Akcijski potencial predstavlja obširnejši odgovor, kjer se obrne polarnost membranskega potenciala. Akcijski potencial se širi brez pojemanja vzdolž celotne dolžine živčnega ali mišičnega vlakna.

4 Strnad Petra Opiši nastanek receptorskega potenciala (transdukcija, transformacija). V odgovor na dražljaj iz okolja, senzorni končiči ustvarijo lokalno stopnjevane spremembe membranskega potenciala. V večini primerov so te spremembe potenciala depolarizacije, ki so analogne ekscitatornim postsinaptičnim potencialom. Akcijski potencial, ki se nadalje ustvari, se prevaja od periferije do CŽS. Transdukcija: ko se na receptor usmeri lahek pritisk, se ustvari majhna depolarizacija (receptorski potencial). Transformacija: povečevanje pritiska na paccinijeva telesca povečuje velikost receptorskega potenciala, dokler ne doseže pražne vrednosti, ki je potrebna, da se ustvari akcijski potencial. PRENOS INFORMACIJE PREKO SINAPSE 11. Naštej in opiši sinaptične potenciale. ekscitatorni sinaptični potencial (EPSP) prehodna depolarizacija postsinaptične celice (odprtje ionskih kanalov, notranjost postsinaptične celice postane manj negativna) inhibitorni sinaptični potencial (IPSP) prehodna hiperpolarizacija postsinaptične celice (notranjost postsinaptične celice postane bolj negativna) end plate potential (EPP) prehodna depolarizacija 'end plate' regije (vezava acetilholina na acetilholinski receptor povzroči prehodno odprtje njegovih ionskih kanalov, kar spremeni prevodnost membrane za natrij in kalij; jakost prehajanja natrija je večja od jakosti prehajanja kalija) 12. Razloži prostorsko in časovno sumacijo. Prostorska sumacija: pojavi se, ko se dva ločena postsinaptična potenciala pojavita skoraj hkrati dva simultana ekscitatorna sinaptična potenciala depolarizirata celico dvakrat bolj kot bi jo vsak posamezno. Časovna sumacija: pojavi se, ko se dva ali več akcijskih potencialov pojavi v enem presinaptičnem nevronu v hitrem zaporednem nizu, tako da se posledični postsinaptični potenciali časovno prekrivajo. 13. Nariši shemi miotatičnega in umaknitvenega refleksa. Na skicah označi načine prenosa informacije.

5 Strnad Petra 5 Miotatični refleks: Izzove ga nenadna motnja (povečanje) dolžine mišice npr. udarec po tetivi z refleksnim kladivcem. Podaljšanje mišice izzove povečanje frekvence impulzov po Ia aferentnem vlaknu. Le to tvori neposredno sinapso z alfa motoričnimi nevroni istoimenske mišice, od koder izvira mišično vreteno. Zato pravimo, da je ta refleks monosinaptičen. Povečana ekscitacija alfamotonevronov povzroči refleksno skrčenje mišice. Hkrati se aktivirajo tudi sinergistične mišice in prek inhibicijskih vmesnih nevronov se relaksirajo antagonistične mišice (ta komponenta torej ni več monosinaptična). Inverzni miotatični refleks: Izzove ga povečanje napetosti v tetivi ustrezne mišice (npr. aktivna kontrakcija mišice). Povečanje napetosti povzroči zvišano frekvenco impulzov po Ib senzoričnem vlaknu. Le to tvori sinapse z inhibicijskimi internevroni, ki tvorijo inhibicijsko sinapso z ustreznimi alfa motoričnim nevronom (je torej bisinaptičen refleks). Posledica je relaksacija ustrezne mišice. Hkrati se poveča ekscitacija antagonističnim mišic. Umaknitveni refleks fleksorjev: Izzovejo ga bolečinski dražljaji po aferentnih vlaknih tipa II, III in IV. Le ta tvorijo ekscitacijske sinapse z vmesnimi nevroni, ki ekcitirajo alfa motorične nevrone. Refleks je torej polisinaptičen. Na ipsilateralni strani (na strani draženja) pride do aktivacije fleksorjev ob hkratni relaksaciji ekstenzorjev in umaknitve uda. Na kontralateralni strani telesa (udu)se fleksorji relaksirajo, ekstenzorji pa skrčijo. Zaradi polisinaptičnih ekscitacijskih krogov, je lahko aktivacija podaljšana. Prav tako lahko ob ponavljanju dražljaja pride do senzitizacije (vedno močnejši odgovor) ali habituacije (odgovor se postopno zmanjšuje). AKTIVACIJA MIŠIČNE KONTRAKCIJE 14. Opiši delovanje mišičnega vretena. Pod vplivom impulza iz γ-motonevrona se krčljivi del mišičnega vretena skrajša posledica je raztegnitev osrednjega dela mišičnega vretena, kjer so aferentna živčna vlakna. Raztegnitev mišičnega vretena povzroči sproženje aferentnih impulzov, ki vzdražijo α-motonevron in sledi krčenje mišice, v kateri je mišično vreteno. Poleg te povezave ima isto mišično vreteno sinapso z α-motonevronom antagonistične mišice, ki jo inhibira (disinaptična recipročna inhibicija). Ta inhibicija zagotovi, da antagonistične mišice ne delujejo druga proti drugi. Sistem mišičnega vretena vzdržuje določeno dolžino mišice preko aktivnosti γ-motonevronov čim večja je njegova aktivnost, krajša je mišica. Aferentna inervacija: Ia aferentna vlakna se končujejo s spiralnim ovijanjem okrog vsake vrečke z jedri in okrog jeder v verigi; II aferentna vlakna se končujejo na vlaknih z jedri v verigi. Eferentna inervacija: γ-motorični nevron ima sinapse s kontraktilnim delom, ki je na obeh polih jedrnega dela obeh tipov intrafuzalnih vlaken.

6 Strnad Petra Razloži alfa gama koaktivacijo. Alfa gama koaktivacija je skupna aktivacija alfa in gama motoričnih nevronov tako, da se vzdržuje željena občutljivost mišičnih vreten tudi med hotenimi gibi. 16. Kaj je motorična enota? Mišične celice, ki jih oživčuje α-motonevron, tvorijo skupaj z njim motorično enoto. Mišične celice ene motorične enote so razmetane po mišici ne dotikajo se druga druge in so po tipu vse enake. 17. Opiši aktivacijo mišične kontrakcije (latenca). Zaporedje dogodkov v živčno-mišičnem stiku: Elektrokemični dražljaj prispe do končnih vejic α-motonevrona. Acetolholin prenese dražljaj na motorično končno ploščico in povzroči akcijski potencial. Dražljaj se po transverzalnih tubulih širi v notranjost mišične celice. Povezanost transverzalnih tubulov z razširitvami sarkoplazemskega retikuluma povzroči odpiranje Ca 2+ kanalov v membrani cistern prehajanje Ca 2+ v sarkoplazmo. Ca 2+ vpliva na regulacijske proteine tako, da je možna povezava med aktinom in miozinom: Ca 2+ se veže na troponin C, ki preko troponina I deluje na troponin T, ki povzroči odmik tropomiozina in sprostitev vezavnega mesta za miozin. Aktivnost vsake mišične celice se deli na tri faze: latentna faza obdobje od delovanja živčnega impulza na mišično celico do začetka naraščanja napetosti v njej faza krčenja obdobje od začetka naraščanja napetosti (odnosno začetka krajšanja mišične celice) do trenutka, ko doseže napetost (krajšanje) maksimum faza sprostitve obdobje, ki je potrebno, da se napetost spusti na začetno vrednost v mirovanju Latentni čas se spreminja z velikostjo zunanje sile, ker se mora v prečnih mostičkih napetost najprej izenačiti z zunanjo silo. Šele potem se lahko začne faza krčenja (krajšanja mišične celice) kot posledica premikanja prečnih mostičkov. 18. Opiši pasivne lastnosti skeletnega mišičnega vlakna. sestava mišičnega vlakna dolžina mišičnega vlakna mišica, ki je daljša, ne more razviti večje sile kot enako debela krajša mišica debelina (presek) mišičnega vlakna debela mišica, v kateri je enako število miozinskih in aktinskih nitk postavljenih vzporedno, razvije večjo izometrično silo kot mišica, ki ima nitke postavljene zaporedno tip mišičnih vlaken (gl. naslednjo stran)

7 Strnad Petra 7 Mišične celice se med seboj razlikujejo po dveh kriterijih: po hitrosti krajšanja oz. hitrosti naraščanja napetosti v mišični celici se delijo na hitre in počasne maksimalna hitrost krajšanja oz. naraščanja napetosti v mišični celici je odvisna od gostote miozinskih nitk in aktivnosti miozin ATPaze, po encimskem vzorcu in količini encimov za resintezo ATP-ja se delijo na oksidacijske in glikolitične hitrost resinteze ATP-ja je odvisna od encimskega vzorca, količine in aktivnosti encimov v celici. Po teh dveh kriterijih se mišične celice delijo na oksidacijske počasne (tip I), oksidacijske hitre (tip IIa) in glikolitične hitre (tip IIb). Značilnosti treh tipov mišičnih celic: oksidacijske počasne oksidacijske hitre glikolitične hitre hitrost krčenja počasna srednja hitra aktivnost miozin ATPaze majhna velika velika vir energije za resintezo ATP oksidacijska fosforilacija oksidacijska fosforilacija glikoliza aktivnost glikolitičnih encimov majhna srednja velika število mitohondrijev veliko veliko majhno število kapilar veliko veliko malo koncentracija mioglobulina visoka visoka nizka koncentracija glikogena nizka srednja visoka premer vlaken majhen srednji velik utrudljivost počasna srednja hitra barva rdeča rdeča bela 19. Opredeli razliko med izometrično, izotonično in ekscentrično kontrakcijo. Izometrična kontrakcija: napetost v mišici je izenačena z nasproti delujočimi silami (sila teže in bremena) dolžina mišice ostaja nespremenjena. Izotonična kontrakcija: napetost mišice je stalna (tak tip krčenja je nefiziološki). Ekscentrična kontrakcija: napetost v mišici je izenačena z nasproti delujočimi silami (sila teže in bremena) mišica se daljša. Koncentrična kontrakcija: napetost v mišici je izenačena z nasproti delujočimi silami (sila teže in bremena) mišica se krajša. 20. Razloži, zakaj je kontrakcija odvisna od dolžine mišice. Mišična celica razvije maksimalno silo, kadar je njena dolžina pred začetkom krčenja enaka 1,2-kratni vrednosti njene dolžine v mirovanju. To je optimalna dolžina mišične celice. Če je začetna dolžina celice večja ali manjša od optimalne, je sila krčenja manjša. Če je začetna dolžina celice 65% ali 170% optimalne, dražljaj ne povzroči nobene spremembe napetosti. Različne napetosti pri različnih začetnih dolžinah mišičnih celic so posledica spreminjanja števila prečnih mostičkov v področju prekrivanja miozinskih in aktinskih niti. Pri optimalni dolžini je to število največje; pri 65% optimalne dolžine Z liniji pritisneta na miozinske nitke in preprečita naraščanje napetosti; pri 170% optimalne dolžine ni nobenega kontakta med miozinom in aktinom, zato krčenje ni možno. 21. Razloži nastanek sumacije zgibov in nastanek tetanusa. Sumacija zgibov: drugi zgib je poslan takoj po prvem itn. sumacija več zaporednih zgibov ustvari vzdrževano kontrakcijo. Tetanus: vzdrževana in mirna kontrakcija, ki jo povzroči sumacija zgibov.

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

ELEKTRIČNA VZDRAŽNOST MEMBRAN

ELEKTRIČNA VZDRAŽNOST MEMBRAN 1. POGLAVJE ELEKTRIČNA VZDRAŽNOST MEMBRAN Mirovni membranski in akcijski potencial Hitrost prevajanja po živcu Reakcijski čas 1 UVOD 1.1 MIROVNI MEMBRANSKI POTENCIAL Celična membrana (plazmalema) iz dveh

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

1. Izmed hormonov napiši tiste, ki se izločajo pri telesni aktivnosti: adrenalin, kortizol, testosteron, insulin, rastni hormon. (str.

1. Izmed hormonov napiši tiste, ki se izločajo pri telesni aktivnosti: adrenalin, kortizol, testosteron, insulin, rastni hormon. (str. 1. Izmed hormonov napiši tiste, ki se izločajo pri telesni aktivnosti: adrenalin, kortizol, testosteron, insulin, rastni hormon. (str. 35-37) 2. Termoregulacija - skica osnovnega mehanizma (str. 47) 3.

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

TRANSPORT RAZTOPIN. Agronomija - UNI

TRANSPORT RAZTOPIN. Agronomija - UNI TRANSPORT RAZTOPIN Agronomija - UNI Transport na celičnem nivoju oz. transport preko membrane je osnova za transport na višjih nivojih (tkiva). Pomen biološki membran (plazmalema, tonoplast,...) homeostaza

Διαβάστε περισσότερα

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov 28. 3. 11 UV- spektrofotometrija Biuretska metoda Absorbanca pri λ=28 nm (A28) UV- spektrofotometrija Biuretska metoda vstopni žarek intenziteta I Lowrijeva metoda Bradfordova metoda Bradfordova metoda

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

TRANSPORT RAZTOPIN. Agronomija - UNI 2005/06

TRANSPORT RAZTOPIN. Agronomija - UNI 2005/06 TRANSPORT RAZTOPIN Transport na celičnem nivoju oz. transport preko membrane je osnova za transport na višjih nivojih (tkiva). Pomen biološki membran (plazmalema, tonoplast,...) homeostaza rastlinske celice

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

IONOTROPNI in METABOTROPNI receptorji. Klara Kropivšek

IONOTROPNI in METABOTROPNI receptorji. Klara Kropivšek IONOTROPNI in METABOTROPNI receptorji Klara Kropivšek Membranski receptorji Specializirani integralni membranski proteini. Vezava ekstracelularnih mediatorjev - ligandov (hormoni, nevrotransmiterji, citokini

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Osnove sklepne statistike

Osnove sklepne statistike Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja

Διαβάστε περισσότερα

FIZIOLOŠKE OSNOVE SILE I SNAGE. Prof. dr Dušan Perić

FIZIOLOŠKE OSNOVE SILE I SNAGE. Prof. dr Dušan Perić FIZIOLOŠKE OSNOVE ISPOLJAVANJA SILE I SNAGE Prof. dr Dušan Perić Mehanizam mišićne kontrakcije Struktura mišića i mišićnih ovojnica MOTORNA JEDINICA } TELO (SOMA) NERVNE ĆELIJE AKSON TELODENDRON MIŠIĆNA

Διαβάστε περισσότερα

Jure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna hitrost

Jure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna hitrost FFA: Laboratorijska medicina, Molekularna encimologija, 2010/2011 3.predavanje Jure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna

Διαβάστε περισσότερα

Zaporedna in vzporedna feroresonanca

Zaporedna in vzporedna feroresonanca Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

1. Newtonovi zakoni in aksiomi o silah:

1. Newtonovi zakoni in aksiomi o silah: 1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013 Postavitev hipotez NUJNO! Milena Kova 10. januar 2013 Osnove biometrije 2012/13 1 Postavitev in preizku²anje hipotez Hipoteze zastavimo najprej ob na rtovanju preizkusa Ob obdelavi jih morda malo popravimo

Διαβάστε περισσότερα

TOPLOTNA ČRPALKA ZRAK-VODA - BUDERUS LOGATHERM WPL 7/10/12/14/18/25/31

TOPLOTNA ČRPALKA ZRAK-VODA - BUDERUS LOGATHERM WPL 7/10/12/14/18/25/31 TOPLOTN ČRPLK ZRK-VOD - BUDERUS LOGTHERM WPL 7/0//4/8/5/ Tip Moč (kw) nar. št. EUR (brez DDV) WPL 7 7 8 7 700 95 5.6,00 WPL 0 0 7 78 600 89 8.9,00 WPL 7 78 600 90 9.78,00 WPL 4 4 7 78 600 9 0.88,00 WPL

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

Kovinske indikatorske elektrode. Inertne elektrode. Membranske indikatorske elektrode

Kovinske indikatorske elektrode. Inertne elektrode. Membranske indikatorske elektrode Indikatorske elektrode Indikatorske elektrode Kovinske indikatorske elektrode Inertne elektrode Membranske indikatorske elektrode Elektroda 1. reda je kovinska elektroda (Ag, Cu, Hg, Cd, Pb), ki je v stiku

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

POPREČNO-PRUGASTA SKELETNA MUSKULATURA

POPREČNO-PRUGASTA SKELETNA MUSKULATURA POPREČNO-PRUGASTA SKELETNA MUSKULATURA Opšta fiziologija sa biofizikom 2014/2015 MUSKULATURA 1.SKELETNA 2.SRČANA 3.GLATKA SKELETNI MIŠIĆ Kost Tetiva Epimisium Epimisium Perimisium Endomisium Mišićno vlakno

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Osnove statistike. Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru. 1.

Osnove statistike. Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru. 1. Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru 1. marec 2010 Obvestila. http://um.fnm.uni-mb.si/ Prosojnice se lahko spremenijo v tednu po predavanjih.

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo "kulon") ali As (1 C = 1 As).

Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo kulon) ali As (1 C = 1 As). 1 UI.DOC Elektrina - električni naboj (Q) Elementarni delci snovi imajo lastnost, da so nabiti - nosijo električni naboj-elektrino. Protoni imajo pozitiven naboj, zato je jedro pozitivno nabito, elektroni

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

TEORIJA LINIJSKIH KOD

TEORIJA LINIJSKIH KOD Fakulteta za elektrotehniko Tržaška 25 1000 Ljubljana Teoretični del iz seminaske naloge ANALIZATOR LASTNOSTI LINIJSKIH KOD TEORIJA LINIJSKIH KOD (2. poglavje seminarja) Asistent: Mag. Matevž Pustišek

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar

Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar Stikalni pretvorniki Seminar: Načrtovanje elektronike za EMC 9. 3. 2016 Boštjan Glažar niverza v Ljubljani Fakulteta za elektrotehniko Tržaška cesta 25, SI-1000 Ljubljana Vsebina Prednosti stikalnih pretvornikov

Διαβάστε περισσότερα

Lastnosti in delovanje polimerne gorivne celice

Lastnosti in delovanje polimerne gorivne celice FAKULTETA ZA STROJNIŠTVO Laboratorij za termoenergetiko LABORATORIJSKA VAJA Lastnosti in delovanje polimerne gorivne celice Mitja Mori, Mihael Sekavčnik CILJ VAJE - Spoznati sestavo in vrste gorivnih celic.

Διαβάστε περισσότερα

IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA

IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Seminarska naloga pri predmetu Razdelilna in industrijska omrežja Maks

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Gradniki TK sistemov

Gradniki TK sistemov Gradniki TK sistemov renos signalov v višji rekvenčni legi Vsebina Modulacija in demodulacija Vrste analognih modulacij AM M FM rimerjava spektrov analognih moduliranih signalov Mešalniki Kdaj uporabimo

Διαβάστε περισσότερα

17. Električni dipol

17. Električni dipol 17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje

Διαβάστε περισσότερα

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k,

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, Linearna funkcija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, n ᄀ. k smerni koeficient n začetna vrednost D f, Z f Definicijsko območje linearne funkcije so vsa realna števila. Zaloga

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

ELEKTRONSKA VEZJA. Laboratorijske vaje Pregledal: 6. vaja FM demodulator s PLL

ELEKTRONSKA VEZJA. Laboratorijske vaje Pregledal: 6. vaja FM demodulator s PLL Ime in priimek: ELEKTRONSKA VEZJA Laboratorijske vaje Pregledal: Datum: 6. vaja FM demodulator s PLL a) Načrtajte FM demodulator s fazno sklenjeno zanko za signal z nosilno frekvenco f n = 100 khz, frekvenčno

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα