ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 9. ožujka 2007.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 9. ožujka 2007."

Transcript

1 Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 9. ožujka Izračunaj: ( : 7) ( ) : 11.. Luka ima 7 godina i ide u 1. razred osnovne škole, a njegova sestra Katarina je godine mlada. Oni imaju neobičan hobi: Luka skuplja računalne igrice, a Katarina zapisuje viceve. Dogovorili su se da za svaku novu igricu ona treba zapisati 4 nova vica. Ako Katarina mjesečno zapiše 5 novih viceva, koliko će Luka imati računalnih igrica za godinu dana, a koliko kad završi osnovnu školu za 8 godina? Koliko će Katarina zapisati viceva do svoje 18. godine života? 3. Novčanicu od 10 kuna treba razmijeniti u kovanice od 1 kn, kn i 5 kn. Koliko će biti kovanica koje vrijednosti? Nadi sva rješenja. 4. Umanjenik i umanjitelj jednako se čitaju i s desna i s lijeva. Umjesto zvjezdica odredi znamenke: = U ravnini je zadano 5 točaka kao na slici. Ima li više dužina kojima su zadane točke krajnje ili trokuta s vrhovima u zadanim točkama. Ispiši dužine i trokute.

2 Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 5. razred osnovna škola 9. ožujka Izračunaj: ( : 4) 059 : 3.. Zbroj dvaju prirodnih brojeva je 531, pri čemu je svaki od ta dva broja djeljiv s 59. Odredi sve parove prirodnih brojeva s tim svojstvom. 3. Zadane su točke A, B, C i D od kojih nikoje tri ne pripadaju istom pravcu. Ispiši sve kutove kojima je vrh jedna od zadanih točaka, a krakovima pripadaju dvije od preostale tri točke. 4. Ako je aa ababa = aaaaaa, izračunaj ab ababa. 5. Voćnjak u obliku kvadrata podijeljen je na 4 pravokutnika i 1 mali kvadrat kao na slici. Svi pravokutnici imaju jednake odgovarajuće stranice, a površina svakog od tih pravokutnika je 506 m. Ako su duljine susjednih stranica pravokutnika uzastopni prirodni brojevi, kolika je površina voćnjaka?

3 Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 6. razred osnovna škola 9. ožujka Izračunaj: 0.8 : ( ) ( ) : 4 7 +(1. 0.5) : 4 5. ( ) 17. Na koliko se načina može iznos od 100 kuna isplatiti kovanicama od kune i 5 kuna? 3. Koliko ima cijelih brojeva x, 1000 <x<1000, koji su djeljivi s 3, a koliko ima cijelih brojeva y, 444 <y<444, koji nisu djeljivi s 4? Kojih brojeva ima više? 4. U jednoj kutiji imamo zajedno 58 crvenih i bijelih kuglica. Ako iz kutije izvadimo šest puta više bijelih nego crvenih, onda u kutiji ostane pet puta više crvenih nego bijelih kuglica. Koliko je bilo crvenih, a koliko bijelih kuglica na početku? 5. Dva kvadrata različitih površina leže u istoj ravnini tako da se vrh većeg kvadrata nalazi u središtu manjeg kvadrata. Koliki dio manjeg kvadrata prekriva veći kvadrat? Obrazloži.

4 Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 7. razred osnovna škola 9. ožujka Za prirodne brojeve a, b, c, d i racionalni broj x vrijede ove jednakosti Koliki je broj x? a =3b =4c =5d = x(a + b + c + d).. U kvadratnoj mreži smještena su dva trokuta ABC i MNL kao na slici. Odredi omjer površina tih trokuta. 3. U jednoj trgovini je cijena skijaškog odijela u siječnju povećana za 0%, a onda u veljači snižena 0%. U isto vrijeme u drugoj trgovini je u siječnju prvo snižena 0%, a zatim u veljači povećana 0%. Sada je razlika u cijeni 10 kn. Kolika je bila razlika u cijeni prije prve promjene? 4. Odredi tri prosta broja tako da je njihov umnožak 5 puta veći od njihovog zbroja. 5. U pravokutniku ABCD, gdjeje BC = AB, na stranici BC dana je točka M tako da je )<AMB = )<AMD. Odredi veličinu kuta )<AMB.

5 Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 8. razred osnovna škola 9. ožujka Riješi sustav jednadžbi: 0.8 x 55 5 y 54 5 =0, 5 53 x 3y +1 x y 4.3 7y 3 5 = y. 5. Ako je 9x +4y 1xy 16a =1i3x y +4a = 4, koliko je 3x y? 3. Biciklist je prešao 0 km uzbrdo i 60 km po ravnoj cesti za ukupno 6 sati. Kojom je brzinom biciklist vozio na svakom dijelu ceste ako je uzbrdo vozio 5 km na sat manjom brzinom, nego na ravnom dijelu ceste? 4. Odredi površinu jednakokračnog trokuta ako je duljina visine na osnovicu 10 cm, a duljina visine na krak 1 cm. 5. Dan je jednakokračan trokut ABC kojem je kut )<ACB = 108.Simetrala kuta )<BAC siječe krak BC utočki E. Ako je točka D nožište visine iz vrha C na osnovicu AB trokuta ABC, onda je AE = CD. Dokaži.

6 RJEŠENJA ZA 4. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN ( : 7) ( ) : 11 = ( ) = = = = = UKUPNO 5BODOVA 5BODOVA 10 BODOVA. Katarina: 1mjesec 1 godina = 1 mjeseci 18 5 = 13 godina 5 viceva 5 1 = 60 viceva = 780 viceva Luka: 1godina=60viceva 8godina 60 : 4 = 15 igrica 15 8 = 10 igrica kn = 5kn = 1 5kn+5 1kn = 1 5kn+ kn+1 1kn = 1 5kn+1 kn+3 1kn = 5 kn = 4 kn+ 1kn = 3 kn+4 1kn = kn+6 1kn = 1 kn+8 1kn = 10 1kn...Svakiprikaz

7 4. Zbog uvjeta zadatka vrijedi: abba cdc = 007 ili abba cdc 007 ili cdc abba Znamenka a =, znamenka c = d5 bb odakle je d +1=b i b =5,pajed =4. Dešifrirano: = 007. Dodatno bodovanje: za svaku od znamenaka a, b, c, d po dužina, 10 trokuta. Ima jednak broj dužina i trokuta. Dužine su: AB, AC, AD, AE, BC, BD, BE, CD, CE, DE. 4BODA Trokuti su: ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE, 4BODA

8 RJEŠENJA ZA 5. RAZRED OVDJEJEDANJEDANNAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN ( : 4) 059 : 3 = 456 (79 19) ( ) 7353 = = = = = UKUPNO. Neka su a i b traženi brojevi. Tada je a + b = 531 i a =59m, b =59n, m, n N. Zato je a + b =59n +59m = 59(n + m), ili 59(m + n) = 531, m + n =9. 4BODA 10 BODOVA m =1 m = m =3 m =4 n =8 n =7 n =6 n =5 Traženi parovi brojeva su: a =59 a = 118 a = 117 a = 36 b = 47 b = 413 b = 354 b = 95...UKUPNO 10 BODOVA 3. Na slici je 1 kutova.

9 Traženi kutovi su: )<ABC, )<ABD, )<ACD, )<BCD, )<BAC, )<BAD, )<CAD, )<CBD, )<ACB, )<ADB, )<ADC, )<BDC. Bodovanje (prema pronadenim kutovima): 3kuta,4kuta BOD,5kutova 3BOD,...,1kutova 10 BODOVA. 4. Kako je aa = a 10 + a 1=a 11 i aaaaaa = a a a a 10 + a 1 = a Iz aa ababa = aaaaaa slijedi a 11 ababa = a ababa = ababa = ababa = Dakle, a =1,b =0. Na kraju, ab ababa = = UKUPNO 10 BODOVA = 3 a =3m b =m a + b =45 P kv =45 45 P kv = 05 m...ukupno 10 BODOVA

10 RJEŠENJA ZA 6. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN : ( 4 1.5) = ( ) : 4 ( ) : : : 4 5 = = = 1 3 +(1. 0.5) : BODA 4BODA. Označimo s a i b brojeve kovanica od kune i 5 kuna. Vrijednost a kovanica od dvije kune je a kuna, a vrijednost b kovanica od 5 kuna je 5b kuna. Za 100 kuna tada vrijedi jednakost a +5b = 100. U jednakosti su jedan pribrojnik i zbroj djeljivi s 5, pa mora i drugi pribrojnik a, atoznači broj a, biti djeljiv s 5. Za broj a povoljne su sljedeće mogućnosti 0, 5, 10, 15, 0, 5, 30, 35, 40, 45, 50. Tada za b dobivamo 0, 18, 16, 14, 1, 10, 8, 6, 4,, 0. Iznos od 100 kuna može se isplatiti kovanicama od kune i 5 kuna na 11 različitih načina. 3. Kako je svaki treći pozitivan cijeli broj djeljiv s 3, pri čemu je broj 3 prvi takav, i 999 = 333 3, postoje 333 tražena pozitivna cijela broja. Lako zaključujemo da postoje i 333 tražena negativna cijela broja. S obzirom da je i broj 0 djeljiv s 3, ukupan broj traženih cijelih brojeva djeljivih s 3 je = 667. Da bismo odredili koliko ima traženih cijelih brojeva koji nisu djeljivi s 4, prvo prebrojimo koliko ima cijelih brojeva z, 444 <z<444, koji jesu djeljivi s4. Kako je svaki četvrti pozitivan cijeli broj djeljiv s 4, pri čemu je broj 4 prvi takav, i 443 = , postoji 110 pozitivnih cijelih brojeva z djeljivih s 4. Lako zaključujemo da postoji i 110 negativnih cijelih brojeva z djeljivih s 4.

11 S obzirom da je i broj 0 djeljiv s 4, ukupan broj cijelih brojeva z djeljivih s 4 je = 1. Tada je ukupan broj traženih cijelih brojeva koji nisu djeljivi s 4 jednak = 666. Dakle, cijelih brojeva x, 1000 <x<1000, koji su djeljivi s 3 ima više. 4. Broj izvadenih kuglica mora biti djeljiv sa 7 (6 + 1). Ako iz kutije izvadimo šest puta više bijelih nego crvenih, to znači da smo izvadili 7, 14, 1, 8, 35, 4 ili 49 kuglica. Preostalo je 51, 44, 37, 30, 3, 16 ili 11 kuglica. Broj preostalih kuglica mora biti djeljiv sa 6 (5 + 1). To znači da smo izvadili 8 kuglica i to 4 bijele i 4 crvene, a preostalo je 30 kuglica i to 5 crvenih i 5 bijelih kuglica. Dakle, bilo je = 9 bijelih i = 9 crvenih kuglica. 5. 1) { α + β =90 dijagonale se sijeku pod pravim kutom β + γ =90 kut većeg kvadrata = α = γ ) SC = SB (dijagonale se raspolavljaju) 3) )<SBA = )<SCB =45 ; α = γ = EBS = FCS po poučku KSK = P BCS = P EBFS 4) BCS je četvrtina kvadrata ABCD = EBFS je četvrtina manjeg kvadrata. 4BODA

12 RJEŠENJA ZA 7. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN. 1. Iz a =3b = b = a.iza =4c = c = 1 a.iza =5d = d = a. 6BODOVA 3 5 Iz a = x(a + b + c + d) = a = x (a + 3 a + 1 a + 5 ) a a = x a x = a : a x = x = a 30 77a. Neka je x duljina stranice najmanjeg kvadrata iz kvadratne mreže. Tada vrijedi P MNL = x x = 1 x x i ( x 3x P ABC =3x 3x =9x x 11 x x = 7 x x + x x + ) 3x x 6BODOVA Dakle, P ABC : P MNL = ( 7 x x) : ( 1 x x) =7:1. 3. Cijena u prvoj trgovini x x +0%x =1.x = 1.x 0% 1.x =0.96x Cijena u drugoj trgovini y y 0%y =0.8y = 0.8y + 0% 0.8y =0.96y

13 0.96x 0.96y = x y = 10 x y = 10 : 0.96 x y = 15 Razlika prije prve promjene je bila 15 kn. 4. Neka su a, b, c traženi prosti brojevi. Tada vrijedi jednakost a b c =5(a + b + c). Kako je desna strana jednakosti djeljiva s 5, zaključujemo da je i lijeva strana djeljiva s 5. Zbog uvjeta zadatka nužno slijedi da je jedan od tri broja djeljiv s 5. Neka je c =5. Tada je a b 5=5(a + b +5) a b = a + b +5 ab a = b +5 a(b 1) = b +5 a = b +5 b 1 ili dalje redom a = b 1+6 b 1 = b 1 b b 1 =1+ 6 b 1. Broj a će biti prirodan broj samo ako je razlomak 6 b 1 prirodan broj. b 1=1 b = a =7 b 1= b =3 a nema rješenja a =, b =7, c =5 b 1=3 nema rješenja b 1=6 b =7 a = 4BODA

14 5. Neka je α = )<AMB = )<AMD i a = AB. Tada je )<DAM = α (kutovi uz presječnicu). Kako je )<DAM = )<AMD, onda je AMD jednakokračan. To znači da je DM = DA odnosno DM =a. S obzirom da je MCD pravokutan i DM = DC, onda je MCD polovina jednakostraničnog trokuta odnosno )<CDM =60, )<DMC =30. Dakle, α +30 = 180 odnosno α =75.

15 RJEŠENJA ZA 8. RAZRED OVDJEJEDANJEDANNAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN x 54 5 y 106 = x 9y +3 x +4y =6 x 5y =4 x 5y =3/ ( 1) x =1 5y = x 3 y = y = 5. 9x +4y 1xy 16a =1 (3x y) 16a =1 (3x y 4a)(3x y +4a) =1 (3x y 4a) 4=1 3x y 4a =3 3x y +4a =4 (3x y) =7 3x y = 7

16 3. Neka je x km na sat brzina bicikliste uzbrdo. Tada je x +5 km na sat brzina bicikliste na ravnom dijelu ceste. To znači da je biciklist vozio uzbrdo 0 60 sati, a na ravnom dijelu ceste x x+5 sati. Zato vrijedi jednadžba 0 x + 60 x +5 =6. Ili dalje redom, 0(x +5)+60x =6x(x +5), 0x x =6x +30x, 6x 50x 100 = 0 3x 5x 50x =0 3x 30x +5x 50 = 0, 3x(x 10) + 5(x 10) = 0 (x 10)(3x +5)=0 Pozitivno rješenje jednadžbe je x 10 = 0, tj. x = 10. Prema tome, biciklist je uzbrdo vozio brzinom od 10 km na sat, a na ravnom dijelu ceste brzinom od 15 km na sat. 4. P ABC = a v a 5a =6b = b v a a = 6 5 b ili b = 5 6 a

17 Kako je ADC pravokutan, prema Pitagorinu poučku slijedi ( a ) b = +10 ( ) 5 ( a ) 6 a = a = 100 a =15cm Zato je P ABC = a v a = =75cm 5. Neka je točka S presjek simetrale AE kuta )<BAC i visine CD. 1) Očito je )<ACD = )<BCD = 54, iz čega slijedi da je )<CAB = )<CBA =36,paje )<CAE =18. U trokutu CAE je )<AEC = 180 ( ), tj. )<AEC =54.Toznači da je trokut SCE jednakokračan, pa je SE = SC. ) Neka je točka F središte dužine AE. Toznači da je FD srednjica trokuta ABE, pa je FD BE. Zbog toga je )<SDF = )<SCE = 54 i )<SF D = )<SEC =54, jer su to kutovi uz presječnicu CD odnosno EF. Zato je trokut SFD jednakokračan, pa je SF = SD. 3) Kako je AE = AF + FE, azbog AF = FE, vrijede redom ove jednakosti 5BODOVA AE = FE + FE, AE = FE, azbog FE = SF + SE = AE =( SF + SE ), AE =( SD + SC ), azbog SD + SC = CD = AE = CD

RJEŠENJA ZA 4. RAZRED

RJEŠENJA ZA 4. RAZRED RJEŠENJA ZA 4. RAZRED OVDJEJEDANJEDANNAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN.

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, 25.travnja-27.travnja razred-rješenja

DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, 25.travnja-27.travnja razred-rješenja DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, 5.travnja-7.travnja 01. 5. razred-rješenja OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE. 4. razred osnovna škola. 23. veljače Odredi zbroj svih neparnih dvoznamenkastih prirodnih brojeva.

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE. 4. razred osnovna škola. 23. veljače Odredi zbroj svih neparnih dvoznamenkastih prirodnih brojeva. MINISTARSTVO ZNANOSTI, OBRAZOVANJA I ŠPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 1. Na pitanje koliko

Διαβάστε περισσότερα

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 24. siječnja razred rješenja

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 24. siječnja razred rješenja ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 4. siječnja 011. 4. razred rješenja OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija

Διαβάστε περισσότερα

DRŽAVNO NATJECANJE IZ MATEMATIKE Šibenik, 2.travnja-4.travnja razred-rješenja

DRŽAVNO NATJECANJE IZ MATEMATIKE Šibenik, 2.travnja-4.travnja razred-rješenja DRŽAVNO NATJECANJE IZ MATEMATIKE Šibenik, travnja-4travnja 014 5 razred-rješenja OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 25. siječnja 2008.

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 25. siječnja 2008. Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 25. siječnja

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Op cinsko natjecanje Osnovna ˇskola 4. razred

Op cinsko natjecanje Osnovna ˇskola 4. razred 9 1. Općinsko natjecanje Općinsko (gradsko) natjecanje je prvi stupanj natjecanja koji se organizira po jedinstvenim kriterijima Državnog povjerenstva za matematička natjecanja. Godine 1996. ono je održano

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 29. siječnja 2007.

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 29. siječnja 2007. Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 9. siječnja 007.. U brojevnom

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 9. siječnja 009. 1. Riješi nejednadžbu x + x Rješenje. 1 u skupu prirodnih brojeva. x + x 1 x + x + 0 x x < 0 x

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

RJEŠENJA ZA 4. RAZRED

RJEŠENJA ZA 4. RAZRED RJEŠENJA ZA 4. RAZRED OVDJEJEDANJEDANNAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN..

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 17. siječnja 2013.

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 17. siječnja 2013. ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 17. siječnja 01. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERE- NSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja. r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira

Διαβάστε περισσότερα

MINISTARSTVO ZNANOSTI, OBRAZOVANJA I ŠPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO

MINISTARSTVO ZNANOSTI, OBRAZOVANJA I ŠPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO 4. razred-osnovna škola 1. Umjesto zvjezdica upiši odgovarajuće znamenke i obrazloži. * * 8 5 * * 5 5 * 0 + 4 * * 5 * * * * * 2. U jednoj auto-radionici u jednom mjesecu popravljena su 44 vozila i to motocikli

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Općinsko natjecanje. 4. razred

Općinsko natjecanje. 4. razred 9 1. Općinsko natjecanje iklus susreta i natjecanja mladih matematičara, učenika osnovnih i srednjih škola Republike Hrvatske i u 1998. godini sastojao se od školskih natjecanja, gradskih i općinskih natjecanja,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 3.travnja-5.travnja razred-rješenja

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 3.travnja-5.travnja razred-rješenja DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, travnja-5travnja 07 5 razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih: Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α

Διαβάστε περισσότερα

MINISTARSTVO ZNANOSTI, OBRAZOVANJA I SPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO

MINISTARSTVO ZNANOSTI, OBRAZOVANJA I SPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO MINISTARSTVO ZNANOSTI, OBRAZOVANJA I SPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja 2016. 4. razred-osnovna

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010.

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010. ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI

Διαβάστε περισσότερα

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010.

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010. ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo. 29. siječnja 2009.

Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo. 29. siječnja 2009. Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 9. siječnja 009. UPUTE: Na poledini

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 3. svibnja 2007.

DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 3. svibnja 2007. Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 3. svibnja 2007. Zadatak

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 27. siječnja 2014.

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 27. siječnja 2014. ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 7. siječnja 014. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 30. ožujka 2009.

DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 30. ožujka 2009. DRŽAVNO NATJECANJE IZ MATEMATIKE. razred srednja škola A kategorija 30. ožujka 009. Zadatak A-.. Odredi sve trojke uzastopnih neparnih prirodnih brojeva čiji je zbroj kvadrata jednak nekom četveroznamenkastom

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C. 1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi ako je E=C. 1.1.**

Διαβάστε περισσότερα

ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.

ALFA List - 1. Festival matematike Split 2013. Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013. ALFA List - 1 Točan odgovor: 10 bodova Pogrešan odgovor: 5 bodova Bez odgovora: 0 bodova 1. Ako je (x+ 3): 4=( x ):3, onda je x jednako: A) 1 B) 1 C) 17 D) 17 E) 6. Kut od 1º30' gleda se kroz povećalo

Διαβάστε περισσότερα

DRŽAVNO NATJECANJE IZ MATEMATIKE

DRŽAVNO NATJECANJE IZ MATEMATIKE DRŽAVNO NATJECANJE IZ MATEMATIKE. razred srednja škola B kategorija Pula, 30. ožujka 009. Zadatak B-.. (0 bodova) Tomislav i ja, reče Krešimir, možemo završiti posao za 0 dana. No, ako bih radio s Ivanom

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Ljetno kolo 2017./2018.

Ljetno kolo 2017./2018. Ljetno kolo 217./218. ŠKOLA EKIPA KATEGORIJA POVJERENIK NATJECANJA C3 R. IME I PREZIME UČENIKA RAZRED IME I PREZIME MENTORA 1. 2. 3.. ODGOVORI: 1. 11. 26. 2. 12. 27. 3. 13. 28.. 1. 29. 5. 15. 3. 6. 16.

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

Jesensko kolo 2017./2018.

Jesensko kolo 2017./2018. MAT liga 07./08.. kolo.0.07. Jesensko kolo 07./08. ŠKOLA EKIPA KATEGORIJA POVJERENIK NATJECANJA D R. IME I PREZIME UČENIKA RAZRED IME I PREZIME MENTORA.... ODGOVORI: 5. razred 6. razred 7. razred 8. razred

Διαβάστε περισσότερα

3. ELEMENTARNA TEORIJA BROJEVA Dokaži dajebroj djeljivs Dokažidajebroj djeljiv Dokaži dajebroj djeljiv

3. ELEMENTARNA TEORIJA BROJEVA Dokaži dajebroj djeljivs Dokažidajebroj djeljiv Dokaži dajebroj djeljiv 3. ELEMENTARNA TEORIJA BROJEVA 3.. djeljivost 65. Dokaži da je produkt tri uzastopna broja, od kojih je srednji kub prirodnog broja, djeljiv s 504. 652. Ako su a, b cijeli brojevi, dokaži da je broj ab(a

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C. Geometrija 1. dio. 1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi

Διαβάστε περισσότερα

Udaljenosti karakterističnih točaka trokuta

Udaljenosti karakterističnih točaka trokuta Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik 1 U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice

Διαβάστε περισσότερα

ŠKOLSKO (GRADSKO) NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 4. veljače 2010.

ŠKOLSKO (GRADSKO) NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 4. veljače 2010. ŠKOLSKO (GRADSKO) NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 4. veljače 2010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI

Διαβάστε περισσότερα

x + y + z = 2 (x + y)(y + z)+(y + z)(z + x)+(z + x)(x + y) =1 x 2 (y + z)+y 2 (z + x)+z 2 (x + y) = 6

x + y + z = 2 (x + y)(y + z)+(y + z)(z + x)+(z + x)(x + y) =1 x 2 (y + z)+y 2 (z + x)+z 2 (x + y) = 6 DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija,. svibnja 2007. Rješenja Zadatak 1A-1. Na - dite realna rješenja sustava jednadžbi: x + y + z = 2 (x + y)(y + z)+(y + z)(z + x)+(z

Διαβάστε περισσότερα

Kut je skup točaka ravnine odre - den dvama polupravcima sa. Polupravci a i b su krakovi kuta, a njihov zajednički početak V je vrh kuta.

Kut je skup točaka ravnine odre - den dvama polupravcima sa. Polupravci a i b su krakovi kuta, a njihov zajednički početak V je vrh kuta. UDŽBENIK 2. dio Pojam kuta Dva polupravca sa zajedničkim početkom dijele ravninu na dva dijela (jače naglašeni i manje naglašeni dio). Svaki od tih dijelova zajedno s polupravcima zove se kut. Da bi se

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

ZADACI. Osnovna škola

ZADACI. Osnovna škola 9 1. Školsko (gradsko) natjecanje Školsko natjecanje prva je razina natjecanja iz matematike za koju zadatke sastavlja Državno povjerenstvo za matematička natjecanja. Školska natjecanja održana su diljem

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P = Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Udaljenosti karakterističnih točaka trokuta

Udaljenosti karakterističnih točaka trokuta Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Proljetno kolo 2017./2018.

Proljetno kolo 2017./2018. MAT liga 0./0.. kolo.0.0. Proljetno kolo 0./0. ŠKOLA EKIPA KATEGORIJA POVJERENIK NATJECANJA B C R. IME I PREZIME UČENIKA RAZRED IME I PREZIME MENTORA.... ODGOVORI:. razred. razred. razred. razred.........................................6..6..6..6..................9..9..9..9..0..0..0..0.................

Διαβάστε περισσότερα

Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet Matematički odsjek. Tonio Škaro. Diplomski rad

Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet Matematički odsjek. Tonio Škaro. Diplomski rad Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Tonio Škaro Težišnice trokuta i težište Diplomski rad Zagreb, rujan, 015 Sveučilište u Zagrebu Prirodoslovno-matematički fakultet

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα