2.6 Nepravi integrali
|
|
- Κόσμος Μανωλάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [, i oznčv s f(). (.5) Tkoder kžemo d neprvi integrl (.5) konvergir. Ako es u (.4) ne postoji u R, ond kžemo d neprvi integrl (.5) divergir. Anlogno definirmo pojm neprvog integrl z funkciju f :, ] R: f() : f(). Ako je f : R R funkcij koj je Riemnn integrbiln n svkom segmentu, td definirmo c f() : f() + f() (c R), (.6) ukoliko ob neprv integrl s desne od (.6) konvergirju. Npomen. c R. c Lko se pokže d je definicij (.6) dobr, tj. d ne ovisi o izboru točke Zk.49 Izrčunjte neprve integrle: () + e ln (c) ( > ) (d) Rješenje. () + + rctg rctg. e ln t ln e t ln e ln ln ln. ln t
2 . INTEGRAL 67 (c) ch t t Arch sh Arch sh t Arch Arch ch t sh t Arch ch t th t Arch Arch t th(arch )). (d) ( + ) + 4 ( + ) η 4. η ( + ) η rctg + η ( + ) + 4 rctg + + η Arch Arch (th(arch ) b ( + ) + 4 rctg + rctg η Npomen. Postojnje es općenito ne povlči konvergenciju neprvog integrl Npr. z sve > immo > immo divergir, p ond ne postoji ni f(). (.7), p je stog i, p je S druge strne, ko neprvi integrl vrijedi. f().. S druge strne z. Dkle, neprvi integrl f() konvergir, td es (.7) postoji i f() f(). Limes (.7) zove se glvn vrijednost integrl funkcije f i oznčv s V.P. f(). O njemu ćete više čuti n kompleksnoj nlizi.
3 68. INTEGRAL Definicij. Z neprvi integrl konvergir neprvi integrl f() kžemo d psolutno konvergir, ko f(). Teorem. Apsolutn konvergencij povlči običnu konvergenciju, tj. ko neprvi integrl f() psolutno konvergir, td on i konvergir. Npomen. Obrt prethodnog teorem općenito ne vrijedi. Nime, može se pokzti d neprvi integrl sin konvergir, li d ne konvergir psolutno. Teorem. (Usporedni kriterij) Nek su f, g : [, [, dvije nenegtivne funkcije koje su Riemnn integrbilne n svkom segmentu [, b], < b. Pretpostvimo d vrijedi f() g(), [,. () Ako neprvi integrl f(). g() konvergir, ond konvergir i neprvi integrl Ako neprvi integrl f() divergir, ond divergir i neprvi integrl Korolr. (Grnični kriterij) Nek su f, g : [, R + dvije pozitivne funkcije koje su Riemnn integrbilne n svkom segmentu [, b], b <. Pretpostvimo d u R postoji es f() L : [, ]. g() () Ako neprvi integrl integrl Ako neprvi integrl integrl f() konvergir. f() divergir. g() konvergir i ko je c [,, td i neprvi g() divergir i ko je c, ], td i neprvi g().
4 . INTEGRAL 69 Zk.5 U ovisnosti o prmetru p > ispitjte konvergenciju neprvog integrl Rješenje. Po definiciji, neprvi integrl Promtrmo slučjeve., gdje je >. p L : p. p konvergir ko postoji končn es (i) Ako je p, ond je b ln b ln. Stog je p neprvi integrl L (ii) Ako je p, ond je L Dkle, neprvi integrl divergir. p p p (ln ln ), p ( p p ). Stog je p p ( p p ) z p < p p z p >. konvergir z p >, divergir z < p. p Zk.5 Ispitjte konvergenciju neprvih integrl () Rješenje. sin () Tvrdimo d neprvi integrl Zist, kko je + sin (c) 4+ 5 rctg (d) sin konvergir psolutno , sin.
5 7. INTEGRAL te kko neprvi integrl d neprvi integrl Iz nejednkosti konvergir (p ), iz grničnog kriterij slijedi sin tkoder konvergir., >, dokzne konvergencije neprvog integrl i usporednog kriterij slijedi d neprvi integrl konvergir psolutno sin Iz nejednkosti divergencije neprvog integrl neprvi integrl (c) Kko je te kko neprvi integrl d integrl (d) Iz nejednkosti + sin, + sin [,, (p ) i usporednog kriterij slijedi d tkoder divergir. L : rctg rctg tkoder divergir., divergir, prem grničnom kriteriju zključujemo + sin + >, [, divergencije neprvog integrl (p ) i usporednog kriterij, slijedi d neprvi integrl + sin tkoder divergir. Definicij. Nek je f : [, b R (ne nužno ogrničen) funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [, b. Ako postoji končn es b f(), (.8)
6 . INTEGRAL 7 ond se tj es zove neprvi integrl funkcije f n [, b i oznčv s b f(). (.9) Tkoder kžemo d neprvi integrl (.9) konvergir. Ako es u (.8) ne postoji u R, ond kžemo d neprvi integrl (.9) divergir. Anlogno definirmo pojm neprvog integrl z funkciju f :, b] R: b f() : + b f(). Ako je f :, b R funkcij koj je Riemnn integrbiln n svkom podsegmentu od, b, td definirmo b f() : c f() + b ukoliko ob neprv integrl s desne od (.) konvergirju. c f() ( < c < b), (.) Npomen. () Lko se pokže d definicij (.) ne ovisi o izboru točke < c < b. Ako je f : [, b] R Riemnn integrbiln funkcij, td je b f() b f(), što pokzuje d je u tom slučju neprvi integrl jednk običnom Riemnnovom integrlu funkcije f n [, b]. (c) Z neprvi integrl n ogrničenom području vrijede nlogni teoremi ko i z neprvi integrl n neogrničenom području. Zk.5 Izrčunjte neprve integrle () ctg sin (c) tg. Rješenje. () rcsin sin t ). sin t rcsin t cos t rcsin ( cos t) rcsin ( cos rcsin ) ( ctg sin + rcsin + t + (sin ) t sin rcsin cos cos t rcsin + ( rcsin ).
7 7. INTEGRAL (d) Uzmimo < < i stvimo Po definiciji je Nek je t I I : tg. tg I. Koristeći supstituciju t, immo + J : tg ( tg + ctg ). sin + cos Td je J sin cos sin + cos u sin cos (sin cos ) du (cos + sin ) cos sin Stog je Kko je sin cos te kko je + du u rcsin(cos sin ). ctg. sin + cos ( sin cos ) J rcsin(cos sin ) + +. J I tg i + tg ctg, ctg, to je tg + I + J. sin cos cos sin Zk.5 U ovisnosti o prmetru p > ispitjte konvergenciju neprvog integrl, gdje je >. p Rješenje. Po definiciji, neprvi integrl es Promtrmo slučjeve. p L : +. p konvergir ko postoji končn
8 . INTEGRAL 7 (i) Ako je p, ond je z < < ln ln ln. Stog je L + (ln ln ), + p neprvi integrl divergir. (ii) Ako je p, ond je z < < Stog je p p p p ( p p ). L + p p + ( p p ) Dkle, neprvi integrl Zk.54 Ispitjte konvergenciju neprvih integrl z p > p p z < p <. konvergir z < p <, divergir z p. p () ln cos ( ) 4 (c) cos + (d) 4 + Rješenje. () Uzmimo < <. Td je. Iz nejednkosti ln(t + ) + t t + + ln slijedi ln(t + ) < t, t > ln(t + ) > t. kko je < < bio proizvoljn, te kko neprvi integrl usporednog kriterij slijedi d neprvi integrl Uzmimo < <. Kko je cos,, ln divergir, iz tkoder divergir.
9 74. INTEGRAL immo cos ( ) 4 t 4 ( ) 4 t. Kko je < < bio proizvoljn, te kko neprvi integrl iz usporednog kriterij slijedi d neprvi integrl konvergir, p stog i konvergir. (c) Uzmimo < <. Iz nejednkosti slijedi sin <, >, 4 t konvergir, cos psolutno 4 ( ) cos cos + cos cos sin <,, ], jer je + cos, z sve, ]. Stog je cos >. Kko je < < bio proizvoljn, te kko neprvi integrl (p ), iz usporednog kriterij slijedi d neprvi integrl divergir. divergir cos tkoder (d) Tvrdimo d neprvi integrl konvergir. Dokžimo d ob neprv integrl konvergirju. Ocjenjujemo: i ( )( ) < 5,, ], jer je + < 5 5,, ]. Slično bismo dobili i ocjenu <, ( )( ) [,.
10 . INTEGRAL 75 Uzmimo proizvoljne <, δ <. Zbog prethodnih nejednkosti immo < 5 t + + te δ + + δ 4 + < t t δ δ Kko su <, δ < bili proizvoljni, te kko neprvi integrl (p ), iz usporednog kriterij slijedi d ob neprv integrl tkoder konvergirju i t, t konvergir. δ t
11 76. INTEGRAL Zdci z vježbu.55 Izrčunjte neprve integrle: () e ( + ) (c) ( + ) rctg ( + )..56 Ispitjte konvergenciju neprvih integrl () e + ln cos ln (c) sin e ( + )..57 Odredite prmetr α R z kojeg neprvi integrl + 4 α + konvergir, te z tj α izrčunjte gornji integrl..58 Nek je f : [, [, neprekidn nenegtivn funkcij. Pretpostvimo d neprvi integrl konvergir. () Mor li nužno vrijediti f()? f() Ako je f uniformno neprekidn n [,, dokžite d je f()..59 Izrčunjte neprve integrle: + b (), ( < b) (c) ln(sin ). ( )(b ).6 Ispitjte konvergenciju neprvih integrl () sin 4 (c) + cos (d) tg ln( + ) 5.
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
Neodreeni integrali. Glava Teorijski uvod
Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f
A MATEMATIKA Zadana je z = x 3 y + 1
A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte
1 Odredeni integral. Integrabilnost ograničene funkcije
Odredeni integrl. Integrbilnost ogrničene funkcije Njprije uvedimo dvije pretpostvke. Prv, d je reln funkcij segment[, b] končne dužine ( < < b < + ). Definicij 2. Podjel segment [, b], u oznci P, je svki
DIPLOMSKI RAD. Nesvojstveni integral. Univerzitet u Kragujevcu Prirodno matematički fakultet. Kandidat: Marta Milošević 47/00
Univerzitet u Krgujevu Prirodno mtemtički fkultet IPLOMSKI RA Nesvojstveni integrl Mentor: r Mirjn Pvlović Kndidt: Mrt Milošević 47/ KRAGUJEVAC,. Sdržj. Nesvojstveni jednostruki integrl 3.. efiniij, primeri
= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi
Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim
Rijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Integralni raqun. F (x) = f(x)
Mterijl pripremio Benjmin Linus U mterijlu su e definicije, teoreme, dokzi teorem (rđenih n predvƭu i primeri. Dodo sm i neke done primere d bih ilustrovo prikznu teoriju. Integrlni rqun Definicij. Nek
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Matematika 2. Boris Širola
Mtemtik 2 (. Riemnnov integrl) Boris Širol predvnj . Riemnnov integrl 3 Pretpostvimo d immo neku neprekidnu relnu funkciju f, definirnu n nekom segmentu; tj., nek je dn neprekidn funkcij f : [, b] R.
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
MATEMATIKA 2. seminari. studij: Prehrambena tehnologija i Biotehnologija
MATEMATIKA seminri studij: Prehrmben tehnologij i Biotehnologij Sdržj Integrlni rčun funkcije jedne vrijble. Uvod................................. Odredeni (Riemnnov) integrl. Problem površine........
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]
Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom
IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
LAPLASOVA TRANSFORMACIJA
Mster rd LAPLASOVA TRANSFORMACIJA Snježn Mksimović Mentor: Akdemik dr Stevn Pilipović Novi Sd, pril 211. iii Sdržj Predgovor vi 1. Osnovn Lplce-ov trnsformcij 1 1.1. Egzistencij Lplce-ove trnsformcije...............
GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo
GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;
1 Ekstremi funkcija više varijabli
1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Uvod Newton-Leibnizova formula Glavne metode integriranja. Integrali. Franka Miriam Brückler
Integrli Frnk Mirim Brückler Antiderivcije Koj je vez izmedu x 2 i 2x? Antiderivcije Koj je vez izmedu x 2 i 2x? Antiderivcij (primitivn funkcij) zdne funkcije f : I R (gdje je I otvoren intervl) je svk
1. NEODREÐENI INTEGRAL
. NEODREÐENI INTEGRAL Pitnj: Je li dn reln funkcij f : A! R, A R, derivcij neke relne funkcije g : A! R? Riješiti jedndbu g = f, pri cemu se z dni f tri g. T jedndb ili nem rješenj ili ih im beskoncno
1.1 Neodre deni integral
. Neodre deni integrl.. Površinski problem Uvod u površinski problem Iko većin rzmišlj o integrlu isključivo ko o obrtu izvod, osnove integrlnog rčun sežu mnogo dlje u prošlost od modernih vremen. Jedn
FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA
FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA Vrijednoti inu i koinu π π π π ϕ 6 4 3 in ϕ 3 co ϕ 3 Trigonometrijke funkcije polovičnih rgument in x = co x co x = + co x Trigonometrijke
Integracija funkcija više promenljivih
Integrcij funkcij više promenljivih Drgn S. Djordjević Univerzitet u Nišu, Prirodno-mtemtički fkultet Niš, Srbij Februry 18, 216 ii Predgovor Predvnj su nmenjen studentim, koji polžu ispit iz predmet Mtemtičk
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Matematička analiza 4
Mtemtičk nliz 4 Drgn S. Dor dević 14.5.214. 2 Sdržj Predgovor 5 1 Integrcij 7 1.1 Žordnov mer u R n....................... 7 1.1.1 Mer prvougonik u R 2................ 7 1.1.2 Mer n-intervl u R n..................
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.
Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu
OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA
OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH
UVOD. Ovi nastavni materijali namijenjeni su studentima
UVOD Ovi nstvni mterijli nmijenjeni su studentim u svrhu lkšeg prćenj i boljeg rzumijevnj predvnj iz kolegij mtemtik. Ovi mterijli čine suštinu nstvnog grdiv p, uz obveznu literturu, mogu poslužiti studentim
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza
Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Izvodi i integrali necelog reda
UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Ntš Durković Izvodi i integrli necelog red -mster rd- Mentor: Docent dr Snj Konjik Novi Sd, 2. Predgovor Frkcioni
7 Odreženi integrali. Neka je funkcija f(x) definisana na intervalu [a, b]. Ako ovaj interval podelimo
7 Odreženi integrli 63 7 Odreženi integrli Nek je funkcij f(x) definisn n intervlu [, ]. Ako ovj intervl podeo n n delov tčkm = x < x < x
Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f
Mte ijug: Rijeseni zdci iz vise mtemtike 8. ODREDJENI INTEGRALI 8. Opcenito o odredjenom integrlu Odredjeni integrl je grnicn vrijednost sume eskoncnog roj clnov svki cln tezi k nuli i ozncv se s : n n
Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,
Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Rešavanje diferencijalnih jednačina pomoću redova. Specijalne funkcije. Ortogonalne funkcije
Glv 1 Rešvnje diferencijlnih jednčin pomoću redov. Specijlne funkcije. Ortogonlne funkcije 1.1 Neke druge specijlne funkcije Skoro bez izuzetk, njčešće korišćene specijlne funkcije su trigonometrijske
Mera, integral i izvod
Mer, integrl i izvod Drgn S. Dor dević 3.1.2014. 2 Sdržj Predgovor 5 1 Uvod 7 1.1 Osnovni pojmovi......................... 7 1.2 Topološki prostori......................... 8 1.3 Metrički prostori.........................
4. Relacije. Teorijski uvod
VI, VII i VIII dvoqs veжbi Vldimir Blti 4. Relije Teorijski uvod Podsetimo se n neke od pojmov veznih z skupove, koji su nm potrebni z uvođeƭe pojm relije. Dekrtov proizvod skup iniemo n slede i nqin:
R A D N I M A T E R I J A L I
Krmen Rivier R A D N I M A T E R I J A L I M A T E M A T I K A II. dio SPLIT 7. IV. FUNKCIJE 4.. POTREBNO PREDZNANJE 4.. REALNE FUNKCIJE JEDNE VARIJABLE 4.. INTERPOLACIJA 7 4.. NEKE OSNOVNE ELEMENTARNE
3. Rubni problem za obične diferencijalne jednadžbe Egizstencija i jedinstvenost rješenja... 64
Sdržj 1. Numeričk integrcij.......................... 1 1.1. Općenito o integrcijskim formulm................ 1 1.. Newton Cotesove formule...................... 3 1..1. Trpezn formul.......................
SLUČAJNE PROMENLJIVE-FUNKCIJA RASPODELE
SLUČAJNE PROMENLJIVE-FUNKCIJA RASPODELE Do sd smo već definisli skup Ω elementrnih dogđj Ako se elementrni dogđji ω mogu predstviti ko relni brojevi, ond se eksperiment može zmisliti ko izbor jedne promenljive
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su
ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
U n i v e r z i t e t u B e o g r a d u. Matematički fakultet ITOOV STOHASTIČKI INTEGRAL I PRIMENE
U n i v e r z i t e t u B e o g r d u Mtemtički fkultet ITOOV STOHASTIČKI INTEGRAL I PRIMENE M s t e r r d Mentor: dr Jelen Jocković Student: Jelen R. Suzić B e o g r d, 2015 S d r ž j Predgovor 1 1 Integrlni
Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras,
MIF kurss, Bioinformtik, semestrs, 29 6 Tolydžios tške ir intervle funkciju pibrėžimi Teorem Jei f C[, ], f() = A , ti egzistuoj toks c [, ], kd f(c) = 2 Konverguojnčios ir diverguojnčios eikutės
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
KUPA I ZARUBLJENA KUPA
KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI
Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike 8 NIZOVI Pojm iz Nek je N skup prirodih brojev Prem ekom prvilu svki broj iz N zmijeimo ekim brojem:,,,, R Št smo dobili? Budući d je svkom elemetu
15. domaća zadaća. Matematika 1 (preddiplomski stručni studij elektrotehnike)
Maemaika 5.. Koriseći definiciju derivacije funkcije u očki izračunaje sljedeće granične vrijednosi: c) f) h) i) j) k) n) o) q) r) e 0 e 0 e 0 ln( + ) 0 ln( + ) 0 4 ln sin e 0 5 g e 0 6 cos e cg e ln(
Integrali Materijali za nastavu iz Matematike 1
Integrali Materijali za nastavu iz Matematike Kristina Krulić Himmelreich i Ksenija Smoljak 202/3 / 44 Definicija primitivne funkcije i neodredenog integrala Funkcija F je primitivna funkcija (antiderivacija)
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
Krivolinijski integral
Poglvlje 4 Krivolinijski integrl 4.1 Vektorsko polje U ovom i nrednom poglvlju, osim sklrnih, rdićemo i s vektorskim funkcijm više promenljivih, F : R n R m, F = (F1,...,F m ), F i : R n R, i = 1,...,m,
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor
I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto
SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F
SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost
Matematika za ekonomiste Časlav Pejdić, (064)
Mtemtik z ekonomiste Čslv Pejdić, (06) 09 0 SADRŽAJ SADRŽAJ UVOD DEO RELACIJE I FUNKCIJE DEO ALGEBRA 6 DEO NIZOVI I REDOVI DEO NEPREKIDNOST I DIFERENCIJABILNOST FUNKCIJE 7 5 DEO LIMESI I IZVODI 9 6 DEO
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:
tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene
Matematika 2 PODSJETNIK ZA UČENJE. Ivan Slapničar Marko Matić.
Ivn Slpničr Mrko Mtić Mtemtik 2 PODSJETNIK ZA UČENJE http://www.fesb.hr/mt2 Fkultet elektrotehnike, strojrstv i brodogrdnje Split, 2003. Sdržj 1 Neodredeni integrl 3 2 Odredeni integrl 5 3 Funkcije više
Polinomijalna aproksimacija
1 Polinomijln proksimcij 1.1 Problem njbolje proksimcije Rzmotrimo ponovo problem u kojem je zdn tblic brojev x x 0 x 1 x x 3 x 4 x n y y 0 y 1 y y 3 y 4 y n (1.1) z koju treb nći funkciju f koju t tblic
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
f(x) = a x, 0<a<1 (funkcija strogo pada)
Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0
( ) p a. poklopac. Rješenje:
5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
DIFERENCIJALNE JEDNADŽBE
9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)
JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe