Επαναληπτικά Θέµατα ΟΕΦΕ 006 Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Α. Θεωρία σχολικού βιβλίου σελ. 8 Β. Θεωρία σχολικού βιβλίου σελ. 0 Γ..Γ.Α.Α,Γ.Α,, ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ + ( + )( + + + ) ) lm lm ( )( + + + ) ( + ) ( + ) + ( ) lm lm lm ( )( + + + ) ( + )( + + + ) ( )( + )( + + + ) lm ( + )( + + + ) ( + ) 8 άρα λ λ λ ) f λ 6 + µ. A f R. Για λ: f 6 + µ Η f παραγωγίσιµη στο R ως πολυωνυµική µε : f ( ) 6 6. f ( ) 0 6 6 0 6 + 0 ή Και : f > 0 6( )( + ) > 0 - + - + οπότε < - ή > Ο πίνακας µεταβολών της f είναι: - + Είναι: f + - + f ÈÅÌÁÔÁ 006 H f παρουσιάζει µέγιστο για -, το f ( ) + 6 + µ µ + Οπότε : µ + 9 µ ) Ο συντελεστής διεύθυνσης της εφαπτοµένης της C f στο A( 0, f ( 0 )) είναι f ( 0 ). Οπότε, τα ζητούµενα σηµεία έχουν τετµηµένες τις λύσεις της εξίσωσης f ( 0 ) 0 ή
Επαναληπτικά Θέµατα ΟΕΦΕ 006 Είναι : f ( ) 9 και f () Άρα τα ζητούµενα σηµεία είναι : Β(-,9) και Γ(,). ) Ο ρυθµός µεταβολής της f συναρτήσει του είναι: f ( ) 6 6 Είναι: f 0 0 0 και f > 0 > 0 > 0 Ο πίνακας µεταβολών της f είναι: ΘΕΜΑ ο Α. ) Αριθµός επιβατών 0 + f - + Η f παρουσιάζει ελάχιστο για 0 f οπότε ο ρυθµός µεταβολής της f γίνεται ελάχιστος για 0 Αριθµός αυτοκινήτων f f % F F % ν ( ) 0 0,, 0 0,, 0 00 0 0,7 7, 60 0, 0 0 0 0 0, 0 80 0,7 70 60 0 0 0.07 7, 0 0,77 77, 0 0 90 0,, 00 00 0 60 ΣΥΝΟΛΑ 00 00 00 700 00 ) Η µέση τιµή είναι : 00 00 Αφού ν 00 (άρτιος), η διάµεσος θα είναι το ηµιάθροισµα των δύο µεσαίων παρατηρήσεων, αν αυτές έχουν διαταχθεί κατ αύξουσα σειρά. t00+ t0 + ηλαδή: δ ) Η διακύµανση είναι : Οπότε η τυπική απόκλιση είναι: ( ) 00 7 7 700 7 00 7 7 0,6 Τέλος ο συντελεστής µεταβολής είναι: CV > 6 6 0 αφού 7> 0, 6. Οπότε CV > δηλ. CV>0%, άρα το δείγµα δεν είναι οµοιογενές. 0 Β. Το πολύ δύο επιβάτες έχουν: + 0+060 αυτοκίνητα Οπότε Α) 60, άρα η ζητούµενη πιθανότητα θα είναι: ( 60 P A. Ω 00 ÈÅÌÁÔÁ 006
Επαναληπτικά Θέµατα ΟΕΦΕ 006 Τουλάχιστον τέσσερις επιβάτες έχουν : + 0+900 αυτοκίνητα. Οπότε Β)0, άρα η ζητούµενη πιθανότητα θα είναι : ( 0 P B ( Ω) 00 0 Γ. Στην περίπτωση αυτή ο δειγµατικός χώρος αποτελείται από το σύνολο των επιβαινόντων, δηλ. ( Ω) 00 Τρεις συνεπιβάτες έχει όποιος επιβαίνει σε αυτοκίνητο µε επιβαίνοντες, δηλ. 0 άτοµα. Οπότε Γ)0, άρα η ζητούµενη πιθανότητα είναι : ( Γ) 0 P Γ ( Ω) 00 0 Κανέναν συνεπιβάτη δεν έχει όποιος επιβαίνει σε αυτοκίνητο µόνος του, δηλ. 0 άτοµα. Οπότε )0, άρα η ζητούµενη πιθανότητα είναι: ( ) 0 P Ω 00 ΘΕΜΑ ο Α. ) Έστω η µέση ηλικία των κατοίκων και η τυπική απόκλιση. Τότε, µετά από χρόνια, σύµφωνα µε γνωστή εφαρµογή, η µέση τιµή θα ναι + ενώ η τυπική απόκλιση δεν θα µεταβληθεί. Αφού το δείγµα γίνεται για πρώτη φορά οµοιογενές µετά από χρόνια, τότε ο συντελεστής µεταβλητότητας θα είναι 0%. ) Οπότε : + () 0 0 Επίσης, αφού CV είναι τώρα 0%, είναι: () 00 Λύνουµε το σύστηµα: + 0 0 0 + + + +... + Η µέση τιµή των,,..., είναι: Είναι : ÈÅÌÁÔÁ 006
Επαναληπτικά Θέµατα ΟΕΦΕ 006 6 60 ) Στην κανονική κατανοµή για το εύρος του δείγµατος ισχύει R 6. Αφού λοιπόν η µικρότερη τιµή mn είναι 0, για τη µεγαλύτερη τιµή ma θα ισχύει η προσέγγιση : 0 6 δηλ. 0 ma + Β. Επιλέγουµε τυχαία έναν από τους ανθρώπους που υπάρχουν στο χωριό. Έστω τα ενδεχόµενα: Α: ο άνθρωπος πηγαίνει στο καφενείο Α B: ο άνθρωπος πηγαίνει στο καφενείο Β Αφού το 0% των κατοίκων πηγαίνουν στο Α, είναι :Ρ(Α)0, Αφού το 60% των κατοίκων δεν πηγαίνουν στο Β, είναι P ( B ) 0,6 P( 0,6 P( 0, Αφού το 0% των κατοίκων πηγαίνει σ ένα τουλάχιστον απ τα δύο καφενεία, είναι P ( A 0, ) A B είναι το ενδεχόµενο ένας κάτοικος να πηγαίνει και στα δύο καφενεία. Έχουµε: P ( A P( + P( A 0, 0, + 0, P ( A P ( A 0,7 0, 0, οπότε και στα δύο καφενεία πηγαίνει το 0% των κατοίκων. ) A B είναι το ενδεχόµενο ένας κάτοικος να πηγαίνει µόνο στο καφενείο Α και Β Α είναι το ενδεχόµενο ένας κάτοικος να πηγαίνει µόνο στο καφενείο Β. Έχουµε: P ( A P( A 0, 0, 0, δηλαδή µόνο στο Α πηγαίνει το 0% των κατοίκων Οµοίως: P ( B P( A 0, 0, 0, δηλαδή µόνο στο Β πηγαίνει το 0% των κατοίκων. Οπότε περισσότεροι είναι οι κάτοικοι που πηγαίνουν µόνο στο Β από εκείνους που πηγαίνουν µόνο στο Α. Γ. Αφού η πιθανότητα να κληρωθεί περιττός αριθµός είναι µεγαλύτερη από την πιθανότητα να κληρωθεί άρτιος, οι περιττοί αριθµοί είναι περισσότεροι από τους άρτιους στο δείγµα,,ν άρα ν περιττός. ηλαδή υπάρχει ένας ÈÅÌÁÔÁ 006 ma
Επαναληπτικά Θέµατα ΟΕΦΕ 006 περιττός περισσότερο. Έτσι, το πλήθος των περιττών είναι άρτιων. Έστω τα ενδεχόµενα: Π: ο αριθµός που κληρώνεται είναι περιττός A: ο αριθµός που κληρώνεται είναι άρτιος + Π) Τότε: P + ( Π ) Ω) Και : P A Ω) Αφού η Ρ(Π) είναι κατά 0,8% µεγαλύτερη από την Ρ(Α), έχουµε: 0,8 P( Π) P( + 00 + + 0,008 + + 0,06 0,06 000 0,06 6 άρα στο χωριό υπάρχουν άτοµα + ÈÅÌÁÔÁ 006 ενώ των