Leonard Dăuş ALGEBRĂ LINIARĂ



Σχετικά έγγραφα
CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.

M E C A N I C A. z y PRINTEH BUCUREŞTI 1999

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât

4. Metoda Keller Box Preliminarii

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

def def punctul ( x, y )0R 2 de coordonate x = b a

Curs 3. Spaţii vectoriale

CAPITOLUL 4. vectorială continuă definită pe un interval I din cu valori în. Dacă

LUCRARE METODICO ŞTIINŢIFICĂ PENTRU OBŢINEREA GRADULUI DIDACTIC I ÎN ÎNVĂŢĂMÂNT

PROBLEME (toate problemele se pot rezolva cu ajutorul teoriei din sinteze)

4. Interpolarea funcţiilor

Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,,

1. CAPITOLUL 1. Elemente de calcul vectorial şi geometrie analitică. AB se poate face de la A spre B sau AB sunt definite două sensuri (opuse).

METODE NUMERICE APLICAŢII

Fizica cuantica partea a doua

ELEMENTE DE CALCUL VARIAŢIONAL

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

2. Functii de mai multe variabile reale

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Universitatea din Bucureşti Facultatea de Matematică şi Informatică. Matematică (Varianta 4) A una B niciuna C o infinitate D două

Tema: şiruri de funcţii

Universitatea din Bucureşti Facultatea de Matematică şi Informatică. Matematică (Varianta 3)

DESCOMPUNEREA VALORILOR SINGULARE

CUPRINS. CAPITOLUL 1: Module şi spaţii vectoriale

CURS 4 METODE NUMERICE PENTRU PROBLEMA DE VALORI PROPRII. Partea I

Evaluare : 1. Continuitatea funcţiilor definite pe diferite spaţii metrice. 2. Răspunsuri la problemele finale.

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

6. VARIABILE ALEATOARE

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

ELEMENTE DE ALGEBRĂ SUPERIOARĂ CU APLICAłII ÎN ECONOMIE. SpaŃii vectoriale. Organizarea spańiilor economice ca spańii vectoriale

ELEMENTE DE CALCUL NUMERIC MATRICEAL

ELEMENTE DE CALCUL NUMERIC MATRICEAL

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Το άτομο του Υδρογόνου

2. Metoda celor mai mici pătrate

ANGRENAJE. n O. F n. CREMALIERA (roata cu numar infinit de dinti) M t2. O 1 M t1 (AIR) (AIR) ? r (AIR) (AIR) I II. r w2. n 2. n 1 O 2 O 1. flanc.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

MATEMATICA ALGEBRA si GEOMETRIE. As. Dr. Marius Paşa. 1. CHESTIUNI PREGATITOARE (matrice, determinanti, sisteme)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

INTEGRAREA ȘI DERIVAREA NUMERCĂ A FUNCȚIILOR REALE

REZIDUURI ŞI APLICAŢII

-! " #!$ %& ' %( #! )! ' 2003

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

Parts Manual. Trio Mobile Surgery Platform. Model 1033

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

met la disposition du public, via de la documentation technique dont les rιfιrences, marques et logos, sont

1. ŞIRURI ŞI SERII DE NUMERE REALE

CINEMATICA PUNCTULUI

4.2. Formule Biot-Savart-Laplace

PROPUNERI DE SUBIECTE PENTRU EXAMENUL DE LICENŢĂ. Disciplina D1: MECANICĂ CLASICĂ. M r p. K r F,

sin d = 8 2π 2 = 32 π

DETERMINAREA AVANTAJULUI MECANIC AL PÂRGHIILOR 1. Scopul lucrării

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

Integrale generalizate (improprii)

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

(2), ,. 1).

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

MICROMASTER Vector MIDIMASTER Vector

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

Αλληλεπίδραση ακτίνων-χ με την ύλη

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

CAPITOLUL 5 E E} 5.1. ARIA UNEI MULŢIMI PLANE. D I D = pentru i j. Se ştie că aria unui dreptunghi este egală cu produsul

ANEXA., unde a ij K, i = 1, m, j = 1, n,

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

MULTIMEA NUMERELOR REALE

PROBLEME REZOLVATE DE MECANICĂ. Recenzia ştiinţifică: Prof. dr. ing. Nicolae Enescu Prof. dr. ing. Ion ROŞCA

6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

6. Rezolvarea numerică a problemei Cauchy pentru ecuaţii diferenţiale

3.5. Forţe hidrostatice

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008

Lucrarea Nr. 6 Reacţia negativă paralel-paralel

2. Sisteme de ecuaţii neliniare

ELEMENTE DE TEORIA PROBABILITĂŢILOR

Procese stocastice (2) Fie un proces stocastic de parametru continuu si avand spatiul starilor discret. =

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

Analiza în regim dinamic a schemelor electronice cu reacţie Eugenie Posdărăscu - DCE SEM 6 electronica.geniu.ro

DRUMURI, ARCE ŞI LUNGIMILE LOR

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

1. Sisteme de ecuaţii liniare

Numere complexe. a numerelor complexe z b b arg z.

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu

Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori)

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

Seminariile 1 2 Capitolul I. Integrale improprii

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

! " #! $ %! & & $ &%!

HONDA. Έτος κατασκευής

Transcript:

Leod Dăuş LGEBRĂ ş GEOMETRIE LINIRĂ NLITICĂ

PefŃă lge lă ş geomet ltcă epetă de multă veme stumete fudmetle petu dscplele mtemtce stcte su plcte Cusule de lgeă lă ş geomete se egăsesc î pogm ltcă ocăe uvestăń cu pofl tehc Coceptele toduse ş eulttele ońute î cdul uu stfel de cus fd pelute ş utlte de umeose dscple tehce u codus l ecestte toduce lgee le ş geomete c mtee de studu petu tote speclăle d Uvestte Tehcă de CostucŃ Bucueşt cestă luce e l ă cusule pe ce le-m pedt l Fcultte de Hdotehcă ş espectă pogm ltcă pmulu semestu feetă speclă Ige Medulu Pcplele teme ttte sut: clcul vectol geomete ltcă î spńu spń vectole ş spń eucldee vlo pop ş vecto pop fome păttce ş fome le De semee sut peette ş câtev metode umece î lge lă: metode de eolve sstemelo de ecuń le su petu deteme vlolo pop ş vectolo pop Tote eulttele teoetce sut îsońte de demostń complete cee ce pemte pcugee depedetă ceste lucă de căte studeń ulu I Deş cte e u pouńt ccte teoetc pe pcusul e m clus umeose eecń vâd eolvă complete fece cptol se îchee cu o secńue de eecń popuse cu dfete gde de dfcultte stfel luce pote f folostă ş î cdul semulu Doesc să mulńumesc D-lu Pof D Ghocel Go petu teń cu ce ctt muscsul ş petu osevńle petete ş costuctve ce u mct potv cocepee ceste lucă Bucueşt septeme 9 Leod Dăuş

Cups Cptolul I: Vecto le Vecto le OpeŃ cu vecto le Epes ltcă uu vecto le Podusul scl 5 Podusul vectol 6 Podusul mt 7 EecŃ Cptolul II: Plul ş dept î spńu Plul Dept Fsccol de ple Ughu î spńu 5 DstŃe î spńu 6 EecŃ Cptolul III: SpŃ vectole NoŃue de spńu vectol Eemple DepedeŃă ş depedeńă lă Sstem de geeto Bă uu spńu vectol SuspŃ vectole 5 Schme e uu spńu vectol 6 EecŃ Cptolul IV: SpŃ eucldee Podus scl Nomă Otogoltte Be otoomte Polome otogole EecŃ Cptolul V: Tsfomă le DefŃe Eemple PopetăŃ Nucleul ş mge ue tsfomă le Mtce soctă ue tsfomă le EecŃ 9 6 9 9 7 8 5 5 5 5 6 65 67 7 7 76 8 9 9 9 96 7

Cptolul VI: Ssteme de ecuń le Metod lu Guss Fctoe LU Fctoe Choles Metode tetve de eolve le sstemelo de ecuń le 5 EecŃ Cptolul VII: Vlo pop ş vecto pop Vlo pop ş vecto pop Locle vlolo pop Dgole uu edomofsm (su ue mtce Metod pute 5 EecŃ Cptolul VIII: Clse specle de mtce Mtce otogole Mtce smetce RotŃ ş smet EecŃ Cptolul IX: Fome le Fome păttce Fome le Fome păttce Reducee l fom cocă Sgtu ue fome păttce Teoem eńe EecŃ Blogfe Idce 9 9 7 5 8 8 6 9 55 58 6 6 6 66 7 76 76 79 89 9 95 97

Cptolul I Vecto le Vecto le Fe E spńul tdmesol l geomete elemete spńu coceput c o mulńme de pucte ş î ce sut vlle omele lu Eucld DefŃ : Se umeşte vecto legt su segmet oett o peeche odotă de pucte (B E E B fg Puctul se umeşte oge B vâful su etemtte vectoulu legt (B Dcă B tuc dept detemtă de puctele ş B se umeşte decń vectoulu legt (B Dcă B tuc ońem vectoul legt ( umt vecto legt ul DecŃ ocău vecto legt ul este edetemtă Se umeşte lugme su omă su modul uu vecto legt (B umăul el potv ce epetă dstń dte puctele ş B (eltvă l o utte de măsuă ftă Evdet u vecto legt este ul dcă ş um dcă lugme lu este eo DefŃ: Fe (B ş (CD do vecto legń eul

Spuem că (B ş (CD u ceeş decńe dcă deptele lo supot sut plele Î cul ptcul î ce deptele supot cocd vom spue că vecto legń sut col Dcă BCD sut pucte ecole vecto legń (B ş (CD u ceeş decńe puctele B ş D se flă de ceeş pte depte C vom spue că (B ş (CD u celş ses (fg Dcă BCD sut pucte cole ş estă două pucte E F estute pe dept detemtă de cele ptu pucte Ńle stfel îcât vectoul legt (EF e celş ses ş cu (B ş cu (CD vom spue că (B ş (CD u celş ses Do vecto ce u ceeş decńe d u u celş ses se spue că u sesu opuse B D C fg DefŃ : Do vecto legń (B ş (CD se umesc echpoleń ş vom ot (B~(CD dcă u celş ses ş ceeş lugme su echvlet dcă segmetele [D] ş [BC] u celş mloc B D C fg OsevŃe: Se pote vefc făă dfcultte că elń de echpoleńă pe mulńme vectolo legń e popetăńle: este eflevă: (B~(B; este smetcă: dcă (B~(CD tuc ş (CD~(B; este ttvă: dcă (B~(CD ş (CD~(EF tuc (B~(EF stfel putem fm că echpoleń vectolo legń este o elńe de echvleńă RelŃ de echpoleńă pote f etsă ş l vecto legń ul: oce do vecto legń ul sut echpoleń îte e

Fd dt vectoul legt (B estă o ftte de vecto legń echpoleń cu (B (pctc cu oge î oce puct l spńulu E putem costu u vecto echpolet cu (B ş um uul DefŃ : Clsele de echvleńă le vectolo legń eltv l elń de echpoleńă se umesc vecto le Cu lte cuvte u vecto le epetă mulńme tutuo vectolo legń echpoleń cu u vecto legt dt Dcă (B este u vecto legt tuc vom ot cu B vectoul le coespuăto dcă B {( C D E E / ( C D ~ ( B} Vom ot cu V mulńme tutuo vectolo le d spńul E U vecto legt (B detemă u vecto le (o clsă de echvleńă B ş vom spue că este u epeett l vectoulu le detemt Vom ot ( B B Ueo vecto le se oteă ş cu ltee mc cu săgetă desup: u v DefŃ 5: P decńe ses ş lugme uu vecto le vom îńelege decń sesul ş espectv lugme uu epeett l vectoulu le Dcă B este u vecto le vom ot cu B lugme vectoulu le OsevŃe: U vecto legt este cctet p: oge decńe ses ş lugme Î cul uu vecto le cctestce sut um decń sesul ş lugme şd putem cosde u vecto le dt v c vâd oge î oce puct d spńu DefŃ 6: Vectoul le de lugme eo se umeşte vecto ul ş se oteă C epeett l vectoulu ul putem lu vectoul legt ( cu E t DecŃ ş sesul vectoulu le ul sut edetemte DefŃ 7: U vecto le de lugme uu se umeşte veso DefŃ 8: Do vecto le ş se umesc egl ş scem cul î ce epeetń lo sut echpoleń î DefŃ 9: Do vecto le eul ş ce u ceeş decńe se umesc vecto col Te vecto le eul ce dmt epeetń stuń ît-u celş pl se umesc copl DefŃ : Do vecto col ce u ceeş lugme d sesu opuse se umesc vecto opuş; opusul vectoulu le v f ott cu

OpeŃ cu vecto le DefŃ : Fe ş do vecto le O puct ft î spńul E ş cosdeăm vecto O ş OB stfel îcât O ş OB tuc sum vectolo ş ottă este vectoul c OC ude OC este dgol plelogmulu OCB OsevŃ: DefŃ pecedetă este cuoscută su umele de egul plelogmulu cestă egulă de due vectolo e l ă fpte epemetle ş fost ońută m îtâ l compuee (due fońelo î meccă Vectoul sumă c este depedet de legee puctulu O î spńu dcă de legee epeetńlo O ş OB vectolo ş espectv B C O fg Se pote vede că dcă se cosdeă puctele ş B î E stfel îcât O ş B tuc vectoul OB v epeet sum cestă metodă de due do vecto le este cuoscută su umele de egul tughulu B O fg 5 OsevŃe: Regul tughulu se geeleă l egul le polgole p temedul căe pot f duń u umă de vecto le stfel:

pod d puctul O se costueşte l polgolă O cu O ; tuc sum este s O s O fg 6 PopoŃ : OpeŃ de due vectolo le e umătoele popetăń: este comuttvă: petu oce V ; este soctvă: ( c ( c petu oce c V ; e elemet eutu vectoul ul: petu oce V ; oce elemet este smetl: petu oce vecto le estă u vecto ott stfel îcât ( ( ( este ch opusul vectoulu deft î pgful teo DemostŃe: Popette de comuttvtte duă vectolo le este medtă dcă se Ńe cot de egul plelogmulu Fe c V t Popette de soctvtte este evdetă dcă se foloseşte egul tughulu: c c c ( c fg 7 ( c ş Cl OsevŃ: D PopoŃ pecedetă eultă că ( V este u gup el 5

Cu utoul vectoulu opus se pote efectu scădee do vecto stfel: ( D puct de vedee gfc dfeeń este ce de- dou dgolă plelogmulu costut pe vecto ş cu sesul căte vectoul d ce se scde fg 8 DefŃ : Fe u vecto le ş λ R Se umeşte îmulńe vectoulu cu sclul (umăul el λ ş se oteă λ vectoul deft stfel: - dcă ş λ tuc λ e lugme λ ceeş decńe cu sesul cocde cu l lu su este opus sesulu lu după cum λ > su λ < - dcă su λ tuc λ PopoŃ : ÎmulŃe vectolo le cu scl e popetăńle: ( λ µ λ µ λ µ R V; λ ( λ λ λ R V ; ( λµ λ( µ λ µ R V; V DemostŃe: Să osevăm m îtâ că tât scl cât ş vecto ce p î elńle d popońe pot f pesupuş eul (î c cot elńle sut evdete d defń îmulń uu vecto le cu u scl Vom cosde umătoele cu: λ µ > Reultă că λ µ > Vecto ( λ µ ş λ µ vo ve ceeş decńe ş celş ses cu Cu pve l lugmle lo ońem: ( λ µ λ µ ( λ µ λ µ λ µ λ µ stfel putem cochde că î cest c ( λ µ λ µ λ µ < se tteă sml culu teo λ > ş µ < Făă estâge geeltte putem pesupue λ µ > tuc: λ µ ( λ µ µ µ ( λ µ ( µ µ ( λ µ (l peultm egltte s- folost puctul scl λ µ ş µ fd m potv v λ < ş µ > se tteă sml culu teo 6

Cosdeăm vecto O ş B tuc OB Pesupuem λ > (cul λ < fd sml Fe puctele B E stfel îcât O λ ş OB λ ( B B fg 9 OB ~ O B dec segmetele [ ] B vo f B λ B stfel ońem că B λ B λ plcâd egul tughulu găsm că OB O B dcă λ ( λ λ ş Cl d defń îmulń uu vecto le cu u scl dcă se Ńe cot de oetăle ş lugmle vectolo ce p î m mem egltăńlo de demostt tuc vem semăe B ş [ ] plele îte lugmle lo estă elń: [ ] [ ] PopoŃ 5: Fe V \{} do vecto le tuc ş sut col dcă ş um dcă estă u uc scl λ stfel îcât λ DemostŃe: Pesupuem că vecto ş sut col Cosdeăm veso lo u ş v Deoece ş sut col tuc u ş v vo f col łâd cot ş că u v eultă că u ş v vo f su egl su opuş dec su stfel λ cu λ R Uctte lu λ este clă deoece λ dcă ş u celş ses espectv λ dcă ş u sesu opuse O Teoem 6: Fe ş do vecto le ecol Dcă c este u vecto le copl cu vecto ş tuc estă ş sut uc scl α ş β stfel îcât c α β 7

DemostŃe: Dcă su f vecto ul tuc ş f col cee ce cotce pote Dec V \{} Dcă c tuc putem cosde α β ş coclu teoeme este clă şd î cele ce umeă vom luc cu c vecto le eul Fe O puct t î spńul E ş vecto O OB OC c Copltte vectolo c este echvletă cu copltte puctelo O B ş C P puctul C vom duce plele l vecto O ş OB s otăm cu tesecńle cesto plele cu decńle vectolo OB ş espectv O OŃem stfel plelogmul O CB : B B C B O fg Evdet OC O OB Vom demost că O ş OB sut uc vecto vâd ceeş decńe cu vecto O ş espectv OB cu popette că OC O OB Pesupuem p sud că estă " puct pe dept O ş B" B puct pe dept OB stfel îcât OC O OB O" OB" Reultă că O O" OB" OB Evdet O O" este u vecto eul col cu OB" OB este u vecto eul col cu stfel d PopoŃ 5 egltte O O" OB" OB coduce l coltte vectolo ş - cotdcńe Dec scee OC O OB este ucă Pe de ltă pte deoece vecto O ş O sut col d PopoŃ 5 eultă că estă ş este uc u scl α stfel îcât O α Sml folosd coltte vectolo OB ş OB ońem că estă ş este uc u scl β stfel îcât OB β Dec c α β cu α β scl uc detemń Teoem 7: Fe ş c te vecto le ecopl Dcă v este u vecto le tuc estă ş sut uc scl α β γ stfel îcât v α β γ c DemostŃe: Vecto ecopltte d poteă ş c sut eul (ltfel s- cotce codń de 8

Dcă v tuc putem lu α β γ ş coclu teoeme este clă De semee dcă v este copl cu do dte vecto c tuc e educem l cul teoeme pecedete stfel î cele ce umeă vom cosde că vecto cş v sut eul ş oce te sut ecopl Fe O u puct t î spńul E ş vecto O OB OC c ş OM v P puctul M costum plel l vectoul OC ş otăm cu N puctul de tesecńe l ceste plele cu plul detemt de vecto O ş OB Pe deptele supot le vectolo O OB ş OC se cosdeă puctele B ş espectv C stfel îcât ptulteele O NB ş ONMC sut plelogme (ve fg : C C M v O N B B fg Este cl că OM ON OC O OB OC ( Se demosteă făă dfcultte p educee l sud că O OB ş uc vecto vâd ceeş decńe cu vecto O OB ş espectv OC cu OC sut popette că OM O OB OC Folosd PopoŃ 5 ońem că estă ş sut uc scl α β γ stfel îcât O α OB β ş OC γ c ( Îlocud elńle ( î ( găsm că v α β γ c Î flul cestu pgf peetăm o popońe deoset de utlă î umte poleme de geomete vectolă ş cum vom vede PopoŃ 8: Fe M B te pucte cole cu M stut îte ş B Dcă O este u puct t î spńu ş M MB tuc 9

OM O OB (* M B O fg DemostŃe: Evdet este u scl potv (fd potul două lugm de vecto Deoece M ş MB sut vecto col de sesu opuse ş M MB eultă că M MB ( D d tughule OM ş OBM găsm că ş espectv M O OM ( MB OB OM (5 Îlocud elńle ( ş (5 î ( ońem că: de ude eultă că OM O OM ( OB OM O OB C ptcul mpott: Dcă M este mlocul segmetulu [B] tuc dec elń (* deve: O OB OM (** EecŃul : Să se te cu utoul clcululu vectol că medele ît-u tugh sut cocuete SoluŃe:Fe B C mlocele ltulo BC C ş espectv B Notăm B c BC ş { G} I BB (ve fg D egul tughulu eultă B C c C c plcâd elń (** vom găs: ş B BC c BB Vecto G ş fd col estă u scl α stfel

îcât G α Sml putem găs sclul β stfel îcât BG β BB D B BG G B G B fg C Îlocud î fucńe de vecto ş c v egltte pecedetă coduce l c c elń: c β α P gupe covelă temelo se ońe că: α β β α c Petu est tughul BC este cl că vecto ş c v teue să fe ecol α β β stfel d egltte pecedetă eultă că α de ude se ońe că α β Dec puctul G este stut pe medele ş BB l două tem de vâf ş o teme de ă Dcă vom cosde cum { G} I CC pt-u Ńomet sml celu teo vom ońe că G este stut pe medele ş CC l două tem de vâf ş o teme de ă ş stfel G G cee ce îsemă cocueń medelo tughulu BC OsevŃe: Pe pcusul eolvă EecŃulu s- demostt că cetul de geutte l uu tugh se flă stut l două tem de vâf ş o teme de ă pe fece dte mede EecŃul : Fe BC u tugh oece ş G cetul său de geutte Dcă O este u puct t î spńu să se te că O OB OC OG

O G B fg C SoluŃe: Fe mlocul ltu BC După cum m văut cetul de geutte ît-u tugh se flă stut l o teme de ă ş două tem de vâf pe fece dte mede stfel G G plcâd elń (* puctelo cole G O O v eult că OG ( O O OB OC fd mlocul segmetulu [BC] d (** ońem că O D ultmele două elń se ońe egltte ceută Lăsăm cttoulu c temă umătoul: EecŃul : Fe BCD u tetedu oece ş G cetul său de geutte Dcă O este u puct t î spńu să se te că O OB OC OD OG (Cetul de geutte l uu tetedu se fl l tesecń medelo tetedulu segmetele ce uesc vâfule tetedulu cu cetele de geutte le feńelo opuse Cetul de geutte se flă pońot l u sfet de fńă ş te sfetu de vâf pe fece dte medele tetedulu Epes ltcă uu vecto le Estă m multe posltăń de desce ş stud oectele geometce î spńul tdmesol Ce m veche metodă utltă petu pm dtă de

mtemtce Gece tce ş fomltă de Eucld costă î studul omtc l cesto oecte: se defesc puctele lle plele ş lte oecte geometce p temedul omelo pe ce le stsfc O ltă metodă dtotă lu Desctes popue petu eolve polemelo de geomete o ode lgecă după cum umeă: se feă m îtâ u puct O c oge ş po se tseă te e pepedcule două câte două î puctul O (p ă îńelegem o deptă pe ce s-u ft o oge u ses ş o utte de măsuă Vom cove c cele te e să fe dspuse c î fg 5 O se umeşte scselo O odotelo O cotelo Pe cele te e de coodote se vo cosde veso vâd ceeş oete cu O O espectv O ş oge î puctul O Vom ot cest sstem otogol de coodote p O Cum veso sut ecopl cofom Teoeme 7 oce vecto le v V se sce î mod uc su fom: v v v v ( M O Scl fg 5 v v v se umesc compoetele vectoulu v elń ( este cuoscută su umele de epes ltcă vectoulu v Cosdeăm M u puct oece d spńu Î pot cu sstemul de coodote cosdet puctul M e coodote ( M M M Vom desem cest lucu p otń M ( M M M D pocedeul descompue uu vecto după te decń ecople dct î demostń Teoeme 7 pecum ş d epeete puctelo î sstemul de otogol de coodote O se ońe că: OM ( M M PopoŃ : Fe M ş N două pucte î spńu ( M M M M ( N N N tuc vectoul MN e epes ltcă: MN ( ( ( N M N M N M

M O N fg 6 DemostŃe: Cofom elńe ( vem: OM M M M ş ON N N N Deoece MN ON OM folosd egltăńle pecedete ońem elń dotă Podusul scl DefŃ : Fe V \{} Numm ugh detemt de vecto ş otăm cu ( ughul d tevlul [ π ] fomt de decńle celo do vecto stfel îcât vâfule celo do vecto să se fle pe cele două ltu le ughulu (ve fg 7 fg 7 DefŃ : Fe V \{} Se umeşte podus scl l vectolo ş ş se oteă cu umăul el dt de fomul cos ( Dcă su tuc p defńe

OsevŃe: D defń pecedetă se ońe medt o pmă fomulă de clcul ughulu dte do vecto eul: cos ( stfel c o cosecńă ońem că do vecto eul ş sut otogol dcă ş um dcă Itepete meccă podusulu scl: Dcă ş sut do vecto O este u puct mtel sup cău se eectă o fońă F ş ce efectueă o deplse deftă de vectoul tuc podusul scl este ch lucul mecc L l fońe F petu deplse F O fg 8 DefŃ : Dcă V \{} θ ( tuc umăul el cosθ se umeşte măme poecńe otogole vectoulu pe vectoul ş se oteă p Dcă tuc p defńe p Dcă tuc u estă p OsevŃe: D defńle podusulu scl ş espectv măm poecńe otogole uu vecto pe u lt vecto ońem că p p PopoŃ : Măme poecńe otogole e popetăńle: pc p c ( p c petu oce c V \ {} ; p p ( λ λ petu oce V \ {} ş λ R DemostŃe: Fe O puct t î spńul E ş puctele BC stfel îcât O OB OC c tuc O p c OB p c ş OD p c ( (ve fg 9 Deoece OD OB B D OB O eultă că p ( p p c c c 5

D B O c B D C fg 9 Pesupuem m îtâ că λ > Cosdeăm puctele B stfel îcât O O λ ş OB Dcă ş sut poecńle otogole le puctelo ş espectv pe dept OB (ve fg d semăe tughulo O ş O O O eultă că λ de ude ońem O O O λ O cee ce îsemă că p ( λ λ p Dcă λ tuc d DefŃ egltte de demostt deve Dcă λ < se pocedeă sml culu λ > λ O fg PopoŃ 5: Podusul scl l vectolo le e popetăńle: petu oce V ; ( λ λ( ( λ petu oce V ş λ R ; ( c c petu oce c V DemostŃe: Este evdet d defń podusulu scl vâd î vedee că ughul dte vecto ş cocde cu ughul dte ş Este sufcet să demostăm pm egltte Dcă λ tuc ( λ λ( Dcă λ > tuc vecto λ ş u celş ses dec ( λ ( Î cest c ońem: 6

7 cos ( λ λ cos ( λ λ ( ( λ Dcă λ < tuc vecto λ ş u sesu opuse stfel ( λ π ( dec cos cos ( λ ( Î cest c ońem: cos ( λ λ cos ( ( λ λ ( ( λ łâd cot pe de-o pte de elń dte podusul scl ş măme poecńe otogole pe de ltă pte de PopoŃ succesv ońem: c c p p c p c ( ( Teoem 6 (Epes ltcă podusulu scl: Fe ş do vecto le dń su fomă ltcă tuc podusul lo scl se clculeă cu fomul: DemostŃe: Detemăm m îtâ vlole podusulu scl pe mulńme vesolo } { De eemplu d defń podusulu scl ońem: cos ş cos9 eulttele podusulu scl pe mulńme vesolo elo de coodote putâd f dte su fom telulu: łâd cot de popetăńle podusulu scl ş de telul pecedet ońem succesv: ( ( Coolul 7: Dcă este u vecto le tuc DemostŃe: Dcă tuc evdet Dcă tuc d DefŃ ońem d Teoem 6 vem de ude găsm

EecŃul : Să se deteme sclul λ stfel îcât vecto ( λ λ ş 7λ să fe pepedcul SoluŃe: ş cum s- văut teo pepedcultte vectolo ş este echvletă cu egltte Utlâd epes ltcă podusulu scl ońem că 7 λ ( λ λ de ude λ EecŃul : Dcă V stfel îcât ughul dte ce π do vecto este să se deteme ughul dte dgolele plelogmulu costut pe ce do vecto fg SoluŃe: Deoece l cest momet vem o fomulă de clcul um petu ughul dte do vecto este tul să dăm semfcńe de vecto celo două dgole: espectv (ve fg Petu deteme ughulu fomt de ceşt do vecto folosm: ( ( cos ( D ( ( 5 De semee ( ( 9 9 de ude 9 Sml găsm 7 Î fl ońem: 5 cos ( EecŃul : Se cosdeă vecto O ş OB Să se deteme vesoul sectoe ughulu ( O OB SoluŃe: Detemăm m îtâ veso coespuăto celo do vecto dń: O ş OB 9 6 5 dec ( ş 8

( sut veso vectolo O esp OB Plelogmul detemt de 5 veso ş este de fpt u om dec sectoe ughulu detemt de ce do vecto cocde cu dgol ce tece p puctul O Dcă otăm d tuc vesoul sectoe ughulu căutt v f : 5 5 d v ( d EecŃul : DemostŃ că ît-u tugh îălńmle sut cocuete B C H B C fg SoluŃe: Fe BB ş CC îălńmle coespuătoe ltulo C ş espectv B Notăm { H} BB I CC Vom demost că H BC Itoducem vecto H HB ş c HC Reultă că B v v v BC c ş C c Deoece BH C ş CH B ońem că v v v ( c ş c( P due ultmelo două elń găsm c v v dcă ( c cee ce mplcă H BC 5 Podusul vectol DefŃ 5 : Fe V \{} do vecto ecol Se umeşte podus vectol l vectolo ş ş se oteă cu vectoul vâd: - decńe pepedculă pe vecto ş ; - ses dt de egul ughulu dcă sesul de vse l ughulu câd se deplseă vectoul peste vectoul ; 9

- măme dtă de fomul s ( (ve fg Dcă su su vecto ş sut col tuc p defńe OsevŃe: Fomul de clcul măm podusulu vectol fueă o ltă modltte de deteme ughulu dte do vecto eul: s ( Î cosecńă do vecto le eul sut col dcă ş um dcă podusul lo vectol este eo fg Itepete geometcă podusulu vectol: Măme podusulu vectol do vecto eul s ecol este eglă cu plelogmulu costut pe ce do vecto (petu demoste cestu eultt dcăm utle B C s ˆ fomule e uu tugh BC c PopoŃ 5: Podusul vectol e popetăńle: petu oce V ; ( λ λ( ( λ petu oce V ( c c petu oce c V ş λ R ; DemostŃe: Schmâd ode fctolo î podusul vectol decń ş măme cestu u se modfcă Se v schm do sesul stfel vem că dec podusul vectol este tcomuttv Vom demost pm egltte petu ce de- dou pocedâdu-se log Dcă λ tuc fece teme l egltăń ce teue potă deve vectoul ul

Dcă λ > putem cosde că vecto sut eul (î c cot dul egltte d euń este evdetă tuc ( λ ( ş vecto (λ ş λ ( vo ve celş ses Pe de ltă pte ( λ λ s ( λ λ s ( λ ( dec putem cochde că ( λ λ( Dcă λ < tuc ( λ π ( ş î plus (λ λ( sut col M mult ( λ λ s ( λ λ s ( λ ( λ ( Dec ş î cest c ( λ λ( Osevăm că dcă cel puń uul dte vecto c este ul tuc egltte pe ce vem să o demostăm este evdetă stfel putem pesupue că vecto c sut toń eul Vom demost elń m îtâ î cul ptcul î ce este veso: Făm O E ş cosdeăm B C E stfel îcât O OB OC c Costum plul (P ce tece p puctul O ş este pepedcul pe vectoul O Fe OD OB OC ş otăm cu B C D poecńle otogole le puctelo B C ş espectv D pe plul (P Evdet OB D C este u plelogm D B B C O C " (P D C B " D " fg D defń măm podusulu vectol vem : O OB O OB s ( OB OB cos (BOB łâd cot ş de fptul că vecto eltvă vectolo OB ş OB O OB s( π O OB O OB OB sut copl pecum ş de poń OB fńă de vectoul O ońem că O OB O OB (

semăăto se ońe că O OC O OC ş O OD O OD ( Fe B" E stfel îcât OB " O OB Deoece OB" O B" se flă stut î plul (P Cum OB" OB ş OB " OB OB " se ońe otd vectoul OB cu ugh π î plul (P (stfel c sesul lu OB " să especte egul ughulu plctă vectolo O ş OB Sml se oń î plul (P puctele C " ş D " d elńle OC " O OC ş espectv OD " O OD Î plus OB " D" C" este plelogmul ońut p ote plelogmulu OB D C cu ugh π î plul (P D egul plelogmulu eultă că OD " OB" OC" dcă O OD O OB O OC D elńle ( ş ( ultm egltte este echvletă cu O OD O OB O OC dcă O ( OB OC O OB O OC stfel ( c c ( Pesupuem cum că V \{} t ş otăm v tuc evdet v este veso ş d elń ( v ( c v v c mplfcâd cestă egltte cu ş Ńâd cot de popette d cestă popońe vom ońe fmń dotă Teoem 5 (Epes ltcă podusulu vectol: Fe ş do vecto le dń su fomă ltcă tuc podusul lo vectol se clculeă cu fomul: DemostŃe: Detemăm m îtâ vlole podusulu vectol pe mulńme vesolo { } De eemplu d DefŃ 5 ş d oete vesolo (ve fg 5 ońem: ş RŃoâd stfel eulttele podusulu vectol pe mulńme vesolo elo de coodote pot f dte su fom telulu

D popetăńle podusulu vectol ş d eulttele telulu pecedet ońem: ( ( Pe de ltă pte: Compâd ceste două elń ońem fomul dotă EecŃul : StudŃ coltte puctelo: (- B( ş C(6- SoluŃe:Puctele (- B( ş C(6- sut cole dcă ş um dcă vecto B ş C sut col dcă C B D C B dec cele te pucte sut cole EecŃul : Se cosdeă puctele ( B(- ş C(- Să se deteme tughulu BC pecum ş lugme îălńm d B SoluŃe:Vecto B ş C u epesle ltce B ş C Folosd epes ltcă podusulu vectol ońem: C B de ude găsm tughulu C B S BC Pe de ltă pte lugme îălńm d B este C S h BC

6 Podusul mt DefŃ 6: Fe V c Se umeşte podus mt l vectolo c ş se oteă cu ( c sclul dt de elń: ( ( c c Teoem 6 (Epes ltcă podusulu mt: Fe ş c c c c te vecto le dń su fomă ltcă tuc podusul mt l celo te vecto se pote clcul p fomul: c c c c ( DemostŃe: D epes ltcă podusulu vectol ońem că: c c c c c c c c c c Folosd cum defń podusulu mt ş epes ltcă podusulu scl eultă că: c c c c c c c c c c c ( ( (ultm egltte pvtă de l dept l stâg epetă devolte după pm le detemtulu de odul te PopoŃ 6: Podusul mt e popetăńle: ( ( ( c c c petu oce V c ; ( ( ( ( c c c c petu oce V c ; ( ( ( c c c petu oce V c ; ( ( c c λ λ petu oce V c ş R λ DemostŃe: ceste popetăń se vefcă medt dcă se Ńe cot de epes ltcă podusulu mt pecum ş de popetăńle detemńlo OsevŃe: PopetăŃle ş pot f stette stfel: l plce ue pemută de od temelo uu podus mt se schmă semul dcă ş um dcă pemute este mpă

Itepete geometcă podusulu mt: Modulul podusulu mt ( c este egl cu volumul plelppedulu costut pe ce te vecto Ît-devă volumul plelppedulu este dt de podusul dte e ş îălńme plelppedulu h D e este c (ve tepete geometcă podusulu vectol ughul ϕ dte vecto ş c cocde cu ughul dte vectoul ş îălńme h dec cosϕ h OŃem stfel: ( c c cosϕ h dec coclu dotă Cool 6: Te vecto le podusul lo mt este eo fg 6 c sut copl dcă ş um dcă DemostŃe: Putem pesupue făă educe geeltte că c sut vecto eul ş oce do sut ecol (î cul cot echvleń d euń fd clă Dcă c sut vecto copl î pote de lucu fomultă teo d Teoem 6 eultă că estă scl α β stfel îcât c α β stfel ultm le detemtulu ce epetă epes ltcă podusulu mt ( c v f o comńe lă pmelo două l ş î cosecńă cest detemt v f eo Dec ( c Recpoc dcă podusul mt este eo tuc volumul plelppedulu costut pe ce te vecto este eo (ve fg 6 Vecto ş c fd ecol e este eulă ş stfel eultă că îălńme h plelppedulu teue să fe eo cest lucu se îtâmplă dcă ş um dcă puctul este î plul e dcă c sut vecto copl plcńe mpottă: Clculul volumulu uu tetedu 5

Volumul tetedulu OBC este: V OBC c h h ( c OBC 6 EecŃul : Se cosdeă puctele ( B( C(7 Să se deteme u puct D pe O stfel îcât volumul tetedulu BCD s fe 7 flń po lugme îălńm cooâte d vâful D pe fń (BC tetedulu SoluŃe: Vâful căutt D fd pe O v ve coodote de fom D (α cu α R tuc vecto B C D u epesle ltce: B C 5 ş espectv D ( α Reultă că ( B C D 5 α de ude ońem că volumul α α α tetedulu BCD este V BCD Puâd codń c cest volum 6 să fe 7 găsm α 5 ş α Dec estă două pucte D ( 5 ş D ( ce stsfc ceńele eecńulu Dcă otăm cu h lugme îălńm cooâte d vâful D pe fń (BC V BCD tetedulu tuc h ude BC epetă tughulu BC BC Deoece B C 9 BC B C ońem 5 h 7 EecŃ Fe BC u tugh oece G cetul său de geutte ş B C mlocele ltulo BC C ş espectv B Să se te că: BB CC ; G este ucul puct d spńu ce stsfce elń G GB GC ; cetul de geutte l tughulu B C cocde cu cetul de geutte G l tughulu BC Pe u cec cu cetul î puctul O se cosdeă te pucte B C Să se te că tughul BC este echltel dcă ş um dcă O OB OC 6

Fe BC u tugh ş O cetul ceculu ccumscs tughulu Să se te că tughul BC este echltel dcă ş um dcă B C O Ît-u cec de cetu O se cosdeă două code pepedcule B ş CD ce se tesecteă î puctul P Să se demostee că: P PB PC PD PO 5 Să se te cu utoul clcululu vectol că dgolele uu om sut pepedcule 6 Fe BCD u ptulte ş O puctul de tesecńe l dgolelo Să se te că BCD este tpe dcă ş um dcă puctul O pńe uu dte segmetele ce ueşte mlocele două ltu opuse le ptulteulu; Să se te că BCD este plelogm dcă ş um dcă puctul O pńe fecău dte segmetele ce ueşte mlocele ltulo opuse le ptulteulu 7 Fe BCD u ptulte ş O puctul de tesecńe l dgolelo Să se te că BCD este plelogm dcă ş um dcă oce f puctul M d spńu M MB MC MD MO 8 Fe B C M E pucte te Să se demostee că e loc elń: M BC BM C CM B Să se demostee că dcă ît-u tetedu două peech de much opuse sut otogole tuc ş ce de- te peeche e ceeş popette 9 Fe BC u tugh ş O u puct t î spńu Să se demostee elń: BC O C OB B OC ( O OB OB OC OC O Fe α β γ ughule pe ce le fomeă u vecto le eul cu ele de coodote Să se te că cos α cos β cos γ (Remcă: cos αcos β cosγ se umesc cosuş decto vectoulu Dcă c V stfel îcât c să se te că c c Recpoc este devăt? Să se demostee cu utoul clcululu vectol că î oce tugh c BC e loc elń (teoem susulu (IdcŃe: Se pote s s B s C utl eecńul Se cosdeă puctele ( B( C( c Să se te că tughulu BC este cel mult eglă cu c Î ce c e loc 7

egltte? Să se te că vecto u v ş u v sut col dcă ş um dcă vecto u ş v sut col 5 Fe ş Să se deteme: ughul dte vecto ş ; plelogmulu costut pe vecto ş 6 Să se deteme λ R stfel îcât vecto λ ( λ ş λ să fe pepedcul 7 Să se deteme clculee epes E c c cuoscâd că c ş c 8 Se cosdeă vecto le c cu popetăńle: c π ( π ( c 6 π ( c Să se clculee c ş 9 Să se te că vecto c 5 sut copl Să se deteme λ R stfel îcât vecto ( λ λ c să fe copl ş să se descompuă po vectoul după decńle vectolo ş c Să se demostee că c c oce f c V ( c Fe puctele ( B( C(55 D(7 Să se deteme: Volumul tetedulu BCD; Lugme îălńm cooâte d vâful pe fń (BCD Se cosdeă vecto u v w ecopl cu utoul căo se defesc u v w λ u v w c u v w Să se deteme sclul λ stfel îcât volumul tetedulu detemt de vecto c să fe de cc o volumul tetedulu detemt de vecto u v w 8

Cptolul II Plul ş dept î spńu Pe pcusul cestu cptol e vom pot l sstemul otogol de coodote O todus î secńue cptolulu pecedet De semee ońule toduse ş eulttele ońute î cptolul Vecto le vo f stumete deoset de utle petu studul plelo ş deptelo d spńu Plul Teoem (EcuŃ plulu ce tece pt-u puct dt ş este pepedcul pe o decńe dtă: Dcă M ( este u puct f î spńu B C u vecto eul dt tuc ecuń plulu ce tece p M ş este pepedcul pe vectoul e fom: B( C( ( ( M (P M fg 7 DemostŃe: Fe (P plul căutt ş cosdeăm M ( u puct t î plul (P dfet de puctul M pteeń puctulu M l plul (P 9

este echvletă cu pepedcultte vectolo ş M M dec cu elń M M Deoece M M ( ( ( Ńâd cot de epes ltcă podusulu scl ońem că ( B( C( şd u puct M ( pńe plulu (P dcă ş um dcă B( C( ( DefŃ : Oce vecto pepedcul pe u pl dt se umeşte vecto oml l plul espectv OsevŃe: D demostń Teoeme eese că dt fd u pl de ecuńe B C D tuc B C este u vecto oml l plul cosdet Teoem (EcuŃ geelă plulu: Oce pl d spńu este deft de o ecuńe de fom: B C D ( cu B C D umte costte ele stfel c B C DemostŃe: Fe (P u pl t legâd M ( u puct î plul (P ş B C u vecto oml l plul (P cofom Teoeme ońem că ecuń plulu (P este B( C( dcă ( B C D ude s- ott D B C Dtotă fptulu că u vecto oml l u pl este eul ońem codń dńolă B C Teoem : Oce ecuńe de gdul îtâ î defeşte u pl d spńu DemostŃe: O ecuńe de gdul îtâ î este de fom B C D ( cu B C D costte ele dte ş B C (petu c ecuń să fe de gdul îtâ O stfel de ecuńe e o ftte de soluń ele (se du vlo te l două dte ecuoscute ş se detemă ce de- te ecuoscută Fe o soluńe ceste ecuń Evdet tpletul de umee ele ( coespude puctulu M d spńu ş ( ( B C D ( Scăâd elń ( d elń ( ońem că ( B( C( D (5 EcuŃle ( ş (5 sut echvlete (se pote ońe ecuń (5 d ( - ş cum m văut m sus ş ves putem uge l ecuń ( pod de l (5 tot cu utoul elńe ( Pe de ltă pte după cum eultă d Teoem ecuń (5 defeşte u pl (plul ce tece p puctul M ( ş este pepedcul pe vectoul B C Dec ş ecuń ( v epeet u pl d spńu

Teoem 5 (EcuŃ plulu plel cu două decń eplele: Dcă M ( este u puct f î spńu v l m ş v l m sut do vecto eplel tuc ecuń plulu ce tece p M ş este plel cu vecto v ş v e fom: l l m m (6 v (P M M fg 8 DemostŃe: Fe (P plul ce tece p M ş este plel cu vecto v ş v Cosdeăm M ( u puct t î plul (P Vecto le v ş v fd plel cu plul (P pot f cosdeń c cluş î (P de ude ońem copltte vectolo M M v ş v dcă ( M M v v Cum M M ( ( ( Ńâd cot de epes ltcă podusulu scl ońem ecuń dotă Teoem 6 (EcuŃ plulu ce tece p te pucte ecole: Dcă M ( sut te pucte ecole tuc ecuń plulu detemt de cele te pucte este: v M (7 (P M M fg 9

DemostŃe: ş cum se şte d omele de cdeńă le spńulu ş cosecńele lo te pucte ecole detemă u pl ş um uul Fe (P plul ce tece p puctele M ( Dcă otăm v M M ş v M M este cl că vecto v ş v sut cluş î plul (P dec plel cu plul (P puctul M pńe plulu (P Putem stfel plc Teoem 5 vâd î vedee că M M ( ( ( M M ( ( ( elń (6 coduce l ecuń dotă Cool 7 (EcuŃ plulu p tăetu: Plul ce tesecteă ele sstemulu cte otogol î puctele ( B( ş espectv C ( c (dfete de oge O sstemulu cte e ecuń (8 c C O B fg DemostŃe: Evdet puctele BC sut ecole Cofom Teoeme 6 ecuń plulu detemt de puctele BC este: Devoltâd cest detemt după pm le ońem c ( c Dcă se împte elń pecedetă p c ońem ecuń (8 OsevŃe: Teoemele 5 6 pecum ş Coolul 7 petă stuń fvole detemă ecuńe uu pl î spńu Ît-o polemă de geomete ltcă vâd dept coclue deteme ecuńe uu umt pl se v educe c

stuń peettă î polemă l uul d eulttele teoetce meńote teo ş se foloseşte ecuń coespuătoe EecŃul : Să se deteme ecuń plulu de coodote (O SoluŃ : Plul de coodote (O tece p oge O ( ş este pepedcul pe vesoul stfel d Teoem ecuń plulu de coodote (O este ( ( ( dcă SoluŃ : Plul de coodote (O tece p oge O ( ş este plel cu veso ş (de fpt ce do veso sut cluş c ptcul de plelsm î plul (O D Teoem 5 ecuń plulu de coodote (O este dec SoluŃ : Vom folos că plul de coodote (O tece p oge O ( ş p puctele ( ş B ( stfel d Teoem 6 ecuń plulu căutt este dcă EecŃul : Să se deteme ecuń plulu ştd că puctul M ( este pcoul pepedcule cooâte d oge pe pl SoluŃe: D poteă OM este vecto oml petu plul căutt puctul M ( pńe cestu pl Putem plc Teoem ş vom ońe ecuń ( ( ( dcă Dept DefŃ : Fe (d o deptă dtă d spńu Se umeşte vecto decto l depte (d oce vecto vâd decń plelă cu dept (d Dcă v l m este u vecto decto l depte (d tuc l m se umesc pmet decto depte