ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:



Σχετικά έγγραφα
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Τομέας Mαθηματικών "ρούλα μακρή"

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 25 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΑΝΤΗΣΕΙΣ. Άρα ο γ. τ. των εικόνων των μιγαδικών z είναι ο κύκλος κέντρου Ο(0,0) κι ακτίνας ρ=2. 4 z. 4 w 4 w 4. Πράγματι: w (1 1) 4

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΟΙ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Θέμα Α ΘΕΜΑ Β

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

Κατεύθυνσης. Απαντήσεις Θεμάτων Επαναληπτικών Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Β 1 α τρόπος Έστω z=x+yi. Τότε για την δοσμένη σχέση έχουμε:

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2015

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Πανελλαδικές εξετάσεις 2015

Λύσεις των θεμάτων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 2015

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ (Γ Λυκείου) α) νδο η συνάρτηση f '' = c. (Υπόδ: παραγωγίζω την δοσμένη σχέση 2 φορές)

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

y = 2 x και y = 2 y 3 } ή

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

1 1 1 (x yi) x yi = = = 2 (x - 1) + y 2

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 Σχολικό βιβλίο σελ Α2 Σχολικό βιβλίο σελ. 28 Α3. α σωστό, β σωστό, γ λάθος, δ λάθος, ε σωστό. ΘΕΜΑ Β

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ(ΟΜΑΔΑΣ Β )

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ 2012

και γνησίως αύξουσα στο 0,

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

f(x) 0 (x f(x) g(x), lim f(x) lim g(x).

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Εξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

- + Απαντήσεις. Θέμα Β Β1. Από την Cf παρατηρούμε ότι 0. f x για κάθε (0,4) συνεπώς η f είναι γνήσια αύξουσα στο [4, 5] και γνήσια φθίνουσα στο [0,4].

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Απαντήσεις στα Θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 19/05/2010 ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

x A. Είναι δηλαδή: ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΟΙ ΑΝΙΣΟΤΗΤΕΣ ΩΣ ΔΕΔΟΜΕΝΟ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΥΣΗΣ

Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 253 σχολικού βιβλίου. Έστω x1,

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

Transcript:

. Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη δοσμένη σχέση του ερωτήματος βρίσκουμε ότι ( ) + y = ( ) + y 3 3y = + y = Άρα οι εικόνες των μιγαδικών z ανήκουν σε κύκλο με κέντρο το Ο(,) και ακτίνα ρ=. Β. α) Επειδή οι μιγαδικοί ανήκουν στον κύκλο του προηγούμενου ερωτήματος μπορούμε να συνάγουμε ότι z = z = z =, z z =. z Αλεξανδρος Πασιούρας Μαθηματικός MSc-PhD Σελ. από 7

Για να διαπιστώσουμε ότι ο w πράγματι είναι πραγματικός αρκεί να υπολογίσουμε τον w Είναι: w = z z + z = z z z + z z = z + z = w z z β) Κάνοντας ομώνυμα στον w βλέπουμε ότι w = z +z χρησιμοποιώντας ότι z z =. z + z = + Άρα w, και w πραγματικός, λαμβάνουμε: w Β3. Αφού τώρα w=-, με πράξεις οδηγούμαστε στη σχέση z + z = z +z z z = z z z z = z + z = z z (z + z ) =. Για να ισχύει αυτό αναγκαστικά πρέπει z = z. Το ζητούμενο τρίγωνο τώρα έχει ως πλευρές τις ΑΒ,ΑΓ,ΒΓ Είναι: ΑΒ = z z, ΑΓ = z z 3, ΒΓ = z z 3 Βλέπουμε με λίγο άλγεβρα ότι ΒΓ = z z 3 = z iz = z i = 5 ΑΓ = z z 3 = z iz = z i = 5=ΒΓ Επομένως το τρίγωνο ΑΒΓ είναι ισοσκελές. Γ. ΘΕΜΑ Γ: Η συνάρτηση f είναι παραγωγίσιμη σε όλο το R, ως πράξεις παρ/μων, με f () = (e ) ( +) e () ( +) Άρα η f είναι γνησίως αύξουσα σε όλο το R. = ( ) e ( +), όπου f () = =. Αλεξανδρος Πασιούρας Μαθηματικός MSc-PhD Σελ. από 7

e = e + + D.L.H. = + D.L.H. Επίσης, + f() = Και f() = e + =, γιατί e =, Άρα το σύνολο τιμών της συνάρτησης f είναι το Γ. Είναι f(e 3 ( + )) = e Παρατηρούμε ότι ο αριθμός e3 f(r) = (, + ). e = + + + =. 5 f(e3 ( + )) = f() e 3 ( + ) = f() = e3 f(r) = (, + ), άρα υπάρχει λόγω μονοτονίας της συνάρτησης f μοναδικός αριθμός o R, ώστε f( o ) = e3. Γ3. Έστω τυχόν >. Ορίζουμέ τη συνάρτηση ολοκλήρωμα F() = f(t)dt. Η F είναι συνεχής και παραγωγίσιμη σε όλο το R, αφού η f είναι παντού συνεχής Επιπλέον F () = f() Η F είναι συνεχής στο [, ] Η F είναι παρ/μη στο (, ) Από το Θεώρημα Μέσης Τιμής( Θ.Μ.Τ.) υπάρχει ξ (, ): f(ξ) = Τώρα ξέρουμε ότι η f είναι γνησίως αύξουσα, Άρα αφού ξ < f(ξ) < f() για κάθε >. Γ. Είναι g () = g() g() = F() F() f(t)dt f(t)dt = f(t)dt < f() f(t)dt = f(t)dt = < f(), Αλεξανδρος Πασιούρας Μαθηματικός MSc-PhD Σελ. 3 από 7

f() f() = D.L.H. 6f () f () = 6f () = 6. == D.L.H. Άρα η συνάρτηση g είναι παραγωγίσιμη στο Επίσης η g είναι παρ/μη στο (, + ), ως πράξεις παρ/μων Τότε για κάθε > έχουμε: = g () = (f() f()) f(t)dt = [f() f() f(t)dt ] = [f() f(t)dt + (f() f())] >, για κάθε > Επειδή γνωρίζουμε από το ερώτημα Γ3 ότι f() γνησίως αύξουσα και < έπεται ότι f() f() > f(t)dt >, και αφού f Άρα g () = 6, g () >, για κάθε >, συνεπώς η g είναι γνησίως αύξουσα στο [, + ). Δ. ΘΕΜΑ Δ: Κάνοντας επιμερiστική στη δοσμένη συναρτησιακή σχέση βλέπουμε άμεσα ότι μπορούμε να τη γράψουμε Άρα έχουμε ότι e f() e f() = + c [e f() e f() ] =. Για =, επειδή f()=, βλέπουμε ότι c=. Τέλος πολλαπλασιάζοντας τη δοσμένη εξίσωση με e f(), καταλήγουμε στη σχέση e f() = e f() e f() e f() = e f() e f() + = + (e f() ) = +. Η συνάρτηση (e f() ) διατηρεί πρόσημο γιατί δεν έχει ρίζες, και άρα είναι αυστηρά θετική. Αλεξανδρος Πασιούρας Μαθηματικός MSc-PhD Σελ. από 7

Άρα και η συνάρτηση h() = e f(), διατηρεί πρόσημο, και αφού h()=>, αναγκαστικά ισχύει ότι h()> Καταλήγουμε λοιπόν ότι e f() = + f() = ln( + + ), για κάθε R Δ. α) Παραγωγίζοντας τη συνάρτηση f, έχουμε f () = + + + + = + = + + + + Συνεπώς εύκολα μετά βλέπουμε ότι f () = + > + + = + ( + ) Αφού + ( + ) >, για κάθε R, παρατηρούμε ότι f () >, αν < f (), αν Άρα η f κυρτή στο (, ) Άρα η f κοίλη στο [, + ) Σημείο καμπής στο o = β) Παρατηρούμε κατ αρχήν ότι η ευθεία y= είναι η εφαπτομένη της συνάρτησης στο σημείο Α(,f()). Επειδή τώρα η f είναι κυρτή στο [,] που είναι το πεδίο ολοκλήρωσης, θα είναι κάτω από την εφαπτομένης της, y=, σε ολόκληρο το [,], δηλαδή f() Άρα Ε(Ω) = (f() )d = [ln( + + )) ]] d = [ln ( + + ))] d + d = [ln ( + + )] + + d + [ ] = = ln( + ) + [ + ] + = ln( + ) +, τ. μ. Δ3. f (t)dt Είναι : +( e ) = e =, αφού + f (t)dt = Αλεξανδρος Πασιούρας Μαθηματικός MSc-PhD Σελ. 5 από 7

Επίσης ln f() =, αφού f()= + Έχουμε λοιπόν Άρα το όριο έχει απροσδιόριστη μορφή ( ), και επομένως με κατάλληλη τροποποίηση του ορίου μπορούμε να εφαρμόσουμε D.L.H. Επειδή Δ. = + f (t)dt +(e )ln f() = f (t)dt f ()(e ) f() f (t)dt e f () f() =, f () =, Θεωρούμε τη συνάρτηση Είναι + (e = + f (t)dt ln(f()) + e f (t)dt f (t)dt = D.L.H. f()f ()(e ) e =, f (t)dt ) =, + e f (t)dt = g() = ( )( 3 f(t )dt) + ( 3)(8 3) f (t)dt g() = 3 8 f (t)dt g(3) = 3 f(t )dt Χρησιμοποιούμε ότι η f είναι κοίλη και άρα στο διάστημα [, + ) είναι κάτω από την εφαπτομένη της στο σημείο Α(,f()) Ισχύει δηλαδή η ανισότητα f() <, για κάθε > Άρα f(t ) < t, για κάθε t (,], συνεπώς f(t )dt < t dt =, άρα 3 g(3) > Αλεξανδρος Πασιούρας Μαθηματικός MSc-PhD Σελ. 6 από 7

Όμοια επειδή f είναι γνησίως αύξουσα( αφού f ()>), έχουμε ότι για >, f()>f()= f (t) < t, για κάθε t (,] Άρα μπορούμε να υψώσουμε στο τετράγωνο χωρίς να αλλάξει η φορά της ανίσωσης, άρα Άρα f (t)dt < t dt = 8, δηλαδή g() <. 3 H g είναι συνεχής στο [,3] g()g(3)< Από το Θεώρημα Bolzano υπάρχει ένα τουλάχιστον o (,3): g( o ) =. Άρα η αρχική δοσμένη εξίσωση έχει τουλάχιστον μια ρίζα στο (,3). Αλεξανδρος Πασιούρας Μαθηματικός MSc-PhD Σελ. 7 από 7